
A Multilayered Informative Random Walk for Attributed
Social Network Embedding

Sambaran Bandyopadhyay1 and Anirban Biswas2 and Harsh Kara3 and M. N. Murty4

Abstract. Network representation learning (also known as Graph
embedding) is a technique to map the nodes of a network to a lower
dimensional vector space. Random walk based representation tech-
niques are found to be efficient as they can easily preserve differ-
ent orders of proximities between the nodes in the embedding space.
Most of the social networks now-a-days have some content (or at-
tributes) associated with each node. These attributes can provide
complementary information along with the link structure of the net-
work. But in a real life network, the information carried by the link
structure and that by the attributes vary significantly over the nodes.
Most of the existing unsupervised attributed network embedding al-
gorithms do not distinguish between the link structure and the at-
tributes of a node depending on their informativeness.

In this work, we propose an unsupervised node embedding tech-
nique that exploits both the structure and attributes by intelligently
prioritizing one of them, in the random walk, for each node sepa-
rately. We convert the network into a multi-layered graph and pro-
pose a novel random walk based on the informativeness of a node in
different layers. This unified approach is simple and computationally
fast, yet able to use the content as a complement to structure and vice-
versa. Experimental evaluations on four real world publicly available
datasets show the merit of our approach (up to 168.75% improve-
ment) compared to the state-of-the-art algorithms in the domain. We
make the source code available to download.

1 INTRODUCTION

Social networks are ubiquitous in our daily life. A network is typi-
cally represented using a graph. The success of various mining tasks
depends on efficient feature selection and design of the network. But
efficient feature engineering needs a lot of domain knowledge and
human efforts, especially when the networks are large and sparse as
in the real-world applications. Compared to that, in a graph embed-
ding framework [20], a function to represent each node in the form
of a compact and dense vector is learnt mostly in a task independent
way. As shown in the literature [26, 28], machine learning algorithms
perform better on these embeddings for network mining tasks such as
node classification, community detection, etc. Recently, embedding
based approaches shows promising results for other tasks in social
networks like classify crisis related tweets [1] and identification of
abusive texts [6].

One important goal of the graph embedding algorithms is to pre-
serve different orders of node proximities into the embedding space,

1 IBM Research & IISc, Bangalore, email: samb.bandyo@gmail.com
2 Indian Institute of Science, Bangalore, email: anirbanb@iisc.ac.in
3 Indian Institute of Science, Bangalore, email: erharshkara@gmail.com
4 Indian Institute of Science, Bangalore, email: mnm@iisc.ac.in

i.e., nodes which belong to a local neighborhood of each other in
the graph should also be close in the vector space. A random walk
on a graph produces a sequence of nodes such that the nodes within
a small window of this sequence belong to a local neighborhood of
each other. Naturally, random walk has been a fundamental backbone
to many popular graph embedding algorithms as shown in [9, 22].
But most of these random walk based techniques only consider the
link structure of the network. However, real world social networks
have rich attributes (or content) associated with each node. A net-
work where each node has a set of attribute values is called an at-
tributed network or attributed graph. Node attributes can complement
the structural information, specially when the structure is noisy. For
example, there are millions of active and connected users in Twit-
ter and each of them can post thousands of tweets. Content of these
tweets can include text, images or videos. Naturally the connections
between users in such social networks also depend on the content that
they post. Sociological theories such as homophily [17] also suggest
a strong correlation between the structure and the content of a net-
work.

Node attributes have been shown to be useful for some network
mining tasks such as tackling filter bubble problem [15], evolving
social action prediction [25], etc. Combining node attributes with the
link structure has also improved the quality of node embeddings in
the networks. However, most of the existing attributed network em-
bedding techniques are either matrix factorization based techniques
[34, 13] or graph neural network based techniques [14, 28]. Matrix
factorization based techniques, being linear in nature, often fail to ad-
dress the highly non-linear characteristics of a network. Graph neural
network techniques [14], though proved to be efficient in the litera-
ture, are mostly semi-supervised in nature as they need labels of the
nodes to learn large number of parameters of the graph neural net-
works. This is a serious restriction for real world social networks
where node labels (for e.g., the community membership of a node)
are generally expensive to obtain. Further, a recent work [35] on
graph neural networks shows that following are the two important
properties for any node embedding algorithm in general:

• A node embedding is position aware if there exists a function
which can map the distances between the embedding of any two
nodes into their corresponding shortest path distance in the net-
work.

• A node embedding is structure aware if it is a function of up to
q-hop network neighbourhood (for some positive integer q) of a
node in the network.

It has been shown that graph neural networks are structure aware, as
they aggregate attributes from the neighborhood, but they may not
be position aware [35]. Random walk based techniques can satisfy

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

both the properties as: (i) A single random walk from a node can
preserve the graph distances in the embedding space of any pair of
nodes which are within a context window (explained in Section 4.1)
length away and use of negative sampling push the embeddings of
any two randomly sampled nodes far from each other. (ii) A random
walk from a node cover multiple nodes (can cover all the nodes if the
number of random walks are more) from some q-hop neighborhood,
making the node embeddings structure aware. With this motivation
and addressing the above research gaps, we propose a random walk
based unsupervised approach which uses link structure and attributes
of the nodes as complement to each other to generate node embed-
dings of a graph.

