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Abstract. Few-shot learning in image classification aims to learn
classifiers for new classes when few examples are available for each
class. Though recent work has greatly advanced promising classifi-
cation performance, they mainly focus on the feature maps extracted
from RGB images and the task-invariant image-to-image metrics. In
this paper, we argue that richer features need to be learned and the
general metrics are not effective enough due to the scarcity of ex-
amples in few-shot learning. Specifically, we propose a Two-Stream
Neural Network (TSNN) with a learnable Image-to-Class Deep Met-
ric (ICDM) for few-shot learning, which is trained end-to-end from
scratch upon the recent episodic training mechanism. We not only
extract features from RGB images to find contrast differences in se-
mantic information, but also leverage the steganalysis features ex-
tracted from a steganalysis rich model filter layer to discover the local
inconsistencies between different categories. Meanwhile, we extend
our model to fine-grained few-shot classification, which is benefit
from the proposed novel ICDM. The experimental results on three
benchmark datasets show that our approach attains superior perfor-
mance, with the largest improvement of 6.01% in classification ac-
curacy over related competitive baselines.

1 Introduction
Supervised deep learning [18] has shown great success in many
applications such as computer vision [17, 25], speech process-
ing [11, 12] and natural language processing [4]. However, these
achievements have relied on a large amount of labeled data for the
training process of the model, which is resource-intensive. In con-
trast, humans can learn a specific task based on a small number of
known samples. For example, a child can learn the main features of
the dogs according to several pictures rather than massive labeled
data. Moreover, these supervised models are often limited in certain
scenes and difficult to promote to general tasks. For image classifica-
tion tasks, the classifiers trained with a certain dataset can only iden-
tify the classes in this dataset and cannot identify other new classes.

Few-shot learning [5] was proposed to learn a model with good
generalization capability, such that it can adapt to recognize new
classes based on few labeled support examples. As it is shown in Fig-
ure 1, few-shot learning in image classification aims to classify the
query images by accessing the few images in support set, and these
classes are not seen during training. There have been many contri-
butions to the study of few-shot learning. The early work mainly fo-
cuses on the transfer learning methods [1, 21], where the pre-trained
data is usually employed to fine-tune the few-shot learning models in
order to ensure generalization performance.
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Figure 1. Illustration of few-shot image classification. The task aims to
classify the query images in query set based on few samples in support set

(e.g., there will be 10 support samples in the 5-way 2-shot task).

In recent years, a large number of studies on few-shot learn-
ing have been proposed, most of them can be divided into meta-
learning based and metric-learning based. The meta-learning based
approaches [24, 6, 26, 13] usually adopt recurrent neural networks
or long short term memory networks [32] to store knowledge, and
encourage models to adjust the appropriate parameters according to
the previous experience. The metric-learning based approaches [16,
29, 27, 8, 28] are proposed to learn the distance distributions among
samples relying on different metrics and episodic training mecha-
nisms [29]. Most of the existing methods mainly focus on embed-
ding RGB images, and the transfer of task-invariant distance met-
rics [16, 29, 27, 8] (e.g., Cosine Similarity and Euclidean Distance)
or relation measure [28], but they don’t pay attention that the richer
features of images and a more efficient distance metric are critical
for various few-shot tasks.

Therefore, we propose a novel Two-stream Neural Network
(TSNN) for few-shot classification, which performs end-to-end train-
ing upon episodic training mechanism. Our approach aims to make
full use of the few support samples and classify query images more
directly and effectively. Specifically, in addition to detecting intrin-
sic contrast differences through embedding RGB images, we con-
sider capturing inconsistencies in local steganalysis features. Then,
feature maps of two streams are fused based on multimodal spatial
fusion methods [23], which will find a joint representation that con-
tains complementary information from different modalities.

The intuition behind the second stream is that the local steganal-
ysis features between the different categories are unlikely to match.
At the same time, these local steganalysis features can ignore some
continuous background information, which may hinder the identifi-
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cation of images. To utilize these features, we transform the RGB
images into the steganalysis domain and use the local steganalysis
features as the input to the second stream. Based on recent work on
steganalysis rich model (SRM) [7] of digital images, we select SRM
filter kernels to produce the steganalysis features.

