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Abstract.
Federated learning enables training a global machine learning

model from data distributed across multiple sites, without having to
move the data. This is particularly relevant in healthcare applications,
where data is rife with personal, highly-sensitive information, and
data analysis methods must provably comply with regulatory guide-
lines. Although federated learning prevents sharing raw data, it is
still possible to launch privacy attacks on the model parameters that
are exposed during the training process, or on the generated machine
learning model. In this paper, we propose the first syntactic approach
for offering privacy in the context of federated learning. Unlike the
state-of-the-art differential privacy-based frameworks, our approach
aims to maximize utility or model performance, while supporting
a defensible level of privacy, as demanded by GDPR and HIPAA.
We perform a comprehensive empirical evaluation on two important
problems in the healthcare domain, using real-world electronic health
data of 1 million patients. The results demonstrate the effectiveness
of our approach in achieving high model performance, while offer-
ing the desired level of privacy. Through comparative studies, we also
show that, for varying datasets, experimental setups, and privacy bud-
gets, our approach offers higher model performance than differential
privacy-based techniques in federated learning.

1 Introduction
Machine learning models often face significant challenges when ap-
plied to large-scale, real-world data. These may include decentral-
ized data storage, cost of creating and maintaining a central data
repository, high latency in migrating data to the repository, single
point of failure, and data privacy. Federated learning (FL) [28] of-
fers a new paradigm for iteratively training machine learning mod-
els using distributed data. At each iteration, the sites train a global
model on their local data, typically using gradient descent method.
The parameter updates of the local models are subsequently sent to
an aggregation server and incorporated into the global model. The
updated global model is again shared with the sites for the next itera-
tion of training. The merit of this approach has been demonstrated in
several real-world applications, including image classification [38],
language modeling [28], and healthcare [7, 10].
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FL is particularly applicable in the healthcare domain, where data
is rife with personal, highly-sensitive information, and data analysis
methods must conform to regulatory requirements. Although FL is
considered to be a step closer to protecting data privacy, it can still
be vulnerable to various inference or poisoning attacks [5, 39]. For
instance, by initiating membership inference attack, adversaries can
infer if an individual’s data was used for training the model [33].
In reconstruction attack, adversaries aim to reconstruct the training
dataset from model parameters [1, 17].

A majority of recent work have adopted ε-differential privacy
(DP) [14] for protecting FL models against such attacks. Although
DP is considered state-of-the-art for offering strong privacy guaran-
tees, in practice, it often yields low data utility due to the addition of
excessive noise. As noted in [9, 18], integrating DP with FL causes a
significant reduction in data utility, particularly for a setup compris-
ing less than 1000 sites. More importantly, the interpretation of the
privacy parameter ε, which restricts the impact an individual record
has on the output of analysis, does not provide an intuition regarding
what information is leaked about an individual [12]. Also, a given
value of ε does not offer the same level of privacy across different
datasets. As such, it is challenging to use DP for proving compli-
ance on de-identification with privacy legal frameworks, such as EU
General Data Protection Regulation (GDPR)1 and the US Health In-
surance Portability and Accountability Act (HIPAA)2, a crucial re-
quirement in healthcare applications.

In this paper, we propose a syntactic approach for offering pri-
vacy in the context of FL. Unlike DP-based frameworks, our ap-
proach aims to maximize data utility and model performance, while
enabling a provable and defensible level of privacy that adheres to
the demands of privacy legal frameworks. Syntactic anonymity ap-
proaches support universal privacy guarantees that are interpretable.
This has allowed policy makers to accept them as the standard for
data protection. Moreover, syntactic approaches come with estab-
lished processes for deciding on an acceptable level of privacy, given
the data characteristics, intended use, security and contractual con-
trols that are in place (c.f. [23] for de-identification under US HIPAA
and Canada’s PIPEDA, as well as guidelines from the Spanish Data
Protection Authority on the use of syntactic approaches for GDPR
anonymization [3]).

Although syntactic approaches have been studied in centralized
settings, their potential has not yet been explored in a FL setup.
Application of a syntactic approach in FL poses several challenges,

1 GDPR law: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:
2016:119:TOC

2 HIPAA law: https://www.hhs.gov/hipaa/for-professionals/privacy/special-
topics/de-identification/index.html
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which stem from the need to coordinate anonymization of data across
sites, both during and after FL training. The first core component of
our approach is to augment the FL training procedure with a syn-
tactic anonymization step at the local sites. Specifically, we employ
an anonymize-and-mine approach [11], where we apply a syntactic
anonymization method on the original private data and use the re-
sulting anonymized data for subsequent mining. Our anonymization
approach operates on data records that consist of a relational part and
a transactional part, offering protection against adversaries who may
have knowledge about individuals that spans these two data types.
The second core component is a global anonymization mapping pro-
cess that aids the resulting FL global model in the prediction process.
We perform a comprehensive empirical evaluation of our approach
on two important machine learning applications in the healthcare do-
main, using real-world electronic health data of 1 million patients.
The results demonstrate the effectiveness of our approach in achiev-
ing high model performance, while offering sufficient privacy. We
also provide a comparative analysis with DP, in terms of data utility,
for various values of privacy parameters k and ε, commonly used in
practice. Compared to DP, our approach achieves significantly better
utility preservation and model performance and is more interpretable
at the level of privacy it offers.

