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Abstract. Knowledge graph completion is an important task that
aims to predict the missing relational link between entities. Knowl-
edge graph embedding methods perform this task by representing
entities and relations as embedding vectors and modeling their in-
teractions to compute the matching score of each triple. Previous
work has usually treated each embedding as a whole and has modeled
the interactions between these whole embeddings, potentially mak-
ing the model excessively expensive or requiring specially designed
interaction mechanisms. In this work, we propose the multi-partition
embedding interaction (MEI) model with block term format to sys-
tematically address this problem. MEI divides each embedding into a
multi-partition vector to efficiently restrict the interactions. Each lo-
cal interaction is modeled with the Tucker tensor format and the full
interaction is modeled with the block term tensor format, enabling
MEI to control the trade-off between expressiveness and computa-
tional cost, learn the interaction mechanisms from data automati-
cally, and achieve state-of-the-art performance on the link predic-
tion task. In addition, we theoretically study the parameter efficiency
problem and derive a simple empirically verified criterion for op-
timal parameter trade-off. We also apply the framework of MEI to
provide a new generalized explanation for several specially designed
interaction mechanisms in previous models.

1 Introduction
Knowledge graphs are a popular data format for representing knowl-
edge about entities and their relationships as a collection of triples,
with each triple (h, t, r) denoting the fact that relation r exists be-
tween head entity h and tail entity t. Large real-world knowledge
graphs, such as Freebase [3] and Wikidata [27] have found impor-
tant applications in many artificial intelligence tasks, such as ques-
tion answering, semantic search, and recommender systems, but they
are usually incomplete. Knowledge graph completion, or link pre-
diction, is a task that aims to predict new triples based on existing
triples. Knowledge graph embedding methods perform this task by
representing entities and relations as embeddings and modeling their
interactions to compute a score that predicts the existence of each
triple. These models also provide the embeddings as a useful repre-
sentation of the whole knowledge graph that may enable new appli-
cations of knowledge graphs in artificial intelligence tasks [24].

In a knowledge graph embedding model, the matching score is
computed based on the interaction between the entries of embed-
dings. The interaction mechanism is the function that computes the
score from the embedding entries. The interaction pattern specifies
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which entries interact with each other and how; thus, it can define the
interaction mechanism in a simple manner. For example, in DistMult
[29], the interaction pattern is the diagonal matching matrix between
head and tail embedding vectors, as detailed in Section 2.

Most previous works treat embedding as a whole and model the in-
teraction between the whole embeddings. For example, the bilinear
model RESCAL [19] and the recent model TuckER [1] can model
very general interactions between every entry of the embeddings, but
they cannot scale to large embedding size. One popular approach to
this problem is to design special interaction mechanisms to restrict
the interactions between only a few entries, for example, DistMult
[29] and recent state-of-the-art models HolE [18], ComplEx [25], and
SimplE [11, 14]. However, these interaction mechanisms are specifi-
cally designed and fixed, which may pose questions about optimality
or extensibility on a specific knowledge graph.

In this work, we approach the problem from a different angle. We
explicitly model the internal structure of the embedding by dividing
it into multiple partitions, enabling us to restrict the interactions in
a triple to only entries in the corresponding embedding partitions of
head, tail, and relation. The local interaction in each partition is mod-
eled with the classic Tucker format [26] to learn the most general lin-
ear interaction mechanisms, and the score of the full model is the sum
score of all local interactions, which can be viewed as the block term
format [5] in tensor calculus. The result is a multi-partition embed-
ding interaction (MEI) model with block term format that provides
a systematic framework to control the trade-off between expressive-
ness and computational cost through the partition size, to learn the
interaction mechanisms from data automatically through the local
Tucker core tensors, and to achieve state-of-the-art performance on
the link prediction task using popular benchmarks.

In general, our contributions include the following.

• We introduce a new approach to knowledge graph embedding, the
multi-partition embedding interaction, which models the internal
structure of the embeddings and systematically controls the trade-
off between expressiveness and computational cost.

• In this approach, we propose the standard multi-partition em-
bedding interaction (MEI) model with block term format, which
learns the interaction mechanism from data automatically through
the Tucker core tensors.

• We theoretically analyze the framework of MEI and apply it to
provide intuitive explanations for the specially designed interac-
tion mechanisms in several previous models. In addition, we are
the first to formally study the parameter efficiency problem and
derive a simple optimal trade-off criterion for MEI.