Meanwhile, we consider that the general task-invariant measure
of image-to-image distance is not effective enough for different few-
shot classification tasks. For instance, Euclidean Distance shows
poor performance in fine-grained image classification. In this case,
we propose to learn the feature representations of support classes
based on CNNs, which is conducive to reduce intra-class gaps and in-
crease inter-class gaps. Thereafter, the adaptive Image-to-Class Deep
Metric (ICDM) is utilized to measure the similarities between queries
and each class flexibly in various few-shot classification tasks.

Our contribution is three-fold. First, a two-stream framework is
employed in few-shot learning tasks for the first time, and we show
that the two streams are complementary for few-shot classification.
Second, a novel Image-to-Class Deep Metric (ICDM) is proposed
to adapt to various few-shot classification tasks. Third, the exper-
imental results on miniImageNet show that our approach achieves
the best results among related competitive approaches. The 5way-
1shot and 5way-5shot accuracies on miniImageNet have increased
by 4.77% and 2.20% respectively. Besides, we extend our model
to fine-grained few-shot classification, and conduct experiments on
Stanford Dogs and CUB-200. The experimental results show that we
gain the largest improvement over the second-best result by 6.01%
on CUB-200 in 5-way 5-shot setting.

2 Related Work

Recent years have witnessed a vast amount of work on few-shot
learning tasks. They can be roughly categorized into meta-learning
based and metric-learning based.

Meta-learning based approaches: In these approaches, a meta-
learner that learns to optimize model parameters extracts some trans-
ferable knowledge between tasks to leverage in the context of few-
shot learning. Meta-LSTM [24] uses LSTM as a model updater and
treats the model parameters as its hidden states. This allows to learn
the initial values of parameters and update the parameters by reading
few-shot examples. The MAML approach [6] optimizes the process
of gradient descent through specific tasks (e.g., few-shot learning),
then the parameters of a learner model are optimized so that they can
be quickly adapted to a particular task. Another generic meta learner,
SNAIL [19], is with a novel combination of temporal convolutions
and soft attention to learn an optimal learning strategy. However,
most meta-learning based approaches need complicated network ar-
chitectures. Instead, we adopt a simple and effective CNN framework
for few-shot learning, which can be trained end-to-end from scratch
based on recent episodic training mechanism.

Metric-learning based approaches: These approaches [16, 29,
27, 8, 28] mainly focus on learning transferable embeddings and the
distance distribution between images. Vinyals et al. [29] proposed the
Matching Nets, a neural network that utilizes the Cosine Similarity to
compute the distance of images and employs attention with memory
that enables rapid learning. They also introduced the episodic train-
ing mechanism which is very effective for few-shot learning tasks.
Snell et al. [27] proposed the Prototypical Networks to learn a metric
space in which classification can be performed by computing Eu-
clidean Distance to prototype representations of each class. The Re-
lation Network [28] utilizes the Sigmoid function to convert the em-
beddings among RGB images into relation scores, and Mean Square

Error (MSE) is selected as the loss function to train the network.
Our framework TSNN is a model based on measuring distance

essentially. However, the most critical difference from existing ap-
proaches is that our TSNN is the first to employ the two-stream fea-
ture input in few-shot learning tasks. More specifically, in addition
to the RGB image features used in previous models, we also extract
steganalysis features based on the steganalysis rich model (SRM). In
terms of distance metric selection, the previous approaches almost
measure the distance between queries and support samples. Mean-
while, the fixed metrics [16, 29, 27, 8] or relation measure [28] are
usually utilized in their work, which are not flexible enough to deal
with various tasks. In contrast, we propose a novel learnable met-
ric: ICDM, which can adaptively measure the similarities between
queries and support classes for few-shot classification.

3 Proposed Approach
3.1 Task Formulation
When given a (small) support set S which consists of C different
classes and K image samples each class, few-shot learning aims to
classify the query images in the query set Q which consists of the
images selected in the remaining images in the above C classes (i.e.,
S and Q share the same class label space). This setting is called the
C-way K-shot in the few-shot learning.