Integrating attributes of each node into the state-of-the-art unsu-
pervised graph embedding techniques is challenging for real world
networks. Often the structure and the attributes of a node are not
consistent with each other. There can be significant gap in the se-
mantic information carried by them. Figure 1 explains an example
where for a particular node (colored in blue), content is more in-
formative than its structure. It is important to exploit the extent of
informativeness of an individual node in its structure and attribute
layers for network embedding. However, existing unsupervised at-
tributed network embedding techniques [13, 8] process link structure
and the node attributes uniformly. Semi-supervised graph embedding
algorithms such as [28] which employs attention mechanism to char-
acterize the importance of a node, are difficult to apply when node
labels are too expensive to get. We also address this research gap in
this paper. Following are the contributions we make:

• We propose a novel unsupervised algorithm MIRand
(Multilayered Informative Random Walk), which creates a
multi-layer graph and employs a novel random walk that exploits
the informativeness of a node by unifying its structure and
attributes. To the best of our knowledge, this is the first attributed
graph embedding technique which employs a multi-layered graph
random walk where one layer corresponds to structure and the
other deals with the attributes associated with the nodes. Thus,
our algorithm can be seen as a novel extension of random walk
based network embedding approaches (such as node2vec [9]) for
attributed network.

• We evaluate the performance of the proposed algorithm on
real world datasets on multiple downstream machine learning
tasks. We are able to improve the performance by 168.75%
of the best of the baselines for some tasks. Source code of
MIRand is publicly available at https://github.com/
anirban-code-to-live/mirand to reproduce the results.

2 RELATED WORK
We refer to the literature survey in [11, 32] for a comprehensive
overview on network embedding. However for the sake of complete-
ness, we discuss some of the more prominent works in this section.
Standard dimensionality reduction techniques or hand crafted fea-
ture engineering techniques [7] were popular for graph mining tasks
for a long time. Development in natural language processing domain
[18] influenced the field of network representation learning. Deep-
Walk [20] and node2vec [9] employ random walks to build a corpus
of node sequences and generate the node embeddings by maximizing
the log likelihood of the context of each node from the corpus. Line
[26] uses two different optimization formulations to explicitly cap-
ture the first order and second order proximities in node embeddings.
Autoencoder based network embedding approaches are proposed in

Figure 1: It is a sample network where each node (circle) has some
content (connected by dotted lines) associated with it. If we consider
the central node in blue, it is strongly connected (with high edge
weights) to many other nodes in the network. So it is likely to be less
similar to any of them [16]. But if we consider the same node in the
content layer, it is strongly similar to only the content of few other
nodes in the network. Hence content is semantically more informa-
tive for this node.

[30, 5]. Struc2vec [22] is another random walk based node embed-
ding strategy which finds similar embeddings for the nodes which
are structurally similar. Generative adversarial learning framework
has also been explored for graph representation in [31]. Theoretical
analysis to show the correspondence between random walk based
embedding approaches and matrix factorization is done in [21]. All
of these methods consider only the link structure of the network.

TADW [34] is the first approach to propose a matrix factoriza-
tion approach to combine link structure and content for network em-
bedding. Joint matrix factorization techniques to obtain unsupervised
node embeddings for attributed networks are also present in the liter-
ature [13, 3]. A deep architecture consisting of two parallel autoen-
coders for structure and attributes is proposed in [8]. Another deep
autoencoder based approach to use the relation between structure and
content for node embedding is proposed in [12]. A matrix factoriza-
tion based approach for outlier aware network embedding is devel-
oped in [4]. [37] proposes an embedding method for textual content
in a network, along with the embedding of the nodes, by employing
a network diffusion process. These approaches are unsupervised, but
they don’t give different importance to structure and content based
on their role in the network.

Semi-supervised graph neural network (GNN) [19] based ap-
proaches are also proposed in the recent literature for attributed graph
embedding. A semi-supervised graph convolution network (GCN)
model to aggregate information from the neighbor nodes is proposed
in [14]. [10] proposes GraphSAGE, which is an extension of GCN
with different types of information aggregation with neighborhood
sub-sampling. Attention based graph embedding is introduced in [28]
and further extended to multiple attention heads with different im-
portance in [36]. These algorithms being semi-supervised in nature,
cannot be applied to cases where no labeling information is available.
In contrast to them, we propose a novel unsupervised random walk
based embedding approach which uses the informativeness of a node
in terms of its structure and content.

3 PROBLEM STATEMENT
An information network is typically represented by a graph
G = (V,E,W,F), where V = {v1, v2, · · · , vn} is the set
of nodes (a.k.a. vertexes), each representing a data object. E ⊆
{(vi, vj)|vi, vj ∈ V } is the set of edges between the vertexes.
Each edge e ∈ E is an ordered pair e = (vi, vj) and is associ-
ated with a weight wvi,vj > 0, which indicates the strength of the
relation. W is the set of all those weights. If G is undirected, we

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

https://github.com/anirban-code-to-live/mirand
https://github.com/anirban-code-to-live/mirand

have (vi, vj) ≡ (vj , vi) and wvi,vj = wvj ,vi ; if G is unweighted,
wvi,vj = 1, ∀(vi, vj) ∈ E. F = {fi | i ∈ {1, 2, · · · , n}}, where
fi ∈ Rd is the attribute vector (or content) associated with node
vi ∈ V . So F can be considered as the content matrix. If content is
textual in nature, F can be represented by bag-of-word model where
typically stop words are removed and stemming is done as prepro-
cessing steps. Each row of this matrix is a tf-idf vector for the textual
content at the corresponding node. The dimension of F is n × d,
where d is the number of unique words (attributes) after preprocess-
ing the corpus. This can be generalized easily to other types of con-
tent such as image, video, or speech.