The key contributions of this work include:

1. Presenting the first syntactic approach to protect privacy in the
context of FL. Applying a syntactic approach to FL is challenging
because data is distributed among sites, and requires several novel
steps beyond the existing centralized approaches.

2. Evaluating the proposed approach on two important problems in
the healthcare domain, using two real-world large-scale health
datasets.

3. Comparing and contrasting ε-differential privacy and our syntactic
approach in the context of FL, with respect to the level of utility
and interpretability, for typically-used privacy thresholds.

2 Related Work
In this section, we review different privacy attacks on FL and sum-
marize the state-of-the-art approaches to combat them.

Privacy attacks on federated learning: Although FL evades the
need for sharing raw data, recent studies have identified potential pri-
vacy attacks that can still compromise the integrity of the model and
data. FL is susceptible to privacy attacks at non-trusted sites and non-
trusted aggregation servers, which can be broadly categorized into
inference attacks and poisoning attacks. As described in [29] and ref-
erences therein, inference attacks include membership attacks (infer
whether a participant’s record was used in the training dataset) and
reconstruction attacks (infer the training dataset from model parame-
ters). Inference attacks can be further categorized into black box (by
accessing only model predictions) and white box (by accessing the
model’s parameters in addition to model predictions) attacks. In [29],
the authors proposed a white box inference attack, where users ex-
ploit the privacy vulnerabilities of stochastic gradient descent (SGD)
algorithm in FL. Further, in [39], the authors considered a FL sce-
nario that experiences user-level privacy leakage due to attack from a
malicious aggregation server. They proposed a reconstruction attack
mechanism based on generative adversarial network (GAN). A more
recent form of attack is poisoning attack, where users can manipulate
parameters of their FL model updates in order to poison the overall
FL process in their desirable ways [5].

Privacy-preserving federated learning approaches: Existing lit-
erature on privacy-preserving FL has primarily focused on DP and
secure multiparty computation (SMC). SMC for FL has been pro-
posed to compute sums of model parameter updates from individual
user’s devices in a secure manner [6]. Such an approach is applicable
to specific operations, such as sum-based aggregation, and can pro-
tect from non-trusted aggregation server, but are computationally ex-
pensive in practice. Our proposed approach addresses the scenario of
non-trusted servers, in addition to non-trusted sites, using lightweight
computations, since each site only shares model parameters trained
on anonymized data.

Several recent approaches have proposed DP for FL using differ-
ent implementation techniques [2, 27, 36]. Most of these approaches
have focused on mobile application scenarios, such as image recog-
nition or next-word predictor for mobile keyboards. They assume a
very large number of users, typically mobile phones, and focus on
deep neural network models, which assume the existence of large-
scale training data at sites. In addition, the proposed techniques im-
prove model performance by exploiting the massive number of FL
sites. The work in [18] proposed a DP-based approach for health ap-
plications, but did not consider the scenario of non-trusted servers. In
addition, the reported evaluations were not performed on real-world
data. Prior studies have shown that utility or model performance can
only be preserved for a setup comprising large number of sites (in
the order of 1000 sites), and takes a severe hit when there exist fewer
sites (in the order of 100 sites). The work in [37] implemented a
mechanism combining SMC and DP. However, none of the above-
mentioned work on DP for FL can provably achieve compliance
with GDPR and HIPAA regulations around data de-identification and
anonymization.

In this paper, we focus on health applications and inference attacks
that can be launched by sites as well as the aggregation server. These
applications also do not assume a massive number of sites (sites are
typically hospitals or healthcare institutes) and each site may not host
large-scale data for deep learning models to be applicable. Such a
scenario further necessitates the need to derive insight from other
sites, in the form of FL, to construct more accurate models. To the
best of our knowledge, this is the first work to propose a syntactic
privacy-preserving mechanism for FL, which offers increased model
performance and compliance with legislative frameworks, such as
GDPR and HIPAA.

3 A Syntactic Approach for Privacy in FL
In this section, we first provide the necessary background on syn-
tactic approaches. We then present our syntactic approach for FL.
Specifically, we describe our proposed method for offering privacy
in FL using a (k, km)-anonymity model. We identify the key chal-
lenges for adopting this approach in a FL scenario and propose solu-
tions to mitigate them. We describe the underlying method through a
series of steps, detailed in the sections that follow.