The support set S and query setQ can be described as:

S = {(x1, y1), · · · , (xi, yi), · · · , (xn, yn)} (1)

Q = {(xn+1, yn+1), · · · , (xj , yj), · · · , (xn+m, yn+m)} (2)

Where n is the number of the support images (n = C · K), m is the
number of the query images, xi, xj are support and query instances
respectively, and yi, yj are their corresponding class labels.

For few-shot learning tasks, the training set Dtrain, evaluation set
Dval and test set Dtest have a disjoint class label space with each
other for classifiers. The Dval is used to evaluate the generalization
performance of the model during the training process. In this case,
the classifier trained by the training set Dtrain needs to be able to
identify the new category on the test set Dtest correctly. We need to
consider how to train such a classifier with good generalization per-
formance. In addition to the ideas of the model framework, training
strategy is also crucial for few-shot learning.

The training strategy in Matching Networks [29] called episodic
training mechanism has achieved good performance in few-shot
learning, and it will be adopted in our work. More specifically, the
training procedure is the same with few-shot classification procedure.
In each training episode, we perform the same C-way K-shot setting
as we do during the testing. After hundreds of thousands of training
episodes, the model can be directly used for few-shot classification
tasks with the support set S and Q which are selected from images
with new classes. More details will be shown in the network training
section and the experimental part.

3.2 Model Description
Figure 2 shows our Two-stream Neural Network (TSNN) architec-
ture of the 5-way K-shot setting, which is based on a metric called
Image-to-Class Deep Metric (ICDM). In the 5-way K-shot setting,
the support sets of two streams consist of 5 different classes with
K images per class. The RGB stream aims to detect visual differ-
ences and contrast effect between query images and support sam-
ples. Meanwhile, the steganalysis features can provide additional
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Figure 2. Architecture of our TSNN for a few-shot learning task in 5-way K-shot setting. Both two streams contain support set and query set (a query image
is marked with a red box). The General Convolutional Block is used to embed two streams through corresponding parameters θRGB and θSteg . SSF: Sum
Spatial Fusion. The ICDM learns to discover the distance between queries and class ci, and we convert it into the probability distribution. &: Concatenate.

critical information (e.g., the local inconsistencies between differ-
ent classes) to assist few-shot classification. Then, we fuse the two
streams through spatial fuse methods, which will find a joint rep-
resentation that contains complementary information from different
modalities. The support samples belonging to the same class are
uniformly fused as the feature representations corresponding to ci
(i = 1, 2, · · · , 5). Finally, the probability distributions of the query
images can be calculated through the image-to-class metric module.

3.2.1 Two-stream Input

The RGB stream input directly consists of the original RGB images,
which can find contrast visual differences in semantic information.
However, the single RGB stream is not sufficient to discover all the
key information of images. On the one hand, we consider design-
ing an efficient and generic network structure instead of a complex
deep network. On the other hand, it is challenging for single RGB
images to extract general feature maps to improve generalization per-
formance due to lacking support samples.

So, we utilize the local steganalysis distributions of the images to
provide additional evidence. In contrast to the RGB stream, the ste-
ganalysis stream is designed to pay more attention to local intrinsic
features rather than semantic image content. This is novel for few-
shot learning while current approaches focus on extracting features
from RGB image content, no prior work in few-shot learning has in-
vestigated learning from steganalysis distributions. Inspired by rich
models for steganalysis of digital images, we use SRM filters [7] to
extract the local steganalysis features from RGB images as the input
to our steganalysis stream. Examples of two stream inputs are shown
in Figure 3. We can see that local steganalysis can filter out many
smooth backgrounds, and the steganalysis features of main objects
are mainly retained, which is very helpful for few-shot classification.