Given G, the task is to find some low dimensional vector repre-
sentation of the nodes of G which is consistent with both the struc-
ture of the network and the content of the nodes. More formally, for
the given network G, the network embedding is to learn a function
f : vi 7→ xi ∈ RK , i.e., it maps every vertex to a K dimensional
vector, where K < min(n, d). The representations should preserve
the underlying semantics of the network. Hence the nodes which are
close to each other in terms of their positional distance or similar-
ity in content should have similar representation. This representation
should also be compact and continuous as that would help the con-
ventional machine learning algorithms to perform better on down-
stream network mining tasks.

4 SOLUTION APPROACH: MIRand

This section describes the details of our proposed approach MIRand.
Given the networkG with content in the form of a matrix F , our first
goal is to divide the network into two layers. The first layer corre-
sponds to the structure, and the second layer is for the content.

Structure Layer: Intuitively, this layer is the same as the given
network without any content (or attribute) in the nodes. Mathemati-
cally, given the input network G = (V,E,W,F) (as in Section 3),
the structure layer is a graph Gs = (Vs, Es,Ws), with Es = E and
Ws = W . The node set is exactly same as the given network, only
they are denoted with a superscript ‘s’. So v ∈ V ⇐⇒ vs ∈ Vs for
all nodes v ∈ V .

Content Layer: This layer is a directed graph which captures the
similarity between pairs of nodes in terms of their respective contents
or attributes. Again, given the input network G as above, we define
the content layer to be the graph Gc = (Vc, Ec,Wc). We denote
the nodes with the superscript ‘c’ added, v ∈ V ⇐⇒ vc ∈ Vc,
∀v ∈ V in the content layer. For each node vi ∈ V , one can poten-
tially compute the similarity or weight to all other nodes vj (j 6= i)
based on the cosine similarity of the row vectors Fi. and Fj.. So,
wc

ij = Cosine(Fi., Fj.). But in this case, the content graph would
be nearly complete (i.e., there is an edge between almost any pair
of vertices) and it would increase the computational time to process
the graph. Whereas, in the structure layer, the number of edges is
fixed. So we first compute average number of outgoing edges over
all the nodes in the structure layer. Let’s call it avgs. If the given
network is directed, avgs = |E|/n, and if it is undirected then,
avgs = 2×|E|/n. We want the number of edges in the content layer
to be comparable with the number of edges in the structure layer, so
that it can help the random walk as discussed in Section 4.1. So in
the content layer, for each node vci , we find the top θ×davgse nodes
(excluding vci) in terms of their content cosine similarities with vci ,
where θ is called ratio parameter, θ ∈ R+. Then we add a directed
edge from vci to each of those nodes with the edge weight as the co-

sine similarity between the respective contents1. We also discard the
edges which have negative weights, i.e., cosine similarity of the two
end vertices is negative. As explained in Section 4.1, θ controls the
time the random walk may spend in a layer. This has also been shown
in the experiments. Figure 2 shows both structure and content layers,
and their interconnections which we will discuss next.

Figure 2: This demonstrates the work flow of MIRand. (a) Rep-
resents an information network with each node having some con-
tent (attributes) associated with it. (b) Represents the two-layered
network. The upper part depicts the structure layer which can be
(un)directed and (un)weighted depending on the input network. The
lower part is for the content portion which is directed and weighted
network formed using the method described. Inter layer (weighted
and directed) edges connecting the corresponding nodes are shown
by dashed lines. (c) Shows the K dim. output embeddings.

4.1 Random Walk based on Informativeness of a
node

In this subsection, we propose a novel random walk which would
traverse the nodes in structure and content layers intelligently. So we
first create the structure layer and the content layer as discussed be-
fore. Then we connect nodes such that for any node vi in the original
network, suppose the label of it in structure network is vsi and the
label in content layer is vci . We add two directed and weighted edges
between vsi and vci as explained later. At any point of time when the
random walk reaches node vi, our goal is to select the structure or
the content layer, based on the informativeness of node vi in the cor-
responding layer. We explain the notion of informativeness of a node
below.

For any random walk to capture the inherent homophily property
of an attributed network, it is important to concentrate on the nodes
which are strongly connected with only a few neighbors, so that next
step of a random walk from the node is more informative. On the
contrary, a node which is strongly connected to a large number of
nodes in an information network is actually less similar to most of
its neighbors [16, 22]. In this work, we assume a strong (edge) con-
nection is the one whose edge weight is more than the average edge
weight in the graph layer. So we define Γs

i as the set of neighbors
strongly connected to vsi in the structure layer.

