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Maximal Information Propagation with Budgets

Haomin Shi and Yao Zhang and Zilin Si and Letong Wang and Dengji Zhao'

Abstract. In this paper, we present an information propagation
game on a network where the information is originated from a spon-
sor who is willing to pay a fixed total budget to the players who prop-
agate the information. Our solution can be applied to real world sit-
uations such as advertising via social networks with limited budgets.
The goal is to design a mechanism to distribute the budget such that
all players in the social network are incentivized to propagate infor-
mation to all their neighbours. We propose a family of mechanisms
to achieve the goal, where propagating information to all neighbours
is a dominant strategy for all players. Furthermore, we also consider
the cases where the budget has to be completely shared.

1 Introduction

In recent years, with the help of the internet, people start taking ad-
vantage of social media to propagate information to more people
through their friends [4, 2]. For instance, if an online retailer wants
to advertise her products but cannot afford a high advertising fee on
ad platforms, one alternative way is to incentivize her customers to
propagate the information via their friends. As another example, if a
survey team needs many people to fill their questionnaires, they can
incentivize people to spread the survey further. The drive of all the
applications is propagating information via social networks [12]. The
challenge is how to incentivize people to do so.

There exists a rich literature that is based on the social network
to study classical marketing or mechanism design problems. For ex-
ample, Brill et al. [3] proposed a false-name-proof information col-
lection algorithm for recommendation decisions in social networks,
in which they introduced the concept of weight on each node in the
social network. Shen et al. [15] proposed a multi-winner contests
(MWC) mechanism for strategic contest information diffusion on so-
cial networks, which satisfied several desirable properties including
false-name-proof, individual rationality, budget constraint, mono-
tonicity, and subgraph constraint. For marketing, Emek et al. [7]
presented a theoretical framework to design reward mechanisms for
multi-level marketing within social networks and established a full
characterization of the geometric mechanism family. Later, Drucker
and Fleischer [6] proposed a family of mechanisms to prevent Sybil
attacks by profiting maximizers while preserving its original proper-
ties in multi-level marketing. Moreover, Li et al. [11] proposed an
auction mechanism in a single-item auction setting to incentivize
buyers to report their valuations to the seller truthfully as well as
propagate the auction information to all their neighbors on a social
network and Zhao et al. [17] further generalized it to the setting of
multiple items. For cooperative games, Douceur and Moscibroda [5]
proposed a lottery tree that motivates people to join or contribute to a
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network system without participation benefit, but proportionally re-
wards each participant on its contribution and their leading-in partic-
ipants’ contributions. Furthermore, Abbassi and Misra [1] proposed
a multi-level revenue sharing for referral-based viral marketing over
online social networks to achieve compatibility, individual rationality
and potential reach.

There also exist some works on finding and propagating influen-
tial nodes in a social network in order to trigger a cascade of further
participation. Wang et al. [16] proposed a price-performance-ratio in-
spired heuristic scheme to economically select seeds within a given
budget to maximize the diffusion process. David et al. [10] provided
provable approximation guarantees for efficient algorithms of select-
ing the most influential nodes. Galeotti and Goyal [8] investigated
how firms can harness the power of social networks to promote their
sales and profits.

There are also some works on incentive referring and participation.
Naroditskiy et al. [13] conducted a field experiment that compared
several mechanisms for incentivizing propagation via social media
with the support of a charitable cause. Gao et al. [9] surveyed the
literature of theoretical frameworks and experimental studies of the
incentive strategies used in participatory sensing.

All the works above share the same motivation of propagating in-
formation via social networks. In this paper, we focus on how to
incentivize people to propagate some information from a sponsor,
which is a high-level abstraction of the above settings. In our setting,
a sponsor provides a fixed budget to reward the people who prop-
agate information for her. The goal is to incentivize participants to
propagate information to all their social neighbours. Note that this
is not achievable if we simply use a fixed reward for each invitation
because the sponsor will certainly spend more than the budget in this
case.