In our setting, steganalysis is modeled by the residual between a
pixel’s value and the estimate of that pixel’s value produced by inter-
polating only the values of neighboring pixels. Starting from 30 basic
filters, SRM quantifies and truncates the output of these filters and
extracts the nearby co-occurrence information as the final features.
We find that only using 3 kernels can achieve decent performance in
our work, and applying all 30 kernels does not give significant per-

RGB image Main object Steganalysis

Figure 3. Examples of two-stream inputs. The first column shows the
original RGB images. Meanwhile, we mark the main objects to be identified
in the second column with red bounding boxes. The third column shows the

local steganalysis stream input obtained by the SRM filter layer.
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Figure 4. Three SRM filter kernels used to extract steganalysis features.

formance gain. Therefore, we choose 3 kernels, whose weights are
shown in Figure 4. We define the kernel size of the SRM filter layer
in the steganalysis stream to be 5× 5× 3.

3.2.2 Extractor and Fusion Module

In the feature extraction module, we design a General Convolutional
Block to extract both feature maps of RGB stream input and steganal-
ysis stream input through corresponding network parameters θRGB
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and θSteg . More specifically, the General Convolutional Block con-
sists of four convolutional blocks, each of them contains a convolu-
tional layer which including 64 filters of size 3×3, a batch normaliza-
tion layer and a ReLU nonlinear activation layer. The first two blocks
also contain a 2× 2 max-pooling layer to reduce feature dimensions
and prevent overfitting.

As for spatial fusion module, assume for a particular data
point, there are M group feature maps corresponding to the
representation of different modalities. A fusion function f :
{z1, z2, · · · , zm, · · · , zM} → Z fuses the M group feature maps
and produces an output Z, where zm denotes the feature maps of
the mth modality. For simplicity we assume that all the input feature
maps have the same dimension of RH×W×din , and the output has the

dimension of RH
′
×W

′
×dout

. In our work, given an image with a res-
olution of 84 × 84, we can get H = W = 19 and din = 64 for both
RGB and steganalysis streams because they have the same convo-
lutional network architecture. At the same time, since we are using
spatial fusion methods, the size of the feature maps do not change
(i.e., H

′
= H = W = W

′
, din = dout). Here, Sum Spatial Fusion

(SSF) is adopted in our experiments, which can be expressed as:

Zi,j,k =

M∑
m=1

zmi,j,k (3)

where Zi,j,k denotes the value in the spatial position (i, j, k) in the
output, and zm denotes the input feature maps of mth modality. In
our work, M = 2 (i.e., RGB stream and steganalysis stream).

Specifically, we have conducted SSF twice for the support images.
The first is the fusion of the two-stream feature maps of support im-
ages, which is the same as the queries. For the support images be-
longing to the same class, we conduct the second SSF orderly to
obtain the feature representations of support classes.What’s more,
average-pooling is utilized to reduce the variability between different
modalities after sum spatial fusion. Since we add some zero paddings
to the periphery of the feature maps, the output Z̄ = Avg-Pooling(Z)
have the same dimension with Z (i.e., Z̄, Z ∈ R19×19×64). Of
course, other fusion methods are also possible.

3.2.3 Image-to-Class Metric Module

In most previous approaches, image-to-image distance metrics are
usually used to measure the similarities between images. However,
in the few-shot classification, these metrics cannot effectively clas-
sify the queries due to lacking support samples. In our work, we
adopt a novel learnable Image-to-Class Deep Metric (ICDM). The
comparison of the two kinds of metrics is shown in Figure 5. In
the image-to-class metric, the feature maps belonging to the same
class are merged into the joint feature representations, which con-
tains high-level semantic information of the corresponding class. In
this way, the query image can measure its similarities to each class
conveniently and flexibly in few-shot classification. Meanwhile, the
adaptive deep metric can be applied to a variety of classification
tasks, while task-invariant metrics show poor performance in certain
tasks. More details will be shown in the experimental section.

Specifically, we concatenate the class representations of support
images and feature maps of queries in depth. Then, two convolu-
tional blocks and two fully-connected layers are used to learn the
ICDM. The activation function of last output fully-connected layer
is Softmax function in order to compute the probability values that
the query xj belongs to each class ci, and i = 1, 2, · · · ,C. For a new

Image-to-Image Image-to-Class

1c

2c
3c

4c

5c

Figure 5. The comparison of two kinds of metrics in the 5-way 3-shot
setting. Red indicates the feature maps of the queries, and the remaining
colors indicate the feature maps of support samples of different classes.

query xj , its predicting probability distribution ŷj over all C support
classes can be formulated by a Softmax function as:

p(ŷj = ci|Xci , xj) =
exp(M(F(Xci),F(xj)))∑C

ci
′
=1

exp(M(F(Xci′ ),F(xj)))
(4)

where Xci denotes the support samples of class ci, F(·) denotes the
extractor and fusion process of two-stream features, M(·, ·) repre-
sents the learned Image-to-Class Deep Metric in our work.