3.1 Background: Syntactic privacy models
The notion of syntactic privacy was first introduced in the work of
k-anonymity [34]. This data anonymization principle requires each
record in a dataset to become indistinguishable from at least k − 1
other records, with respect to the values of a set of potentially link-
able attributes or quasi-identifiers (QIDs). QIDs are attributes of a
dataset that, in combination, can be used to re-identify individuals
through triangulation attacks with other datasets. An example is the
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Gender

All

Female Male

Place

Europe

France Italy

Asia

Japan China

Africa

Ethiopia Kenya

All

Age

[1-20] [21-40]

24 40

[81-100]

59 87

[0-100]

10

23

32

[41-60]

5448

(a) Given data (b) Anonymized data

(c) Domain generalization hierarchies for the relational attributes

Added for Aris

Relational Attribute Transactional Attribute
ID Age Gender Place Diagnoses
1 24 Male France A, B, D
2 32 Female Italy A, B, F
3 40 Male Japan B, G, H
4 40 Male China B, H, I
6 48 Female Ethiopia A, C, E, F, H
5 54 Female Kenya A, D, E, H

Relational Attribute Transactional Attribute
Age Gender Place Diagnoses

[21:40] All Europe A, B, (C, D, E, F)
[21:40] All Europe A, B, (C, D, E, F)

40 Male Asia B, (G, I), H
40 Male Asia B, (G, I), H

[41:60] Female Africa A, (C, D, E, F), H
[41:60] Female Africa A, (C, D, E, F), H

uT while satisfying �. To achieve this, we select cluster C
as seed, from the list of generated clusters, with minimum
uR(C). We then create two orderings to sort the generalized
merged clusters in ascending order of uR and uT . We select
a cluster C 0, such that it is closest to C with respect to the
two orderings and when merged with C, results in a dataset
with uR satisfying �. Finally, we merge the clusters C and
C 0 and assign it to Ds.

Enforce (k, km)-anonymization We apply item general-
ization in the transactions of each cluster in Ds (Terrovitis,
Mamoulis, and Kalnis 2011), which then creates a (k, km)-
anonymized version of the dataset.

4.3 Sharing of the syntactic mapping
Given that all local models were trained using anonymous
data records (generalized on their QID attributes to meet the
requirements of the syntactic privacy model), the knowledge
in the global model will be represented at the same aggregate
level. Moreover, given that each site may have produced dif-
ferent generalizations of the QID attributes (e.g., due to the
differences in the data distribution and number of records,
or the value of k used) to anonymize its data, the knowl-
edge of the global model will span all such data generaliza-
tions. Let Mi be the collection of all different combinations
of values for the QID attributes (also known as equivalence
classes) that appear in the anonymized dataset of site Di. Let
mapping M be the union of all Mi from the local sites. The
global model will be able to process new data records after
these are represented under one of the equivalence classes
in mapping M . Therefore, the site that will use the global
model will need to also have knowledge of M .

Once each local dataset Di is anonymized to D0
i, where

i 2 N , we share the syntactic mapping (Mi), computed at
site i, with the aggregator server for subsequent use. Sim-
ilarly, the mapping information can also be shared across
sites through a secure protocol (see dotted lines in Figure
2). We note that sharing the mapping of a node does not vio-
late privacy because for each equivalence class (by construc-
tion) there exist at least k unique records (individuals) with
the same values of the QIDs. No records are shared among
equivalence classes.

4.4 Training of the federated model on
syntactically anonymized data

Following the norm of federated learning, we share a global
model of interest across all sites, each hosting its syntacti-
cally anonymized data. We train the model on anonymized

local datasets, after which the parameter updates are incor-
porated into the global model. This iterative process contin-
ues until the global model converges. For further details on
developing the federated learning models, we refer the read-
ers to (Choudhury et al. 2019; McMahan et al. 2016).

4.5 Using the global model with new samples

The last step of the process regards using the global model
with previously unseen data records. When the aggrega-
tor server receives new samples or the local sites en-
counter new records for testing, we map each of these
samples to an appropriate equivalence class from M ,
based on the previously-stored list of syntactic map-
pings. Let us consider the jth test sample DT

j and
the ith data distribution of equivalence class Ei defined
by its mean µi and covariance matrix ⌃i. We com-
pute a score dM , based on Mahalanobis distance (Ma-
halanobis 1936), that is given by dM (DT

j , µi,⌃i) =q
(DT

j � µi)T⌃�1
i (DT

j � µi). We select the equivalence
class E?

i with minimum distance by solving the optimiza-
tion problem i? = argmin

i
dM (DT

j , µi,⌃i). The syntactic

mapping rule of the selected equivalence class is applied to
the QIDs of the test sample, which is then used for testing
the federated learning model.