Γs
i = {vsj ∈ Vs | ws

(vs
i ,v

s
j)
≥ 1

|Es|
∑

e′∈Es

ws
e′} (1)

So each node in Γs
i has an incoming edge from vsi whose weight is

1 That’s why the content layer is always directed and weighted.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

more than the average edge weight of the structure layer1. |Γs
i | is the

number of strongly connected neighbors of vi in the structure layer.
Similarly, Γc

i for the content layer is defined as:

Γc
i = {vcj ∈ Vc | wc

(vc
i ,v

c
j)
≥ 1

|Ec|
∑

e′∈Ec

wc
e′} (2)

We define the informativeness of nodes vsi and vci respectively for a
random walk as:

Isi =
1

ln(e+ |Γs
i |)

, Ici =
1

ln(e+ |Γc
i |)

(3)

Now, let us consider the directed edge (vsi , v
c
i) with weight wsc

i . As
discussed, at any point of time the random walk selects either the
structure or the content layer depending on the informativeness of vsi
and vci , given that the present node is vi. The probability of selecting
structure layer is proportional to wcs

i and that of selecting content
layer is proportional to wsc

i . Hence we set these inter layer weights
as: wsc

i = Ici and wcs
i = Isi , ∀vi ∈ V . The complete multi-layered

network is shown in Figure 2. Next we define the inter-layer and
intra-layer transition probabilities of the biased random walk on this
multi-layered graph.

The random walk proceeds as follows. Given, at a particular time-
step of the random walk, we are at node vi, either in the structure or
in the content layer. Before taking the next step, we first calculate the
probability of taking that step either into the structure layer or into the
content layer. Our goal is to move to a layer where node vi is more
informative. So we define the inter-layer transition probabilities as:

p(vsi |vi) =
wcs

i

wsc
i + wcs

i

=
Isi

Isi + Ici
(4)

p(vci |vi) = 1− p(vsi |vi) =
wsc

i

wsc
i + wcs

i

=
Ici

Isi + Ici
(5)

In the context of the random walk, smaller the value of Isi , larger
the number of edges with large edge weight from node vsi . So the
random walk has many choices to move from node vsi if it remains
to be in the structure layer. Whereas, if the value of Ici is high, then
there are less number of outgoing edges with large edge weight from
the node vci . In this case for the random walk at node vi, the choice
is more informative and less random in the content layer than that in
the structure layer. Hence when the value of Ici is high, we want to
prefer content layer, and similarly when the value of Isi is high, we
want to prefer structure layer.

Now we discuss the probability of selecting the next vertex from
the current vertex vi, given that we have selected a particular layer, as
discussed above. So we define the intra-layer transition probabilities
as follows. Suppose the second order random walk was at node vl1i
at time t − 1 and it is at node vl2j at time t, where l1 and l2 denote
the corresponding layers, l1, l2 ∈ {s, c}. Here we extend the (unnor-
malized) transition probabilities from [9] of selecting a node vl2k in
layer l2 (as currently it is at l2 layer at time t) as:

P (vl2k |v
l2
j , v

l1
i) =


wl2

jk, if el2ij 6∈ El2
1
p
wl2

jk, if el2ij ∈ El2and dl2ik = 0

wl2
jk, if el2ij ∈ El2and dl2ik = 1

1
q
wl2

jk, if el2ij ∈ El2and dl2ik = 2

(6)

1 For an unweighted network, all the outgoing neighbors of a node are
strongly connected to that node.

The first case considers the scenario when there is a change of
layer (i.e., l1 6= l2) at time t and the node vi is no longer directly
connected to the node vj in the new layer l2. In this case the random
walk just selects the next node based on the weights of the outgo-
ing edges from the node vj in layer l2. It is also to be noted that
if l1 = l2 then el2ij ∈ El2 , but the reverse is not necessarily true.
dl2ik is the unweighted distance between the nodes vl2i and vl2k . There
are two hyper parameters p, q > 0. A larger value of p would force
the random walk not to visit the node visited last time. Similarly, a
larger q would force the random walk not to move away beyond 1
hop neighborhood of the recently visited node. Thus they control the
search to follow BFS or DFS strategy accordingly and can be fixed
as shown in [9]. The next node selected by the process is added to the
sequence of the random walk, after discarding the layer information
s or c. This ensures that we get only one embedding for each node,
unlike as in [8] which needs to concatenate embeddings for structure
and attributes as a post processing step. We repeat the above step l
times, l being the length of each truncated random walk from a node.

Algorithm 1 MIRand - Multilayered Informative Random Walk for
Graph Embedding with Content

Input: The network G = (V,E,W,F), K: Dimension of the
embedding space whereK << min(n, d), θ: ratio parameter to
construct the content layer, r: Number of times to start random
walk from each vertex, l: Length of each random walk
Output: The node embeddings of network G

1: Generate the structure layer and the content layer (using the
hyper-parameter θ) and complete the multilayered network by
setting the inter-layer weights.