Under our circumstance, the key point is that the budget distributed
to all agents is bounded at the beginning. Hence, inviting more peo-
ple means there are more people to share the limited reward. The
well-known winning solution from the 2009 DARPA red balloon
challenge is a successful attempt [14], but it only works on a tree
model when there is an actual task to do while in our setting, it is
just information propagation. It also cannot fully use the budget in
our setting. To combat these problems, we propose a novel reward
sharing scheme that incentives people to propagate the information
to all their neighbours while the reward shared among them can com-
pletely uses the budget.

Specifically, our contributions advance the state of the art as fol-
lows:

e We define an information propagation game on a graph/network
and define the concept of propagation incentive compatible to
guarantee the information will be fully propagated in the graph.

e We propose a novel reward distribution scheme that satisfies the
new concept to achieve maximal information propagation. More-
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over, it spends all the budget, i.e., it is budget balanced.
e Some practical issues have also been discussed to show the appli-
cability of our proposed mechanisms.

The rest of the paper is presented as follows. Section 2 introduces
our model and the preliminaries. We first propose a simple mecha-
nism in Section 3 to better understand the challenge. Then, in Section
4 we propose our novel budget distribution scheme that guarantees
maximal information propagation. Finally, we discuss some practical
issues in Section 5, and conclude in Section 6.

2 The Model

We focus on an information propagation game where a sponsor aims
to propagate a piece of information to as many agents as possible via
agents’ social connections. In the real-world applications, the con-
nections between agents can represent friendship or neighborhood,
and the information could be an advertisement or any other infor-
mation. We investigate a reward mechanism for the sponsor under a
fixed budget to incentivize agents to propagate the information to all
their neighbours.

Formally, let N = {5,1,2,...,n} be the set of all agents in the
network and a special agent S € N, which is the sponsor, intends to
propagate a piece of information to the others. We model the network
as an unweighted directed acyclic graph (DAG) G = (N, E) with
source S. Each edge (¢,j) € FE indicates that agent ¢ can propagate
the information to agent j. All the rewards given by the sponsor to
the others come from a fixed budget B > 0. Let G be the space of all
networks satisfying our setting. We define the reward mechanism as
follows.

Definition 1. A reward mechanism is defined by M: G x Ry —
RMI. Given a graph G = (N, E) € G and a budget B € R, the
output of the mechanism is M(G,B) = r = (rs,r1,72,...,Tn),
where 1; is the reward assigned to agent i for i € {1,2,...,n} and
rg is the remaining budget that has not been distributed.

One minimum requirement of the reward mechanism is that the
sum of reward r; equals the budget B.

Definition 2. A mechanism M is feasible if for all G = (N, E) € G
and all B € Ry, the output M(G,B) = r = (rs,m1,72,.-.,7n)
satisfies EiEN ri = B.

From the sponsor’s interests, the rewards assigned by the mech-
anism should be bounded by the budget. Otherwise, the sponsor
will have a deficit which is not allowed in our model. This is called
weakly budget balanced.

Definition 3. A feasible mechanism M is weakly budget balanced
(WBB) if for all G = (N,E) € G and all B € Ry, the output
M(G, B) = r satisfies rs > 0. More strictly, a mechanism is budget
balanced (BB) if rs = 0.

Moreover, to make the reward mechanism applicable, agents
should not suffer a loss from participating. We call this individual
rationality.

Definition 4. A feasible mechanism M is individually rational (IR)
if and only if for all G = (N, E) € G and all B € Ry, the output
M(G,B) =r = (rg,r1,72,...,Ty) satisfies Vi € N, r; > 0.

The last and the most important property we investigate in this
paper is incentivizing information propagation in the network. This
is defined as propagation incentive compatibility.

Definition 5. A feasible mechanism M is propagation incentive
compatible (PIC) if for all G = (N,E) € G, all B € Ry, all
i € N\ {S} and all edge set e C {(z,y)|(x,y) € E,xz = i}, we
have

M(G,B); > M(G.,B);

where G, is the connected graph containing S deduced from G with-
out the edge set e.