3.3 Network Training
Following episodic training mechanism [29], in each training
episode, we randomly sample C classes from the training setDtrain.
Then, we randomly select K labeled samples each class to compose a
training support set S (e.g., in a 5-way 5-shot task, the S will have 25
samples). At the same time, we randomly select some samples from
the remaining parts of above C classes to compose a training query
setQ (i.e., S andQ have the same class label space).

Next, the TSNN is trained to minimize the error predicting the
class labels ŷj in the query set Q conditioned on the support set S.
More precisely, the TSNN training objective is denoted as:

θ = argmax
θ

ES,Q∈D

 ∑
(xj ,yj)∈Q

log pθ(ŷj = yj |xj ,S)

 (5)

Training θ with Eq. 5 yields a model which works well when sam-
pling S and Q from Dtest. Crucially, our approach does not need
any fine-tuning when recognizing new categories, because it learns
rich features from RGB and steganalysis images, and the intrinsic
correlations between images and categories are learned based on the
ICDM.

4 Experiments
In this section, we execute experiments with C-way K-shot set-
tings on three datasets to evaluate the performance of our proposed
TSNN. In addition to the commonly used datasets miniImageNet, we
also adjust two fine-grained image classification datasets Stanford
Dogs [14] and CUB-200 [31] to make them suitable for few-shot
classification tasks.

The main goal of this section is to investigate three questions:
(1) Will our TSNN, a model based on a novel deep metric and the
episodic training mechanism, work well in the actual experiments?
(2) Can our TSNN adapt to various tasks on different datasets? (3)
What roles do the two streams play respectively in few-shot classifi-
cation?
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4.1 Datasets
Our experiments are executed on three datasets: miniImageNet, Stan-
ford Dogs and CUB-200. For two datasets used for fine-grained im-
age classification, we have pre-processed them for few-shot learning.

miniImageNet. The miniImageNet dataset, originally proposed by
Vinyals et al. [29], consists of 60000 colour images of size 84 × 84
with 100 different classes and 600 samples each class. For our ex-
periments, we use the splits introduced by Ravi and Larochelle [24]
in order to directly compare with state-of-the-art algorithms for few-
shot learning. The 100 classes are divided into 64, 16 and 20 classes
for training, validation, and testing respectively.

Stanford Dogs. This dataset [14] is proposed for fine-grained im-
age classification which contains 120 classes of dogs from around
the world and 20580 images in total. In order to make it suitable for
our experiments, we split the dataset with 75, 20, 25 classes for train-
ing, validation, and testing. It is worth mentioning that some scenes
in this dataset are complex or have multiple objects, which is also a
challenge for our model.

CUB-200. This dataset [31] is another dataset for fine-grained
image classification which contains 6033 images from 200 classes
of birds. We split the dataset with 135, 25, 40 classes for train-
ing, validation, and testing. For two fine-grained image classifica-
tion datasets, all the images are resized to 84× 84 as miniImageNet.
What’s more, we augment two fine-grained datasets with random ro-
tations by multiples of 90 degrees in order to prevent overfitting, be-
cause there are fewer images in these datasets than miniImageNet.

4.2 Parameter Settings
For all the experiments on three datasets, we execute tasks of 5-way
1-shot with 15 query samples each class, and 5-way 5-shot with 10
query samples each class. More specifically, for the task of 5-way 5-
shot setting, in one training episode, there will be 5×5 = 25 support
samples and 5 × 10 = 50 query samples to form the support set S
and query set Q respectively. The total 400000 training episodes are
constructed for sufficient generalization performance. We adopt the
Adam algorithm [15] with an initial learning rate 10−3 and halve the
learning rate each 100,000 episodes.