2: Corpus = [] . Initialize the corpus
3: for iter ∈ {1, 2, · · · , r} do
4: for v ∈ V do
5: Walk = [v] . Initialize the Walk (sequence of nodes)

for the truncated random walk
6: for walkIter ∈ {1, 2, · · · , l} do
7: Select the layer (w.r.t. the last appended node) with

inter layer transition probabilities as in Eq. 4 and 5 to move next
8: Find the next node vi within the selected layer by

using intra layer transition probabilities (Eq. 6)
9: Append vi to Walk

10: end for
11: Append Walk to Corpus
12: end for
13: end for
14: Find the node embeddings by optimizing Eq. 7

Once the desired number of truncated random walk sequences are
generated for each node, we maximize the log probability of the con-
text (nodes which appear within a specified left and right window)
of a node in a random walk sequence with respect to that node [20].
More formally, we want to maximize the following:

max
X

∑
v∈V

logP (C(v)|xv) = max
X

∑
v∈V

∑
u∈C(v)

logP (u|xv)

Here xv ∈ RK is the embedding of node v and X is the set of em-
beddings of all the nodes. C(v) is the set of nodes in the context of
the node v in a random walk. We also assume conditional indepen-
dence of the nodes in a context. Each of the above probabilities can
be represented using standard softmax function parameterized by the
dot product of xu and xv . Finally the above equation amounts to the

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

following:

max
X

∑
v∈V

∑
u∈C(v)

(
xu · xv − logZv

)
(7)

Zv =
∑

u
′∈V

exp(xu
′ · xv) is the partition function, which can be

approximated by negative sampling [18]. The optimization in Eq. 7
can be solved using stochastic gradient ascent over the model param-
eters. Algorithm 1 summarizes the whole process of MIRand. The
two layered network that we have created is a special type of hetero-
geneous network. But our approach is inherently different from any
heterogeneous network embedding such as [24], as MIRand exploits
the one to one correspondence between structural and content views
of the same node and extract the complementary information.

Please note that, MIRand can easily be extended for social net-
works which have more than one type of content (for e.g., users in
Facebook where they post texts, images and videos). In that case, in-
stead of two layers, we can have multiple layers (one for structure and
then one layer for each type of content) and a random walk traversing
all of them using intra and inter-layer transition probabilities.

4.2 Time and Space Complexity of MIRand

If we assume that the number of random walks from each node and
the length of each random walk are constant, then the time complex-
ity of the random walk of MIRand is O((|V |+ |E|) log |V |), due to
the use of alias table, as shown done in [9]. The only overhead for MI-
Rand is the construction of the content network, which in the worst
case can beO(|V |2). But as the content layer is also sparse in nature,
the construction of this layer can be completed inO(|V |log|V |) time
by using Space Partitioning Tree [23] that allows us to find the clos-
est object to another object in logarithmic time. So the total time
complexity of MIRand is O(|V |log|V | + (|V | + |E|) log |V |) =
O((|V |+ |E|) log |V |).

The structure layer of MIRand is same as the given network. Con-
tent layer has θ times the number of edges of the structure layer,
where θ is a constant. Hence MIRand needs only O(|V | + |E|)
space to store the graph in the edge list format. Interestingly, this
analysis shows that, though MIRand is able to use both structure and
the attributes of a network, its asymptotic time and space complexity
are the same as the standard random walk based algorithm such as
node2vec, which use only structure of the network.

Table 1: Summary of the datasets used: Each dataset has both network
structure and textual content, with labeled communities. #Attributes
is the length of the attribute vector associated with each node. In-
ter/intra is the ratio of the number of inter community links to that
of the intra community links.

Dataset #Nodes #Edges #Labels #Attributes Inter/Intra

Cora 2708 5429 7 1433 0.22
Citeseer 3312 4715 6 3703 0.34
Pubmed 19717 44338 3 500 0.25

Flickr 7575 239738 9 12047 3.19

5 EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the performance of the
proposed algorithms and compare the results with state-of-the-art

network embedding algorithms. To evaluate the quality of the gen-
erated embeddings, we have selected three different network mining
tasks: network visualization, node classification and node clustering.

5.1 Datasets Used
We have used 4 publicly available real world network datasets with
ground truth community labels in this paper. A detailed description
is provided in Table 1. Cora5, Citeseer5 and Pubmed5 are the cita-
tion networks, where citations between the papers form the network.
Each node also has some attribute coming from the meta data and
content of the corresponding scientific paper. Flickr6 is an online so-
cial network where people can share photographs and can also follow
each other which forms the links of the network. The tags specified
on the image act as attributes. The group which the photographer has
joined acts as its label.

5.2 Baseline Algorithms and Experimental Setup
Recently, a number of network embedding algorithms are proposed
in the literature. In this paper, we propose an unsupervised attributed
network embedding algorithm. To make a fair comparison, we have
selected only the following state-of-the-art node embedding algo-
rithms which are unsupervised in nature and have publicly avail-
able source code.

• DeepWalk [20] and node2vec [9] are random walk based node
embedding techniques. DeepWalk uses a first order random walk
whereas node2vec uses 2nd order biased random walk.

• SDNE [30] is a deep autoencoder based node embedding tech-
nique which enforces homophily constraint explicitly.

• Struc2Vec [22] is a random walk based technique which finds
similar embeddings for the nodes which are structurally similar.

• TADW [34] and AANE [13] are matrix factorization based tech-
nique which uses both link structure and node attributes.

• GraphSAGE [10] is a deep graph convolution neural network
based technique which uses neighborhood sub-sampling and dif-
ferent neighborhood node attribute aggregation. We use the unsu-
pervised version of GraphSAGE in a non-inductive setting, i.e., all
the nodes in the network were present from the beginning.