We say M is strongly propagation incentive compatible (SPIC) if
the strict inequality holds.

Propagation incentive compatibility indicates that each agent at
least does not suffer a loss from the information propagation. If a
mechanism is strongly propagation incentive compatible, propagat-
ing information to all her neighbours is all agents’ unique dominant
strategy.

Given all the above definitions, we first show that trivial mecha-
nisms cannot satisfy them in our model. For example, simply give
each agent a fixed reward for participation or uniformly divide the
budget among all participants. The former is not budget-balanced,
and the later does not satisfy PIC. This is summarized in the follow-
ing propositions.

Proposition 1. [f a feasible mechanism M gives each agent a fixed
reward v € Ry for all agents participated, then M is not weakly
budget balanced.

Proof. For a fixed budget B, if the size of agents n = [B/r] + 1,
then which n - » > B and rs < 0. Hence, the property of weakly
budget balance cannot be satisfied. O

Proposition 2. If a feasible mechanism M uniformly divides the
budget among all agents participated, then M is not PIC.

Proof. For a fixed budget B and NV \ {S} of size n, each agent gets
% under M. If one of the agents propagates fewer agents, then the
size of N"\ {S} will be n’ < n, which suggests that her new reward
will be % > g. Hence, M is not PIC. O

3 A Starter Mechanism

First, we propose a simple reward mechanism that is weakly budget
balanced and propagation incentive compatible. The starter mech-
anismhelps us understand the challenges we face and motivate our
advanced mechanisms in the later sections.

Let us start with some extra notations. Denote the shortest distance
of an agent 7 to the sponsor by d;, and the set of all agents with depth [
by L; = {i|d; = I}, which is also called the layer . Having defined
each node’s layer, we only keep those edges from upper layers to
lower layers. Our starter mechanism first distributes the total reward
to different layers. For all agent in layer [, the reward B;, which is
distributed among L;, is defined as

B =8"1'1-p8)-B
where 3 is a discount factor which satisfies 0 < 5 < 1.

It is clear that the total reward to each layer is fixed so that inviting
more agents does not decrease the inviter’s reward since the invi-
tees are in the next layer and won’t join the current layer’s reward
distribution. Therefore, for all agents in L;, we can simply divide
the budget B; proportionally to them according to the number of
agents invited by each agent. More specifically, let n; be the number
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of agents whom agent ¢ has informed, and f : R — R be a posi-
tive and monotone increasing function. Then the reward distributed
to agent 7 € L; is defined as

flni)
S, fo) 2

The full description of the above mechanism is illustrated below.

Ty =

The Starter Mechanism

INPUT: the graph G and the budget 5.

1. Using breadth first search to compute the agent sets in each

layer L1, Lo, ..., Ly,,,-
2. Foreachlayerl € {1,...,lnu},let By = 711 - 3) - B.
. o f(n4) .
3. Foreach agenti € Ly, letr; = ez, Fip) B,.

OUTPUT: the reward vector r.

Example 1 will illustrate how the starter mechanism works.

Example 1. Consider the following information propagation net-
work illustrated in Figure 1. The sponsor S firstly propagates the
information to A and B. Then A and B further propagate the infor-
mation to their friends C, D and F, and so on.

Figure 1.

An example of the information propagation network.

Suppose the total budget from S is B = 10, we apply the starter
mechanism and let 3 = % f(n)=n.

Taking the first two layers as example to compute the rewards, for
L1, the reward to A and B are

na 1 nA
TA:BI'7:7 —_— =
na+ng 2 na+np
npg 1 npB
TB:Bl~7:7 — =
na+ng 2 na+ng

For Lo, only agent C propagates information to others. Hence,
agent C will take all the reward distributed to Lo, i.e.,

1
rc = Bl:2 = ZB =2.5

andrp = rr = 0, because np = ngp = 0.

Proposition 3 shows that the starter mechanism has some nice
properties.

Proposition 3. The starter mechanism is weakly budget balanced,
individual rational and propagation incentive compatible.