During test, we cycle a total of 10 times of test procedures. For
each test procedure, we perform 600 test episodes for all the datasets.
For each test episode, we choose 15 query images per class to test the

accuracy of the classification in all the settings. More specifically, for
a test task on miniImageNet of 5-way 5-shot setting, we randomly
sample 25 support samples fromDtest to form the support set S, and
test the accuracies of the classification of 5× 15 = 75 query images
in one test episode. The classification accuracies of all test procedure
are the average of the accuracy of 600 test episodes. Further, we also
record the 95% confidence interval of accuracy.

4.3 miniImageNet Few-shot Classification

Baselines. For the experiments on miniImageNet, we choose five var-
ious state-of-the-art baselines whose type is metric-learning based
few-shot learning approaches, because our TSNN is a metric-
learning based methods essentially, including Matching Nets [29],
Prototypical Nets [27], Graph Neural Network (GNN) [8], Rela-
tion Net [28] and Maximum-entropy Reinforcement Learning [3]. It
should be noted that we re-evaluate the performance of Prototypical
Nets and GNN for a fair comparison, because original Prototypical
Nets needs more support samples when training models, and origi-
nal GNN uses more filters than ours in the same settings. The Max-
entropy RL uses the same Cosine Similarity as the Matching Nets,
but it adopts a Maximum Entropy Sampler for few-shot learning.

Results on miniImageNet. Results comparing the five metric-
learning based baselines to our model on miniImageNet are shown
in Table 1. The second column in the table refers to the type of
this model. The third column refers to different metrics in these
approaches. Our TSNN achieves the best results among all related
metric-learning based approaches. More specifically, we gain the
largest improvement over the second-best result by 4.77% and 2.20%
in 5-way 1-shot and 5-shot settings. Here we answer the first ques-
tion, our approach can perform well in few-shot classification.

In order to show all types of few-shot learning approaches, we also
list some competitive meta-learning based approaches: Meta-Learner
LSTM [24], MAML [6], MM-Net [2] and Dynamic-Net [10]. Com-
pared with these models, our TSNN also achieves certain improve-
ments over them. As for the Dynamic-Net, it pre-trains its model
with all classes together before performing the few-shot training. It
should be emphasized that our TSNN does not require storing past
information, which is much simpler than the meta-learning based ap-
proaches.

Table 1. The mean accuracies on miniImageNet and with 95% confidence intervals. Our baselines are five metric-based learning approaches. ∗ : Results
re-implemented in the same setting for a fair comparison. The best-performing approach is highlighted.

Model Type Metric 5-way Accuracy(%)
1-shot 5-shot

Meta-Learner LSTM [24] Meta - 43.44 ± 0.77 60.60 ± 0.71
MAML [6] Meta - 48.70 ± 1.84 63.11 ± 0.92
MM-Net [2] Meta - 53.37 ± 0.48 66.97 ± 0.35
Dynamic-Net [10] Meta - 55.45 ± 0.89 70.13 ± 0.68

Matching Nets [29] Metric Cosine Similarity 43.56 ± 0.84 55.31 ± 0.73
Prototypical Nets∗ [27] Metric Euclidean Distance 47.45 ± 0.93 66.24 ± 0.52
Prototypical Nets [27] Metric Euclidean Distance 49.42 ± 0.78 68.20 ± 0.66
GNN∗ [8] Metric Absolute Difference 49.34 ± 0.85 63.25 ± 0.81
GNN [8] Metric Absolute Difference 50.33 ± 0.36 66.41 ± 0.63
Relation Net [28] Metric Relation Measure 50.44 ± 0.82 65.32 ± 0.70
Max-entropy RL [3] Metric Cosine Similarity 51.03 ± 0.78 67.96 ± 0.71

TSNN (Ours) Metric Image-to-Class Metric 55.80 ± 0.95 70.16 ± 0.82
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Table 2. The mean accuracies on Stanford Dogs and CUB-200 and with 95% confidence intervals. ∗ : Results re-implemented in the same setting for a fair
comparison. The best-performing approach is highlighted.