• DGI [29] is a recent graph convolution network based unsu-
pervised approach by maximizing mutual information between
patch representations and corresponding high-level summaries of
a graph, obtained by using both link structure and node attributes.

Please note some other popular network embedding algorithms
such as GCN [14] and GAT [28] are not used as baselines as they
are semi-supervised in nature. We have kept the embedding dimen-
sion (K) for all the algorithms and on all the datasets to be 128. For
MIRand, the value of θ to be 2 and the values of p and q (in Eq.
6) are 1 each. The effect of changing these hyper-parameters on the
performance of MIRand is also discussed in Section 5.6.

5.3 Network Visualization
The first downstream machine learning task that we consider is net-
work visualization. Here, the goal is to visually separate the nodes
which belong to different communities in the network. First, the 128

5 https://linqs.soe.ucsc.edu/data
6 https://github.com/xhuang31/AANE_Python/blob/
master/Flickr.mat

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

https://linqs.soe.ucsc.edu/data
https://github.com/xhuang31/AANE_Python/blob/master/Flickr.mat
https://github.com/xhuang31/AANE_Python/blob/master/Flickr.mat

(a) node2vec (b) AANE (c) G-SAGE (d) DGI (e) MIRand

Figure 3: t-SNE Node Visualization on Cora. Different colors represent different communities (G-SAGE ≡ GraphSAGE).

(a) node2vec (b) AANE (c) G-SAGE (d) DGI (e) MIRand

Figure 4: t-SNE Node Visualization on Flickr dataset. Different colors represent different node communities.

dimensional embeddings of the nodes are given as input to t-SNE
[27], which maps them to a 2 dimensional space. Then we plot these
2 dimensional points (nodes) in Figures 3 and 4 for Cora and Flickr
datasets respectively. Different colors are used to label nodes from
different communities. Due to page limitation, we have shown the
performance of only a subset of better performing baselines for this
task. As the figures show, the performance of MIRand is clearly bet-
ter than all the baseline, over all the four datasets we used. MIRand is
able to distinguish communities (having different colors) well com-
pared to other algorithms. Among the baselines, node2vec, another
unsupervised random walk based approach, is able to perform good.
The better empirical performance of MIRand indicates that it is able
to intelligently exploit the structure and content of the nodes com-
pared to all the baselines. It is also to be noted that approaches like
AANE, GraphSAGE and DGI, though use node attribute along with
link structure of the networks, do not perform well for visualization.

5.4 Multi-class Node Classification

Node classification is a useful network mining task in cases when
labeling information is available only for a small subset of nodes in
the network. For this task, we train a logistic regression classifier on
the node embeddings as features. We split the set of nodes of the
graph into training set and testing set. The training set size is varied
from 10% to 50% of the entire data. The remaining (test) data is
used to compare the performance of different algorithms. We choose
Macro-F1 and Micro-F1 to measure the performance of multi-class
classification algorithms. Normally, higher the values are, better is
the classification performance. We repeat each experiment 10 times
and report the average results.

The classification results are presented in Figure 5. First, we ob-
serve that, except for the dataset Cora, MIRand is able to outperform
all the baseline algorithms. The performance margin is prominent on
Citeseer and Flickr for all the training sizes. This margin is often
larger for smaller training sizes, which is more desirable as collect-
ing ground truth label is expensive in networks. For Pubmed, the
performances of DeepWalk, node2vec and AANE are very close to
MIRand. On Cora dataset, DeepWalk and node2vec are able to out-
perform MIRand in most of the cases. Interestingly, on Flickr dataset

where the total number of edges between the communities is more
than that within the communities (Tab. 1), MIRand is consistently
able to exceed 80% accuracy for node classification because of the
efficient use of the content layer. Most of the baselines fail to classify
the nodes well because of the poor link structure of this dataset.

5.5 Community Detection

Community detection or node clustering is an unsupervised method
of grouping the nodes into multiple communities. We use KMeans++
[2] to cluster the node embeddings produced by different algorithms.
We use unsupervised accuracy [33, 4], which is a metric to mea-
sure the quality of (unsupervised) clustering against the ground truth
labels of the objects (nodes in this case). Intuitively, it uses differ-
ent permutations of the labels and chooses the label ordering which
gives best possible accuracy. The performance is shown in Figure
6. One can see that the MIRand outperforms all the state-of-the-art
algorithms, except on Pubmed, where DeepWalk and node2vec per-
form marginally better than it. On Flickr dataset, none of the baseline
algorithms performs good, but MIRand is still able to exploit struc-
ture and content as complementing each other and deliver a good
accuracy. We see a performance gain of 168.75% by MIRand com-
pared to node2vec which is the second best performing algorithm on
this dataset. Superior performance of MIRand on Flickr dataset can
be observed in node classification also. Flickr, being a dense dataset
and having more number of inter-community edges than that of intra-
community, simple random walk based techniques fail.

It is important to note that for clustering on the Pubmed dataset,
only structure based methods (DeepWalk and node2vec) perform
better than others, except MIRand again. It means MIRand is able
to switch intelligently between the structure and content layers dur-
ing the learning process and embeddings were learnt mostly from
the structure layer. However, struc2vec performs poorly on most of
the datasets as this algorithm learns similar embedding of the nodes
which are just structurally similar to each other. Thus MIRand is a
robust algorithm and less prone to such inconsistencies and noise.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Figure 5: Performance of different embedding algorithms for Classification with Logistic Regression

Figure 6: Community detection by embedding algorithms

(a) (b)

Figure 7: Community Detection performance (measured by unsuper-
vised clustering accuracy) of MIRand with (a) different values of
embedding subspace dimension K, (b) different values of ratio pa-
rameter θ.