Proof. For weakly budget balanced, check the total reward dis-
tributed to all agents except the sponsor:

Imax

ZBlgiBl:(l—m

=1

1

-~ . B=B

1-p

then rs = B — > ;™ By > 0 is directly hold.
For individual rationality, since 0 < f < 1, B > O and fisa

positive function, then for every agent ¢ € L;,

fi) g J(m)
EjeLl f(n7) ZjELz f(nj)

For propagation incentive compatibility, since f is monotone in-
creasing, for every agent ¢ € L;, if she does not propagate informa-
tion to all her neighbours, which is n} < n;, we have

Fnd) o f)
fng) + ZjeL,,j;si f(ng) — ZjeLl f(ny)

where 7} is the reward if ¢ only propagates information to n; neigh-
bours?.
Therefore the mechanism is weakly budget balanced, individual

rational and propagation incentive compatible.

BTN 1-B)-B>0

ry =

’
r; = =1r;

O

4 A General Scheme

Although the starter mechanism described in Section 3 has satisfied
the properties of WBB, IR and PIC, there are still some concerns. The
first concern is that the budget cannot be fully used because the graph
is limited. In another word, ;4. is finite. This may cause a problem
when using up the resource is a critical requirement. For example, in
virtual cash market such as bitcoins, the amount of bitcoins mined
everyday is a fixed number, and if it is used as rewards, it has to be
fully distributed. Also, when a government wants to distribute some
social welfare, usually it wishes to fully distribute it.

Another concern is about “distinguishability”: once the discount
factor S is fixed, the reward allocated to each layer is fixed, no mat-
ter how many agents they have informed to and how network is
structured like in the immediate layer. The starter mechanism cannot
distinguish them, which means that it may not strongly incentivize
agents to invite more participants.

To tackle the problems of the starter mechanism, we first further
characterize the starter mechanism by considering how we share the
rewards between two adjacent layers, L; and L;4+;. Let B; be the to-
tal budget passed to layer L; before they shared with L; .1, and b} be
the current reward for agent i in L;. Thus, we have B = 37, b;.
Then the reward are shared between L; and L;4; and the final reward
left for L; is defined by

-1
B, — B 5(11—2_ B)

where 3 =2 — 8+ 1and0 < 8 < 1.

B =B1-8)B =1-8)B, (1)

2 Note that the inequality will be strictly hold if f is strictly monotone in-
creasing. In this case, the mechanism will be strongly PIC.
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Therefore, the reward shared to L; 1 is 8’ B;. Or alternatively,

Bi=(1-p)) b, Bia=p8) b

i€l ieL,

Suppose for each agent j in L;11, we distribute b’; as the current
reward from B'B] and this will drive the mechanism between the
layer I + 1 and [ + 2, and so on so forth.

At last, we distribute the reward B; to agents in each layer L;.
This form of distribution is more precise and can be used as a basis
for further generalization.

4.1 Budget Distribution Scheme

The problem of budget balance and “distinguishability” in the starter
mechanism occurs because the proportion of the budget distributed to
the agents in L; is independent of the number of agents in each layer.
To tackle this problem, we introduce a new term when we consider
the reward sharing between layers L; and L;11 as

Bi=(1-p)Y ti+8 A

i€l i€l

where § is a discount factor and A; is a bonus factor such that 0 <
B < land 0 < A; < 1. Here we assume that there should be more
than one node in the first layer, i.e. the sponsor should know more
than one agent in the social network. Otherwise, the single agent will
always have no incentive to propagate since she can take the whole
budget if no other agents have been informed. Intuitively, the bonus
factor here is to provide extra reward for the propagation effect of the
agents in the layer. Now the generalized budget distribution scheme
is given as below.

Budget Distribution Scheme

INPUT: the graph G and the budget 5.

1. Using breadth first search to compute the layer sets
Ll, LQ, ey leax and leax+1 .

2. Foreachi € Ly, setb; = B/|L1]|.

3. Foreachlin{1,..., lna}

(a) Foreachi € L; compute A; according to its propagation.
(b) Let By = (1-5) >, bi+B>,cp, Aibiand B, =
ZiGLl bé - Bl-

(c) Distribute B; to agents in Ly, i.e., for agent ¢ in L;, she
gets r; as reward.