Input: Local data Di, threshold �, privacy parameters k, m
Function syntacticFL(Di, �, k, m):

foreach Di 2 D do
D̃i = getDiscriminativeAttributes(Di)
D0

i = syntacticAnonymization(D̃i, k, m, �)
Mi = getSyntacticMapping(D0

i , k, m, �)
shareSyntacticMapping(Mi)
trainFederatedModel(D0

i)
end
foreach DT

j 2 DT do
E?

i = getOptimalEquivalenceClass(DT
j )

DT
0

j = mapOptimalEquivalenceClass(DT
j , E?

i )

testFederatedModel(DT
0

j )
end

Algorithm 1: Syntactic Federated Learning

Figure 1: (a) RT -dataset containing relational (age, gender, place) attributes and transactional (diagnoses codes) attributes. (b) (k, km)-
anonymized version of the data, where k = 2 and m = 3. (c) The hierarchy used to generate the anonymous data.

combination of date-of-birth, gender, and 5-digit zip code, which has
been found to be unique for a large percent of US citizens.

Definition 1. Let D(A1, . . . , Au) be a relational dataset consist-
ing of u attributes, and QID be a quasi-identifier associated with
it. By construction, QID involves a subset of attributes Ar ⊆
{A1, . . . , Au}. Dataset D satisfies k-anonymity with respect to
QID, if and only if there exist at least k records in D for each se-
quence of values for attributes Ar .

The dataset shown in Figure 1(b), for example, is 2-anonymous
with respect to QID attributes age, gender, and place, since ev-
ery combination of the values of these attributes appears in (at least)
k = 2 records of the dataset.
k-anonymity has been widely adopted to preserve privacy of sen-

sitive personal information, particularly in healthcare, marketing,
and location-based services [19, 30]. The k-anonymity approach
has been further extended to other privacy formalism, such as l-
diversity [26] and t-closeness [24].
k-anonymity and its variants were designed for datasets contain-

ing only relational (numerical and categorical) attributes. In the con-
text of healthcare, however, datasets also contain transactional (set-
valued) attributes. In transactional datasets, individuals are associ-
ated with a number of items (known as an itemset). Such items, for
example, may be diagnosis codes, in which case an itemset is a set
of diagnoses associated with a patient. To anonymize transactional
data, the privacy principle of km-anonymity was invented [35].

Definition 2. Let I be the entire set of items that can be associ-
ated with a data record of a dataset D. Let D be a transactional
dataset over I, where each record is associated with an item set
I ⊆ I. Dataset D is km-anonymous if no attacker that has back-
ground knowledge of up to m items of a record can use these items
to identify less than k records from D.

The dataset shown in Figure 1(b), for example, is 23-anonymous
with respect to the transactional attribute, as an attacker that has
knowledge of any m = 3 diagnoses associated with an individual
(e.g., A, B, D), cannot use this knowledge to identify less than k = 2
records from the dataset (in this example records with IDs 1, 2).

In modern datasets, individuals are typically associated with mul-
tiple types of data. In healthcare, for example, electronic health
records involve both relational (numerical and categorical) and trans-
actional attributes. In this context, relational attributes may corre-
spond to patient demographics and transactional attributes to patient
diagnoses. Anonymizing datasets that consist of both relational and
transactional attributes (known as RT -datasets) is challenging due
to the conflicting goals of minimizing information loss in relational
and transaction attributes [31]. This has led to the development of
(k, km)-anonymization algorithms, which enforce k-anonymity on
the relational attributes and km-anonymity [35] on the transactional
attributes [31]. Since data anonymization unavoidably incurs data
distortion, which leads to information loss, syntactic approaches that
apply the (k, km)-anonymity principle offer privacy with bounded
information loss (δ) in one attribute type and minimal information
loss in the other.

Definition 3. Let D(A1, . . . , Au;B) be an RT -dataset consisting
of u relational attributes A1, . . . , Au and a transactional attribute
B, and QID be a quasi-identifier associated with the relational at-
tributes. Dataset D satisfies (k, km)-anonymity if no attacker that
has background knowledge of the values of the quasi-identifier QID
for an individual and up to m items of the transactional attribute
B associated with the same individual, can use this knowledge to
identify less than k records from D.

In Figure 1, we show an example of an RT -dataset and its
(k, km)-anonymized counterpart that is built based on the given do-
main generalization hierarchies. Please observe that knowledge of
the values of QID attributes age, gender, and place, as well as
of up to m = 3 diagnoses associated with a patient, always leads
to (at least) k = 2 records of the dataset. These records can have
varying values for their non-identifying attributes.

Although syntactic approaches have been extensively addressed
for centralized settings, they have not been considered in the dis-
tributed FL setting.
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Δw1 Δw2 Δw3

M1 M2 M3

M1

M2

M3DT

Aggregator Server

D1 D’1

Site1

D2 D’2

Site2 Site3

D3 D’3

M1 M2

Figure 2: System design implementing our approach for privacy-preserving FL. The local data (D1, D2, D3) at each site is anonymized using
a syntactic approach. The syntactic mapping (M1,M2,M3) generated at each site is shared with the aggregator server (or across sites) for
future use. The anonymized local data (D

′
1, D

′
2, D

′
3) is used for training the federated model. When the aggregator server (or site) receives a

new dataset (DT ), the samples are mapped to an appropriate equivalence class prior to using the federated model for predictive analysis.