• We empirically show that MEI is efficient and can achieve state-
of-the-art results on link prediction using popular benchmarks.
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2 Related Work
In this section, we introduce the notations and review the related
knowledge graph embedding models.

2.1 Background
In general, we denote scalars by normal lower case such as a, vectors
by bold lower case such as a, matrices by bold upper case serif such
asA, and tensors by bold upper case sans serif such as A.

A knowledge graph is a collection of triples D, with each triple
denoted as a tuple (h, t, r), such as (UserA, Movie1, Like), where
h and t are head and tail entities in the entity set E and r be-
longs to the relation set R. A knowledge graph can be modeled as
a labeled-directed multigraph, where the nodes are entities and each
edge corresponds to a triple, with the relation being the edge label.
A knowledge graph can also be represented by a third-order binary
data tensor G ∈ {0, 1}|E|×|E|×|R|, where each entry ghtr = 1 ⇔
(h, t, r) exists in D.

Knowledge graph embedding models usually take a triple (h, t, r)
as input and then represent it as embeddings and model their inter-
actions to compute a matching score S(h, t, r) that predicts the exis-
tence of that triple.

2.2 Knowledge Graph Embedding Methods
Knowledge graph embedding is an active research topic with many
different methods. Based on the interaction mechanisms, they can be
roughly divided into three main categories: (1) semantic matching
models are based on similarity measures between the head and tail
embedding vectors, (2) neural-network-based models are based on
neural networks as universal approximators to compute the matching
score, and (3) translation-based models are based on the geometric
view of relation embeddings as translation vectors [23, 28].

Semantic Matching Models RESCAL [19] is a general model
that uses a bilinear map to model the interactions between the whole
head and tail entity embedding vectors, with the relation embedding
being used as the matching matrix, such that

S(h, t, r) = h>Mrt, (1)

where h, t ∈ RD are the embedding vectors of h and t, respectively,
and Mr ∈ RD×D is the relation embedding matrix of r, with D
being the embedding size. However, the matrix Mr grows quadrat-
ically with embedding size, making the model expensive and prone
to overfitting. TuckER [1] is a recent model extending RESCAL by
using the Tucker format [26]. However, it also models the interac-
tions between the whole head, tail, and relation embedding vectors,
making the core tensor in the Tucker format grow cubically with the
embedding size, and also quickly becomes expensive.

One approach to reducing computational cost is to design special
interaction mechanisms that restrict the interactions between a few
entries of the embeddings. For example, DistMult [29] is a simpli-
fication of RESCAL in which the relation embedding is a diagonal
matrix, equivalently a vector r ∈ RD , such that Mr = diag(r). Its
score function can also be written as a trilinear product

S(h, t, r) = 〈h, t, r〉 =
∑

i hitiri, (2)

which is an extension of the dot product to three vectors.

DistMult is fast but restrictive and can only model symmetric re-
lations. Most recent models focus on designing interaction mech-
anisms that aim to be richer than DistMult while achieving a low
computational cost. For example, HolE [18] uses a circular corre-
lation between the head and tail embedding vectors; ComplEx [25]
uses complex-valued embedding vectors,h, t, r ∈ CD , and a special
complex-valued vector trilinear product; and SimplE [11, 14] repre-
sents each entity as two role-based embedding vectors and augments
an inverse relation embedding vector. In our previous work [23], we
analyzed knowledge graph embedding methods from the perspective
of a weighted sum of trilinear products to propose a more advanced
Quaternion-based interaction mechanism and showed its promising
results, which were later confirmed in a concurrent work [30]. How-
ever, these interaction mechanisms are specially designed and fixed,
potentially causing them to be suboptimal or difficult to extend.

In this work, we propose a multi-partition embedding interaction
framework to automatically learn the interaction mechanism and sys-
tematically control the trade-off between expressiveness and compu-
tational cost.

Semantic matching models are related to tensor decomposition
methods where the embedding model can employ a standard tensor
representation format in tensor calculus to represent the data tensor,
such as the CP tensor rank format [9], Tucker format [26], and block
term format [5]. However, when applied to knowledge graph embed-
ding, there are some differences, such as changing from continuous
tensor to binary tensor, relaxation of constraints for data analysis,
and different solvers [13]. We analyze the connections to the related
tensor decomposition methods in Section 3.2.

Neural-Network-based Models These models aim to learn a neu-
ral network, to automatically model the interaction. Recent models
using convolutional neural networks such as ConvE [6] can achieve
good results by sharing the convolution weights. However, they are
restricted by the input format to the neural network [6], and the oper-
ations are generally less expressive than direct interactions between
the entries of the embedding vectors [18]. We will empirically com-
pare with them.