(d) Distribute By, toagentsin Ly, 1i.e., foragentjin Ly,
she gets b; as current reward.

OUTPUT: the reward vector r.

Notice that the starter mechanism is a special case of the budget
distribution scheme when the bonus factor A; is always 0 and 3 in
the scheme serves as the role of 3’ in Equation (1). We can easily
show that all mechanisms under this scheme are IR and WBB.

Theorem 1. The budget distribution scheme is IR and WBB.

Proof. For IR, notice that 0 < 8 < 1and 0 < A; < 1. Then for any
layer L;, we have

1=B) D> B<B<(1—B) Y bi+B> b

i€L; i€Ly €L
/
O < Bl < Bl

For WBB, notice that the total reward distributed to agents is at
most B, + B5 = Bf = B.
Hence, the properties of IR and WBB holds. O

Intuitively, to distinguish the differences of the networks, we give
an extra bonus for their propagation. The bonus is additional to the
proportion in the starter mechanism, which is the key to maintain the
property of PIC, because the fixed proportion guarantees that new
comers will not decrease their inviters’ rewards.

Now we consider how to choose a proper bonus factor A;. To in-
centivize propagation, we design A; to be a function depending on
the number of agents been propagated. Considering an agent ¢ € L;,
let n; be the number of agents ¢ directly propagates to and n_;
be the number of agents who all others in L; propagates to, i.e.,
i = D e, i -

In order to give agents in L; more rewards if they propagate the in-
formation to more neighbours, A; should increase when n; increases.
On the other hand, A; should decrease when n_; increases on the
purpose of bounding the bonus given to agents in L; (to avoid the
budget left to the next layer being too less) and creating competi-
tion among agents in layer L; (where the difference between agents’
propagation also matters). Therefore, we introduce a reasonable de-
sign of A; as:

Ai = (1 — Oé)nfi
where 0 < a < 1 is the division factor. Note that under this defini-
tion, A; is decreasing when n_; increases and 0 < A; < 1. Then
the total reward distributed to agents in layer L; in the budget distri-
bution scheme is

Bi=(1-8)> bi+BY (1—a) ©)
i€l i€l
After deciding the discount factor A;, we need to define the details
of the distribution in each layer to complete the mechanism. We pro-
pose the distribution algorithm between two adjacent layers below,
which performs well as we will show in the following sections.

Distribution Algorithm between Two Adjacent Layers

INPUT: the graph G and b; for each i € L;.

1. Foreach agent: € L;, setr; = i.Vy, + 4.V}, initialize ¢.V}, =
b} and i.V}, = 0.

2. For each agent j € L1, initialize b; = 0.

3. Foreachagentj € L1

(a) Let P be the set of agents in L; who propagate informa-
tion to j.
(b) For each agenti’ € P:
e Foreachagenti € L; \ {i'}, set
iV —i' Vi +ap iV,
by < b+ a(l—B)-iV,
Wy iV —a-i.V,
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OUTPUT: r; for each agent ¢ € L; and b; for each agent j €
Ll+1.

Intuitively, in the distribution algorithm above, for each agent
i € Ly, her reward includes two parts, the V3, part and V} part where
V4 serves as the basic participation reward and V}, serves as an ex-
tra reward for the propagation. If agent ¢ propagates information to
another agent, all other agents in the same layer should provide a re-
ward to agent ¢ and the new coming node. For example, considering
an agent j € L, it should give a total reward of « - j.V4 to agent
i, where 0 < a < 1. At last, we introduce (3 to be the proportion
of reward distribution between agent ¢ and her child. Thus, the new
child in the next layer will get a - (1 — 8) - >, 1, 5, J-Vb and the
agent ¢ will get o - 3 - EjELl,j;ti 7-Vs. Notice that the final reward
distribution is related to the order of agents in ;11 being selected in
the step 3 in the distribution algorithm. Here we can just randomly
choose an order. In practice, we can achieve more properties if the
order is well-treated, which will be shown in Section 5.2. To see how
a complete budget distribution with the above algorithm works, an
example is illustrated below.