Model Type
Stanford Dogs CUB-200

5-way Accuracy(%)
1-shot 5-shot 1-shot 5-shot

Matching Nets∗ [29] Metric 35.68 ± 0.98 48.64 ± 1.05 45.26 ± 1.03 58.47 ± 1.02
Prototypical Nets∗ [27] Metric 36.59 ± 1.03 49.02 ± 1.00 38.04 ± 1.01 51.87 ± 0.99
Relation Net∗ [28] Metric 43.50 ± 0.84 55.84 ± 0.74 52.22 ± 0.98 64.03 ± 0.76
Max-entropy RL∗ [3] Metric 45.31 ± 0.82 57.49 ± 0.78 52.47 ± 0.87 64.32 ± 0.83
GNN∗ [8] Metric 46.06 ± 0.90 61.89 ± 0.95 51.64 ± 0.89 63.17 ± 0.94

TSNN (Ours) Metric 48.62 ± 0.99 63.45 ± 0.84 57.02 ± 0.98 70.33 ± 0.79
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Figure 6. Comparison with single-stream test accuracies of three settings on miniImageNet and CUB200.

4.4 Fine-grained Few-shot Classification
Fine-grained image classification [22, 9, 20, 30] tasks are more chal-
lenging than basic image classification tasks, because they aim to
recognize hundreds of subclasses under the same basic-level class.
In the fine-grained few-shot classification, the model is required to
have a good ability to distinguish local fine feature differences and
good generalization performance due to lacking support samples.

Baselines. For the experiments both on Stanford Dogs and CUB-
200, we choose the same five metric-learning based baselines as
miniImageNet, including Matching Nets [29], Prototypical Nets [27],
Relation Net [28], GNN [8] and Maximum-entropy Reinforcement
Learning [3]. We re-evaluate the performance of these models on
Stanford Dogs and CUB-200 for a fair comparison.

Results on Stanford Dogs. Experimental results on Stanford
Dogs are given in Table 2. We find that the accuracies on Stanford
Dogs are lower than that on miniImageNet for all the models. The
reason is that the Stanford Dogs dataset contains 120 classes of dogs,
many of which have many similar or identical features and confusing
multiple objects. However, our approach consistently performs better
than other baselines in this case.

Results on CUB-200. For another fine-grained dataset CUB-200,
we also perform experiments with the same settings on Stanford
Dogs and the experimental results are recorded in the Table 2. Com-
pared with five competitive metric-learning based approaches, the
proposed TSNN leads to some persistent improvements in all the
settings. We find that Relation Net and Max-entropy RL also achieve
not bad results on CUB-200, the former converts RGB feature maps
into relationship scores, and the latter learns a Maximum Entropy
Sampler for few-shot learning based on reinforcement learning. In-

stead, a two-stream framework and a more effective distance metric
are adopted in our work. We gain the largest improvement over the
second-best approach Max-entropy RL* by 6.01% in 5-way 5-shot
setting. In this section, we answer the second question, our TSNN
can continuously achieve superior performance beyond the related
baselines even on fine-grained datasets.

4.5 Analysis and Discussion

4.5.1 Single-stream Experiments and Analysis

The above experimental results show that our two-stream network
architecture can achieve good performance in few-shot classifica-
tion, but the performance of single-stream input is not clear. Does
the steganalysis stream play an equal role in different datasets? Here,
we conduct single-stream experiments and analyse the results on
miniImageNet and CUB200. For the specific training parameters, in
one training episode, we execute 5-way 1-shot, 5-way 5-shot and 5-
way 10-shot with 15, 10 and 5 query samples each class respectively.
Figure 6 shows the comparison of single-stream experimental results
of three settings on miniImageNet and CUB200.