3.2 Selecting discriminative attributes

At each site, we need to select the features or attributes to be used for
training the model. Certain attributes, such as gender, date-of-birth,
and zip code, of the local data qualify as QIDs which, however, may
have low discriminative power for the classifier. Including such an at-
tribute for training the model requires processing it as part of a QID
and generalizing its values along with values of other attributes in the
QID, to meet the k-anonymity requirement. This introduces noise to
the data and often deteriorates the performance of the model. Hence,
the first step of our proposed approach requires each site to deter-
mine the QID attributes that it should use for training its local model.
Specifically, we rank the QID attributes based on feature importance
to find the top discriminative ones and discard all others from the
training of the local model. For our health datasets, we tested Re-
cursive Feature Elimination (RFE), ExtraTreeClassifier and Random
Forest techniques (RF) for computing feature importance at each site.

3.3 Anonymizing local data

The second step is to select an appropriate syntactic approach for
anonymizing local data at each site. This selection needs to be done
based on the types of attributes that exist in the dataset. Our health
datasets contain both relational and transactional attributes, so we
employ a (k, km)-anonymity-based approach [32].

We consider N sites, each hosting its own local data Di, where
i ∈ N . Let uR() and uT () (these will be instantiated in section 4.2
with equations 1-6) be the functions measuring information loss for
relational and transactional attributes, respectively. A lower value of
these metrics implies less information loss, hence better data util-
ity. Furthermore, let δ be an upper bound of acceptable information
loss in the relational data to accommodate for higher utility in the
anonymization of the transaction data. Essentially, parameter δ aims
to strike a balance between the conflicting goals of minimizing infor-
mation loss in the relational data and minimizing information loss in
the transactional data [32].

For a given dataset D, we generate its (k, km)-anonymized ver-
sion D′, in a way that upper-bounds information loss in the rela-
tional part and minimizes information loss in transactional part. The
anonymization is performed using the following three-step process.

3.3.1 Original cluster formation

In the cluster formation step, the algorithm produces k-anonymous
clusters with respect to relational attributes only, in a way that aims
to minimize information loss. Each record is represented as a multi-
dimensional point, where each dimension corresponds to a QID at-
tribute. A hard clustering (e.g., using an agglomerative method [4])
is performed, where a cluster Sj is formed for each set of at least k
points that are most similar with respect to their values for the QID
attributes, using a data record similarity metric uR. In the end of the
clustering process, any (< k) points that have not been assigned to a
cluster, are assigned to their closest cluster. Following that, for each
formed cluster, the records corresponding to the points of the cluster
are anonymized together by having their values for the QID attributes
generalized to the same value. As an example, in Figure 1(b), records
with IDs 1, 2 are part of the same cluster and have to be anonymized
together. For each QID attribute, the corresponding generalization hi-
erarchy is used to locate the common ancestor of their values and use
it to replace the original values (e.g., for attribute age the common
ancestor of 24 and 32 in the Age hierarchy is [21-40], thus this value
is used to generalize the records). In this way, a new dataset Ds is
created that contains the generalized records from all clusters S.

3.3.2 Iterative cluster merging

By construction, at the end of the cluster formation step, the iden-
tified clusters achieve minimal information loss with respect to the
relational part. This comes at a cost of utility to the transactional
part of the data. To reduce this effect and accommodate for lower
information loss with respect to the transactional part of the data,
we perform an iterative cluster merging process. This process aims
to minimally reduce utility of the relational part (uR) in an effort to
significantly improve the utility of the transactional part (uT ), such
that the (k, km)-anonymization solution retains acceptable utility in
both parts of the data. To achieve that, we iteratively merge the set of
clusters S corresponding to Ds, to form larger clusters until we have
reached the maximum allowable distortion of the relational part, as
provided by parameter δ. For cluster merging, we select a cluster
C as seed, from the list of clusters S, with minimum uR(C). We
then create two orderings to sort the clusters in ascending order of
uR and uT . We select a cluster C′, such that it is closest to C with
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respect to the two orderings and when merged with C, results in a
dataset with uR satisfying δ. Finally, we merge the clusters C and
C′ and update the corresponding records in Ds. The same process
repeats as long as the produced clustering does not violate δ. The
final clustering that has not surpassed the maximum allowable dis-
tortion of the relational part is used in the next step to create the
(k, km)-anonymized version of the dataset. For more details on iter-
ative cluster merging techniques with similar objective, please refer
to [31]. In Figure 1(b), iterative cluster merging results in three clus-
ters: c1 containing records with IDs 1, 2; c2 containing records with
IDs 3, 4; and c3 containing records with IDs 5, 6.