Example 2. Suppose the propagation network is shown in Figure 2
and the budget is B = 30. In the mechanism, we set o = 3 = 0.2.
Now we show the process of the reward distribution.

Figure 2. An example of the information propagation network

e Firstly, set AV, = BV, = C.V, = %B =10, DV, = E.V}, =
0 and for all agents their Vi, are set to 0.

o When A propagates to D, A and D will be rewarded, while B and C
will be taken away a proportion of reward. Since o = 0.2, Then:

BVy,=BV,—a-B.V,=38

CVy=CVy—a-CV, =8
The reward taken from B and C will be distributed between A and
D by a proportion of B, therefore:

AV, = /3 . OL(B.V}) =+ C‘/b) =0.8
DVy=(1-08)-a(BV, +CV,) =32
e Similarly, when B propagates to E, B and E will be rewarded.

Notice that here C.V}, has been updated:

BV, =08-a(AV,+C.V,) =0.72
EVy,=EVy+(1-08) a(AV,+ C.V;) =2.88
AVy=AVy,—a-AV, =8
CVy=CVy—a-CV, =64

At last, we show that the distribution algorithm satisfies the
scheme described in Equation (2). For each agent ¢ in layer L;, the
part V, of the final reward distributed to her is (1 — @)™ - ;. On
the other hand, the total propagation reward to all agents in L; is
1-p5) ZieLl [1 — (1 — )™~]b;. Therefore, the total final reward
distributed to layer L; is:

Bi=) (1—a)" " -bi+(1=8) Y [1—(1—a) ]

= Z{(l —a)" b+ (1= B)[1— (1 —a)" ]}
= D [(1= )+ (1 — )"~ ]t}
=(1-p) Z b +ﬁZ(1 —a)" b

which is identical to Equation (2).

4.2 Properties of the Budget Distribution Scheme

In this section, we show that the budget distribution scheme with our
distribution algorithm holds all the properties required in our model.

Theorem 2. The budget distribution scheme that uses the distribu-
tion algorithm is individually rational, budget balanced and strongly
propagation incentive compatible’.

Proof. For IR and WBB, the proof is completed in Theorem 1.

For budget balanced, when comes to the last layer L, , for all
agenti € Ly, n: =0, s0, By, = Bj,with A; = 1. Therefore,
the mechanism is budget balanced.

For strongly PIC, it can be satisfied if for any agent 7, we have

1. When agent ¢ propagates information to a new agent, it will in-
crease her reward.

2. Whatever her descendants decide to act, it should not decrease the

agent ¢’s reward.

For the first condition, when an agent ¢ propagates information to
a new agent, she gains rewards from other agents. Assume that the
current reward owned by agent i is r;, then after the propagation, her
reward will become

/
Ti=T1'+,8~()éE r;
J

where j represents all the agents in the same layer of ¢’s other than ¢
herself. Since /3, a and r; are always positive, then the second term
should always be positive. Therefore r; > r;, and the first condition
is satisfied.

For the second condition, we need to focus on the propagation
of an agent’s descendant. Notice that in the algorithm, when one of
the descendants propagates information to others, she can only take
reward from the agents who do not belong to its ancestors.

Therefore, The budget distribution scheme that uses the distribu-
tion algorithm is individually rational, budget balanced and strongly
propagation incentive compatible. O

3 Here we assume that for each layer we have more than one agent. For more
general cases, we will discuss it in Section 5.1
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Notice that Theorem 2 proves not only the property of PIC, but
also strongly PIC. This makes propagating information to all neigh-
bours a unique dominant strategy for each agent. Therefore, in prac-
tice, the mechanism can achieve the maximal information propaga-
tion without the limitation of time.

5 Practical Issues

In this section, we will discuss some issues we may meet in practice.