Firstly, in all experiments on two datasets, the test accuracy of a
single steganalysis stream has always been lower than that of a sin-
gle RGB stream. This is reasonable because RGB images contain
deep semantic information, which is much more important than lo-
cal steganalysis features in the classification tasks. What’s more, the
performance of the single steganalysis stream on the CUB200 is far
less than that on the miniImageNet in all the settings. For instance, in
Figure 6(a), the single steganalysis stream attains only 40.46% test
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(d) Ground Truth

Figure 7. Visualization of experimental results on CUB200 of the 5-way
5-shot setting. The horizontal axis represents labels of 5 classes, and the

vertical axis represents 100 query images selected from 5 classes.The darker
the color, the greater the probability of belonging to corresponding class.

accuracy on CUB200, which is much less than the 51.10% test ac-
curacy on miniImageNet. This is because CUB200 is a fine-grained
image classification dataset, and the steganalysis features of delicate
differences tend to interfere with each other. In this case, the perfor-
mance of few-shot classification is definitely poor if we only rely on
local steganalysis features.

Secondly, it can be clearly seen that although a single steganal-
ysis stream performs very poor on CUB200, our TSNN performs
well. In other words, the gain effect of the steganalysis stream is
more pronounced on CUB200 than miniImageNet. For the exam-
ple in Figure 6(b), in the 5-way 5-shot setting, the test accuracy
of a single RGB stream on CUB200 is about 67.23%, and the ac-
curacy is improved by 3% after adding steganalysis stream. How-
ever, the test accuracy only increases from 68.88% to 70.16% on
miniImageNet. Why can the two-stream network achieve such a large
gain on CUB200? On the one hand, the RGB features learn deep
semantic information, and a large number of futile steganalysis fea-
tures are eliminated under the coordination of the features of RGB
images. On the other hand, the key steganalysis features from SRM
help analyze the delicate differences, and learn rich features for few-
shot classification. So far, we have answered the third question at the
beginning of this section.

Thirdly, we can see that the advantage of transduction narrows
with the shots increase. In other words, the gain from steganalysis
stream gradually decreases since more labeled data are used. Tak-
ing the results on miniImageNet as an example, in the 5-way 1-shot
setting, the accuracy of the two-stream increases from 53.58% of
RGB stream to 55.80%. However, in the 5-way 5-shot and 5-way 10-
shot settings, the improvements become less and less. This is because
when the number of support samples is large enough, the RGB im-
ages can contain enough information to improve the generalization
performance of the model. It also shows that steganalysis features
can play an important role when lacking support samples.

Result Visualization. In order to demonstrate the training results
of our classifier more intuitively, we visualize the experimental test
results on CUB200 of the 5-way 5-shot setting. As shown in Figure 7,
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Figure 8. Performance with different metrics on miniImageNet and
CUB200 of the 5-way K-shot setting (K = 1, 2, 3, 4, 5).

we randomly select 5 samples each class to form a support set, and 20
queries each class to form a query set (i.e., 100 queries in total). We
show the classification performance of a single steganalysis stream,
a single RGB stream, our TSNN, and the ground truth respectively.
The darker the color in the graph, the greater the probability of be-
longing to that class. It can be clearly seen from the figure that our
TSNN performs better than a single stream.

4.5.2 Effect of Metrics

It is obvious that the choice of different metrics will have effects
on the performance of few-shot classification. To further investigate
this, we conduct 5-way K-shot (K = 1, 2, 3, 4, 5) experiments with
different metrics on miniImageNet and CUB200. It should be noted
that we use the same CNNs to extract features in order to ensure the
fairness of the experiments.

Figure 8 shows that our learnable ICDM performs consistently
better than other metrics with varying shots, because it can measure
the similarities between queries and categories adaptively. The per-
formance of Euclidean Distance is significantly reduced on the fine-
grained dataset CUB200 due to fine differences between categories.
Another observation is that the Relation Measure also performs well
on both two datasets. It is also a nonlinear metric which converts
the similarities between images into relationship scores. However, it
doesn’t measure the probabilities that queries belong to each cate-
gory directly. It turns out that our ICDM is more effective for few-
shot classification than other metrics.

5 CONCLUSION
In this paper, we propose a novel two-stream network by using both
an RGB stream and a steganalysis stream to learn richer features
for few-shot classification. Experimental results confirm that the two
streams are complementary when lacking support samples. Mean-
while, the proposed nonlinear Image-to-Class Deep Metric consis-
tently performs well on different datasets compared with the related
competitive approaches. In the future, we would like to move for-
ward to apply the current framework in other applications such as
person re-identification and relation classification.
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