3.3.3 Enforcement of (k, km)-anonymization

At this step, the final clusters have been formed and the records
have been anonymized with respect to the relational part. To create
a (k, km)-anonymized version of the dataset, we apply item gener-
alization to the transactional attribute corresponding to the records
of each cluster in Ds [35]. Item generalization, illustrated in Fig-
ure 1(b) with items placed inside parentheses, introduces uncertainty
about which items of a generalized item are actually associated with
the individual. For example, in Figure 1, the generalized item (G,
I) is interpreted as any (or both) of items G and I belonging to the
record of the individual in the original dataset.

3.4 Sharing of the syntactic mapping

Given that all local models were trained using anonymous data
records (generalized on their QID attributes to meet the requirements
of the syntactic privacy model), the knowledge in the global model
will be represented at the same aggregate level. Moreover, given that
each site may have produced different generalizations of the QID at-
tributes (e.g., due to the differences in the data distribution and num-
ber of records, or the value of k used) to anonymize its data, the
knowledge of the global model will span all such data generaliza-
tions. LetMi be the collection of all different combinations of values
for the QID attributes (known as equivalence classes) that appear in
the anonymized dataset of site i. In what follows, we use terms “syn-
tactic mapping” and “equivalence class” interchangeably. Examples
of equivalence classes (see Figure 1) are:

M1 → Age : [21:40], Gender : All, Place : Europe, Diagnoses :
A, B, (C, D, E, F)

M2 → Age : [41:60], Gender : Female, Place : Africa, Diagnoses :
A, (C, D, E, F), H

Let mapping M be the union of all Mi (equivalence classes) pro-
duced at the local sites. The global model will be able to process
new data records after these are represented under one of the equiva-
lence classes in M . Therefore, the site that will use the global model
will need to have knowledge of the collection M of all equivalence
classes for all sites. Once each local datasetDi is anonymized toD′i,
we share the syntactic mapping (Mi), computed at site i, with the ag-
gregator server. Alternatively, this information can be shared across
sites through a secure protocol (see dotted lines in Figure 2). We note
that sharing the equivalence classes produced at a node does not vi-
olate privacy because for each equivalence class (by construction)
there exist at least k unique records (individuals) with the same val-
ues of the QIDs. No records are shared among equivalence classes.

3.5 Training the FL model on anonymized data

Following the norm of FL, we train and share a global model across
all sites, using their syntactically anonymized data instead of their
original data. We train the model based on the anonymized local
datasets, after which the parameter updates are incorporated into the
global model. This iterative process continues until the global model
converges. For further details on training the FL model, see [10, 28].

3.6 Using the global FL model for predictions

After training the FL model we can use it to perform predictions on
new test data, which can be received at the server or at the local sites.

The new data samples are in the form of the original data, while
the FL model has been trained on anonymized data. As a result, we
need to map each new sample to its most similar equivalence class
from M , which is known to the global model. First, we select those
mappings M∗ that are legitimate for the data sample. A mapping is
legitimate if, for each attribute of the equivalence class, the value of
the sample for this attribute is the same or a subset of the correspond-
ing value of the equivalence class. As an example, mapping M1 is
legitimate for data sample t, where {t → Age: 25, Gender: Male,
Place: France, Diagnoses: A}, while mapping M2 is not, since – for
example – age 25 /∈ [41 : 60].

Among the legitimate mappings M∗ for t, we select the one that
would require the least amount of generalization of the values in t
in order for t to be placed under that equivalence class. We use uR
and uT to calculate the information loss incurred for each relational
and transactional attribute, respectively, to generalize it to the value
of the corresponding attribute in the equivalence class, and take a
weighted average to calculate the overall information loss. We assign
t to the mapping in M∗ that incurs the lowest information loss. As
an example, assuming a mapping M3:

M3 → Age : [21:40], Gender : All, Place : Europe, Diagnoses : A

we would select M3 for transforming t prior to providing it as input
to the FL model for prediction, as it is more precise than M1.

In general, we select the mapping to use from M∗ by computing
argmin

j
{uR(GR({t∪Mj})) + uT (GT ({t∪Mj}))}, where GR de-

notes the generalization of data sample t together with Mj ∈ M∗

across all relational attributes and GT across all transactional at-
tributes. As we will see in experimental section, the metrics uR and
uT can also incorporate attribute weights that are set based on feature
importance, penalizing more those mappings that incur significant
information loss to highly discriminative attributes.

4 Experimental Evaluation

In this section, we present a comprehensive evaluation of our method.
We describe the real-world health data used in this study, followed by
the experimental setup, and a comparative analysis.