5.1 Special Cases of the Scheme

In the distribution algorithm between two adjacent layers discussed
in previous section, if there is only one agent in the upper layer, then
there will be no agents’ reward to take from and the parent and the
new agent will get nothing from the propagation. To solve this prob-
lem, we divide it to two different cases for an agent ¢ with only herself
in the layer in our solution:

case 1: There are leaf agents in previous layers that are not ¢’s an-
cestors.

case 2: There is no leaf agents in previous layers that is not ¢’s an-
cestors.

For case 1, we can simply treat those leaf agents as upper layer
agents, i.e., we can take reward from those agents.For case 2, which is
much more complicated, the main idea is that tracing up to find where
there are more than one agent in the layer and try to take reward from
them. Notice that the reward we take away should be well-designed
since it may reduce the ancestor agents’ reward, which may harms
the property of PIC.

More specifically, we present the solution to the special cases be-

low*.

Distribution Algorithm for Single Agent Layer

INPUT: the graph G and b;, where L; = {i}.

1. Foragenti, setr; = 9.V, +1.V), where i.V, = b} and i.V}, =
0.

2. For each agent j € L1, initialize b = 0.

3. Let F' be the set of all leaf agents other than i in G;, where G
is the subgraph of G with only agents in {S}UL; U---UL;,.

4. For each agent j € L4,

(a) If F' # 0, then for each agent f € F, set

WWVh iV +af - f‘/b
Vi < b +a(l—8)- fVs
fVo = fVo—a- f.V

(b) Otherwise, set x be the closest ancestor to ¢ which has
more than one parent agents (x must exists since F' = ()
and we assume |L1| > 1) and ¢ be the distance between ¢
and z. Then, for all agent y in x’s parent agents, let m be

4 Here we assume that there are at least two agents in the first layer. In prac-
tise, the requires the sponsor has at least two neighbours, which is normal
and reasonable.

the number of x’s parents, set

’ / (¢4
by b+ -y V- (1= 5)
Vi iVt —— gV B
m- 24
yVo -y Vo — ——2 -y Vo

OUTPUT: 7; for agent ¢ and b’; for each agent j € Ly41.

Here we provide an example of the special cases for better un-
derstanding. In Figure 3, assume that the sponsor S owns a budget
B=30and a = 1,8 = i. As the initialization in the budget distri-
bution scheme, the sponsor S first gives out all the reward to agent A,
B and D. So we have A.V, = B.V, = D.V;, = 10. Then all 3 agents
of the first layer propagates information to C and, according to the
budget distribution scheme and distribution algorithm, C.V; = 8.64
and A.V, = B.V, = D.V, = 6.4.

When agent C further propagates information to agent E, notice
that there is only other agents in the same layer with C. Hence,
we should apply distribution algorithm for single agent layer above.
Since there is no leaf nodes in previous layers and the ancestor node
C has three parent agents. Consequently, C and E will take reward
from C’s parents. Finally,

« .
CVa= 35> iV f=0128
i€l
o .
BEVy= o EZL i.Vh - (1— ) =0.512
2 1

and A.V, = B.V, = D.V}, ~ 6.187.

e‘g)a

Figure 3. Example for the special case where there exists single agent
layers.

Theorem 3. The budget distribution scheme that uses distribution
algorithm for single agent layer is still strongly propagation incen-
tive compatible, individual rationality and budget balanced.

Proof. Here we have to prove the completeness of the special cases
where there exists single agent layers. For individual rationality and
budget balanced, it is obviously maintains in special cases. The crit-
ical part is for strongly propagation incentive compatibility.

For strongly PIC, with distribution algorithm for single agent
layer, we must guarantee that the rewards taken from the parent
agents should be less than the rewards taken if they choose not to
propagate.
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There are two cases for single agent layers as described above.
First, there are nonempty leaf agents set subpgraph with previous lay-
ers. In this case, these leaf agents have the same role as normal agents
in upper layer in distribution algorithms. Thus from Theorem 2 we
know the strongly PIC still holds.