5.6 Parameter Sensitivity and Analysis

In this section, we vary two important parameters, dimension of the
embedding space K and the ratio parameter θ of MIRand algorithm.
We choose node clustering as the downstream machine learning task
to show the performance on varying these parameters. As expected,
when the dimension of the embedding subspace is very less (in Fig.
7.a), it becomes difficult to capture all the inherent features of the
attributed nodes. As a result, performance deteriorates. We observed
optimal performance when K = 128 for most of the datasets, after
which the performance degrades because of the inclusion of redun-
dant or noisy features.

From Fig. 7.b, we can observe that our algorithm suffers heav-
ily on Cora and Citeseer datasets when the value of θ is set to 0.25.
This is because Cora and Citeseer networks are sparse in nature. For
θ = 0.25, most of the nodes in the content layer have at most 1 or
2 neighbors. Thus the random walk, though spends more time on the
content layer, could not gather complete information about the se-
mantic neighborhood of the nodes. We can see that on Pubmed, bet-
ter performance is achieved when θ ≤ 1, where the trend is mostly
opposite of that on Cora and Citeseer. As the link structure of Flickr
is not often consistent with its community structure, the performance
degrades with increasing values of θ (which forces the random walk
to spend more time on the structure layer) on this dataset. This ob-
servation is consistent with the results of MIRand and other baseline
algorithms for node classification and clustering.

6 DISCUSSION AND FUTURE WORK

In this work, we proposed a novel unsupervised algorithm MIRand
to embed a graph with content associated with each node. MIRand
operates by creating a multilayered network and then employs a ran-
dom walk driven by the informativeness of a node for learning the
network representation. Through experimentation we show the ro-
bustness of MIRand in the sense that it is able to intelligently select
structure or content layers, specially in the case when one of them is
noisy or inconsistent.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

In future, we want to conduct experiments on datasets having dif-
ferent types of contents. So far we have only considered static graphs.
In contrast, dynamic networks are those that change over time. So we
propose to extend our idea to the area of dynamic attributed networks
in the future. We also seek to experiment on datasets seeded with out-
lier nodes to see their effect on the performance of our algorithm for
the attributed graph embedding.

REFERENCES

[1] Firoj Alam, Shafiq Joty, and Muhammad Imran, ‘Graph based semi-
supervised learning with convolution neural networks to classify crisis
related tweets’, in Twelfth International AAAI Conference on Web and
Social Media, (2018).

[2] David Arthur and Sergei Vassilvitskii, ‘k-means++: The advantages of
careful seeding’, in Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms, pp. 1027–1035. Society for Indus-
trial and Applied Mathematics, (2007).

[3] Sambaran Bandyopadhyay, Harsh Kara, Aswin Kannan, and
M Narasimha Murty, ‘Fscnmf: Fusing structure and content via
non-negative matrix factorization for embedding information net-
works’, arXiv preprint arXiv:1804.05313, (2018).

[4] Sambaran Bandyopadhyay, N Lokesh, and M Narasimha Murty, ‘Out-
lier aware network embedding for attributed networks’, in Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33, pp. 12–
19, (2019).

[5] Shaosheng Cao, Wei Lu, and Qiongkai Xu, ‘Deep neural networks for
learning graph representations’, in Thirtieth AAAI Conference on Arti-
ficial Intelligence, (2016).

[6] Hao Chen, Susan McKeever, and Sarah Jane Delany, ‘The use of deep
learning distributed representations in the identification of abusive text’,
in Proceedings of the International AAAI Conference on Web and Social
Media, volume 13, pp. 125–133, (2019).

[7] Brian Gallagher and Tina Eliassi-Rad, ‘Leveraging label-independent
features for classification in sparsely labeled networks: An empirical
study’, in Advances in Social Network Mining and Analysis, 1–19,
Springer, (2010).

[8] Hongchang Gao and Heng Huang, ‘Deep attributed network embed-
ding.’, in IJCAI, pp. 3364–3370, (2018).

[9] Aditya Grover and Jure Leskovec, ‘node2vec: Scalable feature learn-
ing for networks’, in Proceedings of the 22nd ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pp. 855–
864. ACM, (2016).

[10] Will Hamilton, Zhitao Ying, and Jure Leskovec, ‘Inductive representa-
tion learning on large graphs’, in Advances in Neural Information Pro-
cessing Systems, pp. 1025–1035, (2017).

[11] William L Hamilton, Rex Ying, and Jure Leskovec, ‘Representa-
tion learning on graphs: Methods and applications’, arXiv preprint
arXiv:1709.05584, (2017).

[12] Jiaming Huang, Zhao Li, Vincent W Zheng, Wen Wen, Yifan Yang, and
Yuanmi Chen, ‘Unsupervised multi-view nonlinear graph embedding.’,
in UAI, pp. 319–328, (2018).