4.1 Use cases and data preparation

Developing FL models and preserving their privacy are highly rel-
evant in and applicable to the healthcare domain. To evaluate our
proposed approach, we consider two important tasks for improving
health outcome of patients: (a) prediction of adverse drug reaction,
and (b) prediction of mortality rate. Adverse drug reaction (ADR) is a
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major cause of concern amongst medical practitioners, pharmaceuti-
cal industry, and healthcare system3. As healthcare data is distributed
across data silos, obtaining sufficiently large dataset to detect such
rare events poses a challenge for centralized learning models. For the
purpose of ADR prediction, we used Limited MarketScan Explorys
Claims-EMR Data (LCED), which comprises administrative claims
and electronic health records (EHRs) of over 3.7 million commer-
cially insured patients. It consists of patient-level sensitive features,
such as demographics, habits, diagnosis codes, outpatient prescrip-
tion fills, laboratory results, and inpatient admission records. We se-
lected patients who received a nonsteroidal anti-inflammatory drug
(NSAID) to predict the development of peptic ulcer disease follow-
ing the initiation of the drug. The selected cohort comprised 921,167
samples. We categorized demographic features (age, gender) as re-
lational QIDs, and habits (alcohol, tobacco usage), diagnosis codes,
and laboratory results as transactional QIDs.

For the second use case, we considered the task of modeling in-
hospital patient mortality. An accurate and timely prediction of this
outcome, particularly for patients admitted to intensive care unit
(ICU), can significantly improve quality of care. For this task, we
used the Medical Information Mart for Intensive Care (MIMIC III)
data [22]. MIMIC III is a publicly available benchmark dataset, from
where we derived multivariate time series from over 40, 000 ICU
stays and labels to model mortality rate during ICU stays. As dis-
cussed in [21], we selected 17 physiological variables, including de-
mographic details, each comprising 6 different sample statistic fea-
tures on 7 different subsequences of a given time series, resulting in
714 features per times series. The cohort consisted of 21, 139 ICU
stays. We selected age, gender, height, and weight as relational QIDs.

4.2 Experimental setup
Machine learning algorithms. To establish benchmark results, we
first developed centralized learning models and FL models (with fed-
erated averaging [10, 28]) to predict ADR and ICU mortality. We
used three classification algorithms, amenable to distributed solution
using gradient descent, namely perceptron, support vector machine
(SVM), and logistic regression. Logistic regression is widely adopted
in the medical community for such tasks [21], whereas SVM can
handle highly imbalanced data [10], which is typical in the ADR
prediction use case. To evaluate the models, prior to and after em-
ploying privacy-preserving mechanisms, we measure their utility in
terms of F1 score.

Syntactic approach metrics. For anonymization of data at local
sites, we used the approach described in Section 3.3 with the metrics
of normalized certainty penalty (NCP) [41] for quantifying informa-
tion loss due to generalization of relational attributes (uR) and utility
loss (UL) [25] for transactional attributes (uT ). NCP for a general-
ized value ṽ, a record r, and an RT -dataset D, is defined as:

NCPR(ṽ) =

{
0, |ṽ| = 1

|ṽ|/|R|, otherwise
(1)

NCP (r) =
∑
i∈[1,v]

wi ·NCPRi(r[Ri]) (2)

NCP (D) =
∑
r∈D NCP (r)

|D| (3)

, respectively, where |R| denotes the domain size for a numerical
attribute R or the number of leaves in the hierarchy for a categorical

3 https://www.fda.gov/drugs/informationondrugs/ucm135151.htm

attribute R, |ṽ| denotes the length of the range for a numerical R or
the number of leaves of the subtree rooted at ṽ in the hierarchy for a
categorical R, and wi ∈ [0, 1] is a weight to measure the importance
of an attribute. The UL for a generalized item ũ, a record r, and an
RT -dataset D, is defined as:

UL(ũ) = (2|ũ| − 1) · w(ũ) (4)

UL(r) =

∑
∀ũ∈r UL(ũ)

2σ(r) − 1
(5)

UL(D) =
∑
∀r∈D UL(r)

|D| (6)

, respectively, where |ũ| is the number of items mapped to ũ,w(ũ) ∈
[0, 1] is a weight to measure importance of ũ, and σ(r) is the sum of
sizes of all generalized items in r. The attribute weights w in eq. (2)
and (4) can be set using a feature importance computation method on
each training dataset. Since we experimented and got similar results
with Random Forests, ExtraTreeClassifier, and RFE (Recursive Fea-
ture Elimination with linear support vector classification as estimator
and 50 features), we present the results of RFE. We set the privacy
parameter m = 2 and threshold δ = 0.95.