In the second case, we have no such leaf agents and have to get
the reward from ancestor agents. Taking Figure: 3 as an example, the
latter agent may seek back to upward layers for the reward. Thus we
need to consider if the propagation of the upper layer node which
offers reward is truthful or not, in this case, the propagation from
node A, B or D to C. Because each agent in a segment of a single
chain may take reward from the upper layer node, we can derive the
following statement:

oo
(Reward taken with propagation) < Z @ . by < —

= 2'm m
where m again is the number of agents who are the original ancestors
of the single chain. For example, in Figure: 3, the original ancestors
of the single chain C-E are A, B and D, so m = 3 in this case.
In all circumstances m should always be bigger than one because
the termination condition in the mechanism is to find an ancestor
node with more than one parent agent, and the ancestor node’s parent
number is m. Hence, we have:

200 - by
m

(Reward taken without propagation) > « - by >

This indicates that propagation will help the node to lose less re-
ward.

Finally, we can prove that it is strongly PIC in both special cases.
The key idea is to use a prisoners’ dilemma as shown in Table 1,
where € > 1 and r» > 0. Each cell in the table represents the reward
of the agent’s action, where the first entry represents the reward of A
and the second represents the reward of B. Along with the property
of strongly PIC in budget distribution scheme with distribution algo-
rithm, we can prove that the version with algorithm for single agent
layer is still strongly PIC.

A B Propagate Not Propagate
Propagate (—a-bafe,—a-bp/e) (+r,—a - bp)
Not propagate (—a- by, +1) 0,0

Table 1. Reward for Prisoners’ Dilemma in our mechanism

5.2 Time Efficiency

At last, we consider the case what will happen in practice where
we introduce a new concept of the time vector # here. We discuss
a new property called time efficiency. Participants should be willing
to propagate as soon as possible in the mechanism; otherwise there
may exist a deadlock in propagation. For example, if the mechanism
is designed to make every node willing to propagate after a first prop-
agation led by another node, none of the nodes will be willing to
propagate first. This may be disastrous to the real-world applications
of our mechanisms. Thus we define the property of time efficiency.

Definition 6. A mechanism M is time efficient if and only if for any
G = (N, E) € G, the budget B € Ry and Vi € N \ {S}, for all

7 € {j|(4,§) € E}, changing t}; > t; will result in
M(G7 B7t)7« > M(G7B7t/)l

Proposition 4. The budget distribution scheme that uses distribution
algorithm and its variant for single agent layer is time efficient if we
choose the agent with the order of their arriving time in the outer
loop.

Proof. Consider the reward of node ¢, which has two parts V;, and
Vi, thus r; = 1.V}, +14.V},. Let the reward of propagation obtained by
node i to be r;. If 7 propagates at time t, ¢.V}, = o - Zjer.\/,J(t),
where J represents all the nodes that will be taken reward from be-
cause of ¢’s propagation. Now assume that ¢ choose to propagate later
at ', if there are another g; propagations during the time interval
[t, '] that will take reward from node j where g; > 0, j.V, will be
j.Vb(tl) =(1- a)gij.Vb(t). So for all j, we have j.Vb(t/) < j.Vb(t),
and we have:

STV =35 fort <t
J J

where > V](bt ) is decreasing in terms of t. Therefore spreading im-
mediately is the dominant strategy. O

6 Conclusions

In this paper, we formalized an information propagation game on
a network where a sponsor is willing to pay a fixed reward to in-
centivize agents to propagate information for her. The model has
many promising applications where social networks are well en-
gaged, such as viral marketing and questionnaire survey. We pro-
posed a novel scheme of the reward sharing mechanism, which is
propagation incentive compatible and budget balanced. We also of-
fered an instance of our scheme where strongly PIC, BB and time
efficiency are achieved.

There are also several aspects that deserve further investigation.
For example, the Sybil attack is a common issue in real-world appli-
cations based on social networks. It is quite challenging to achieve
both PIC and Sybil proof in our settings. One other possible improve-
ment is to extend our solutions to the settings of resource or task allo-
cation, where we have the dimension of competition for the resource
or task.
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