[13] Xiao Huang, Jundong Li, and Xia Hu, ‘Accelerated attributed network
embedding’, in Proceedings of the 2017 SIAM International Confer-
ence on Data Mining, pp. 633–641. SIAM, (2017).

[14] Thomas N Kipf and Max Welling, ‘Semi-supervised classification with
graph convolutional networks’, in International Conference on Learn-
ing Representations, (2017).

[15] Preethi Lahoti, Kiran Garimella, and Aristides Gionis, ‘Joint non-
negative matrix factorization for learning ideological leaning on twit-
ter’, in Proceedings of the Eleventh ACM International Conference on
Web Search and Data Mining, pp. 351–359, (2018).

[16] David Liben-Nowell and Jon Kleinberg, ‘The link-prediction problem
for social networks’, Journal of the American society for information
science and technology, 58(7), 1019–1031, (2007).

[17] Miller McPherson, Lynn Smith-Lovin, and James M Cook, ‘Birds of
a feather: Homophily in social networks’, Annual review of sociology,
27(1), 415–444, (2001).

[18] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean, ‘Distributed representations of words and phrases and their com-
positionality’, in Advances in neural information processing systems,
pp. 3111–3119, (2013).

[19] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov, ‘Learn-
ing convolutional neural networks for graphs’, in International confer-
ence on machine learning, pp. 2014–2023, (2016).

[20] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena, ‘Deepwalk: Online
learning of social representations’, in Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data
mining, pp. 701–710. ACM, (2014).

[21] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie
Tang, ‘Network embedding as matrix factorization: Unifying deepwalk,
line, pte, and node2vec’, in Proceedings of the Eleventh ACM Inter-
national Conference on Web Search and Data Mining, pp. 459–467.
ACM, (2018).

[22] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo,
‘struc2vec: Learning node representations from structural identity’, in
Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 385–394. ACM, (2017).

[23] Han-Wei Shen, Ling-Jen Chiang, and Kwan-Liu Ma, ‘A fast volume
rendering algorithm for time-varying fields using a time-space par-
titioning (tsp) tree’, in Proceedings of the conference on Visualiza-
tion’99: celebrating ten years, pp. 371–377. IEEE Computer Society
Press, (1999).

[24] Yu Shi, Huan Gui, Qi Zhu, Lance Kaplan, and Jiawei Han, ‘Aspem: Em-
bedding learning by aspects in heterogeneous information networks’, in
Proceedings of the 2018 SIAM International Conference on Data Min-
ing, pp. 144–152. SIAM, (2018).

[25] Chenhao Tan, Jie Tang, Jimeng Sun, Quan Lin, and Fengjiao Wang,
‘Social action tracking via noise tolerant time-varying factor graphs’,
in Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 1049–1058. ACM, (2010).

[26] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and
Qiaozhu Mei, ‘Line: Large-scale information network embedding’, in
Proceedings of the 24th International Conference on World Wide Web,
pp. 1067–1077. International World Wide Web Conferences Steering
Committee, (2015).

[27] Laurens van der Maaten and Geoffrey Hinton, ‘Visualizing data using
t-SNE’, Journal of Machine Learning Research, 9, 2579–2605, (2008).

[28] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Lio, and Yoshua Bengio, ‘Graph attention networks’,
in International Conference on Learning Representations, (2018).

[29] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò,
Yoshua Bengio, and R Devon Hjelm, ‘Deep graph infomax’, in Inter-
national Conference on Learning Representations, (2019).

[30] Daixin Wang, Peng Cui, and Wenwu Zhu, ‘Structural deep network
embedding’, in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 1225–1234.
ACM, (2016).

[31] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang,
Fuzheng Zhang, Xing Xie, and Minyi Guo, ‘Graphgan: Graph repre-
sentation learning with generative adversarial nets’, in Thirty-second
AAAI conference on artificial intelligence, (2018).

[32] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi
Zhang, and Philip S Yu, ‘A comprehensive survey on graph neural net-
works’, arXiv preprint arXiv:1901.00596, (2019).

[33] Junyuan Xie, Ross Girshick, and Ali Farhadi, ‘Unsupervised deep em-
bedding for clustering analysis’, in International conference on ma-
chine learning, pp. 478–487, (2016).

[34] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y
Chang, ‘Network representation learning with rich text information.’,
in IJCAI, pp. 2111–2117, (2015).

[35] Jiaxuan You, Rex Ying, and Jure Leskovec, ‘Position-aware graph neu-
ral networks’, in International Conference on Machine Learning, pp.
7134–7143, (2019).

[36] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-
Yan Yeung, ‘Gaan: Gated attention networks for learning on large and
spatiotemporal graphs’, arXiv preprint arXiv:1803.07294, (2018).

[37] Xinyuan Zhang, Yitong Li, Dinghan Shen, and Lawrence Carin, ‘Dif-
fusion maps for textual network embedding’, in Advances in Neural
Information Processing Systems, pp. 7587–7597, (2018).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

	Introduction
	Related Work
	Problem Statement
	Solution Approach: MIRand
	Random Walk based on Informativeness of a node
	Time and Space Complexity of MIRand

	Experimental Evaluation
	Datasets Used
	Baseline Algorithms and Experimental Setup
	Network Visualization
	Multi-class Node Classification
	Community Detection
	Parameter Sensitivity and Analysis

	Discussion and Future Work