Comparative analysis. For comparative analysis, we consider the
state-of-the-art differential privacy mechanism [15, 13, 16]. Differen-
tial privacy is a widely-used standard for privacy guarantee of algo-
rithms operating on aggregated data. A randomized algorithmA(D)
satisfies ε-differential privacy if for all datasets D and D′, that differ
by a single record, and for all sets S ∈ R, where R is the range of
A,

Pr[A(D) ∈ S] ≤ eεPr[A(D′) ∈ S]

where ε is a privacy parameter. This implies that any single record
in the dataset does not have a significant impact on the output of
the algorithm. There are several methods for generating an approxi-
mation of A that satisfies differential privacy. We direct the readers
to [18, 8] for details on implementing ε-differential privacy in FL.

We emphasize here that it is challenging to directly compare dif-
ferential privacy and syntactic approaches due to the significant dif-
ference in their underlying notion. The privacy level offered by pa-
rameters ε and k is not directly comparable. For this, in our experi-
ments, we consider the range of F1 score for typical ranges of these
parameters. This indicates the level of utility that the two approaches
can support for an acceptable range of privacy. For the case of differ-
ential privacy, the range of values for ε were derived from state-of-
the-art works in differential privacy [18, 8, 40, 20]. For our syntac-
tic approach, the values of k were selected following best practices
described in [23] regarding values that have been used in practice
across North America and Canada for data releases, compiled from
several cases of data disclosures. These values span from 3 to 20,
with the first being used for highly trusted data disclosures and the
latter for highly non-trusted ones. To further evaluate the utility of-
fered by our syntactic approach for even higher levels of privacy, we
experimented with values of k up to 50.

Training setup. All models were trained on 70% of the data with 5-
fold cross-validation. For FL, training data was randomly partitioned
across 10 sites. Once trained, the model was tested using the 30%
test data. All experiments were run on an Intel(R) Xeon(R) E5-2683
v4 2.10 GHz CPU equipped with 16 cores and 64 GB of RAM.
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Figure 3: Effect of varying ε in ε-differential privacy [8] for (a)LCED and (b)MIMIC data. The solid line, dashed line, and dotted line correspond
to SVM, perceptron, and logistic regression, respectively. Effect of varying k in our syntactic approach for (c) LCED and (d) MIMIC data. The
dark (green) line, medium (brown) line, and light (mauve) line represent SVM, perceptron, and logistic regression, respectively.

𝜀 ∈ [0.01, 0.9]
𝜅 ∈ [3, 50]

(a)

𝜀 ∈ [0.01, 0.9]
𝜅 ∈ [3, 50]

(b)

Figure 4: Comparison of F1 score with (a) LCED and (b) MIMIC data between centralized learning, FL, FL with ε-differential privacy [8]
(ε = [0.01, 0.9]), and FL with our proposed syntactic approach (k = [3, 50]).

4.3 Experimental results

To establish benchmark results supported by ε-differential privacy,
we measure the privacy-utility trade-off for a given range of the pri-
vacy parameter. Figure 3 (a) and (b) present the utility, measured by
F1 score, for ε ∈ [0.01, 0.9] for the tasks of ADR and mortality pre-
diction using LCED and MIMIC data, respectively. As ε increases,
the level of privacy degrades, thereby improving the utility of the
models. This is consistent across all three classification algorithms.

We then evaluate our syntactic method in offering utility for a
range of the privacy parameter k that contains acceptable values for
HIPAA and GDPR. Figures 3 (c) and (d) show the variation of F1
score for different values of k. As the value of k increases, more
records in the dataset are generalized to form equivalence classes,
which degrades the level of utility. This behavior is common in all
three classification algorithms. Finally, we compare and contrast the
performance of ε-differential privacy and our proposed method in
terms of utility, for the range of considered values of ε and k. For
a comprehensive study, we also compute the F1 score of centralized
learning and FL. As shown in Figure 4, our approach outperforms the
state-of-the-art ε-differential privacy method for all datasets and all
classification algorithms. FL achieves comparable performance with
respect to centralized learning with the additional benefit of not shar-
ing raw data. As our approach ensures satisfying privacy while max-
imizing data utility, the predictive capability of the federated models
coupled with the syntactic privacy-preserving approach is reason-
able. However, the extent of performance degradation in FL when

employing ε-differential privacy is much severe.

5 Conclusion

In this paper, we proposed the first syntactic anonymization approach
for offering privacy in FL. Application of such an approach in FL
is challenging due to the distributed source of training data, which
requires several novel steps beyond a centralized anonymization ap-
proach: (a) deciding which quasi-identifiers to use at each site by
considering the discriminative power of each feature along with data
utility, to reduce the overhead of anonymization; (b) extracting and
sharing syntactic mappings with the server; (c) transforming each test
instance, using its most similar mapping, to the level of the data that
have been used for training the global model. Our approach follows
the anonymize-and-mine paradigm and operates on data records that
consist of a relational and a transactional part. Through experimental
evaluation on two real-world datasets and varying parameter settings,
we demonstrated that our approach enables high model performance,
while offering a defensible level of de-identification, as required by
privacy legal frameworks.
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