Translation-based Models The main advantages of these mod-
els are their simple and intuitive mechanism with the relation em-
beddings as the translation vectors [4]. However, it has been shown
that they have limitations in expressiveness [11]. The recent model
TorusE [8] improves the translation-based models by embedding
in the compact torus space instead of real-valued vector space and
achieves good results. We will also empirically compare with them.

3 Multi-Partition Embedding Interaction with
Block Term Format

In this section, we motivate, formulate, and analyze the MEI model,
illustrated in Fig. 1. We construct MEI with two main concepts:

1. Multi-Partition Embedding Interaction: Each embedding vector
v ∈ RD is divided into K partitions, and the interactions in each
triple are restricted to only entries in the corresponding partitions
vk:. For simplicity, we assume all partitions have the same size
C, then v can be denoted conveniently as a matrix V ∈ RK×C ,
where D = KC, each row vector vk: is called a partition, and
each column vector v:c is called a component.

2. Modeling the Interaction with Block Term Format: The local inter-
action is modeled with the Tucker format [26], which is the most

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



K

Ce=3 Ce=3 Cr=3

hk:

tk:
h t r

rk:

Local	score	at	k	=	1

Local	score	at	k	=	K

hk: tk:

MW,r,khk: tk:
Full	MEI	score

Tucker	format Parameterized	bilinear	format Neural	network	format
Wk

Multi-partition	embedding

×1

×2 ×3

Local	MEI	score

						MW,r,k 
= Wk ×3 rk:

Figure 1. MEI architecture: multi-partition embedding vectors that interact only between the corresponding partitions. This figure illustrates a MEI model
with block term format in three different views for the local-partition interaction: Tucker format, parameterized bilinear format, and neural network format.

general linear model that computes the weighted sum of all entry
product combinations in the interacting partitions. The block term
format [5] emerges from the sum score of all local interactions.

Note that the concept of multi-partition embedding interaction is
highly general and intuitive, as discussed in Section 3.2.2. In this
paper, we specifically adopt the Tucker and block term tensor formats
to realize a simple yet general standard MEI model.

3.1 The Model

In each triple (h, t, r), the entities and relations embedding vec-
tors h, t ∈ RDe , and r ∈ RDr are divided into multiple parti-
tions conveniently denoted as the multi-partition embedding matri-
ces H,T ∈ RK×Ce , and R ∈ RK×Cr , respectively. Note that the
embedding sizes of entity and relation are not necessarily the same.

Formally, the score function of MEI is defined as the sum score of
K local interactions, with each local interaction being modeled by
the Tucker format,

S(h, t, r;θ) =

K∑
k=1

(Wk×̄1hk:×̄2tk:×̄3rk:) , (3)

where θ denotes all parameters in the model; Wk ∈ RCe×Ce×Cr

is the global core tensor at partition k; hk:, tk:, and rk: are the cor-
responding partitions k; and ×̄n denotes the n-mode tensor product
with a vector [13], which contracts the modes of the resulting tensor
to make the final result a scalar. The tensor product can be expanded
as the following weighted sum

S(h, t, r;θ) =

K∑
k=1

(
Ce∑
x=1

Ce∑
y=1

Cr∑
z=1

wxyz,khkxtkyrkz

)
, (4)

where wxyz,k is a scalar element of the core tensor Wk and hkx, tky ,
and rkz denote the entries in the local partitions k.

3.2 Theoretical Analysis

Let us discuss the theoretical foundations of MEI, draw connections
to previous models, and study the optimal parameter efficiency.

3.2.1 Local Interaction Modeling

We first focus on analyzing the local interactions in MEI, called local
MEI, which are the building blocks of the full MEI model.

Tucker Format and Block Term Format We choose to model
the local interaction at each partition by the Tucker format [26] of
third-order tensor

Sk(h, t, r;θ) = Wk×̄1hk:×̄2tk:×̄3rk: (5)

because the Tucker format provides the most general linear interac-
tion mechanism between the embedding vectors, and its core tensor
totally defines the interaction mechanism. With local interactions in
Tucker format, the full MEI model computed by summing the scores
of all local MEI models is in block term format [5]. Both Tucker
format and block term format are standard representation formats in
tensor calculus. When applied in knowledge graph embedding, there
are some important modifications, such as the data tensor contains
binary instead of continuous values, which change the data distri-
bution assumptions, guarantees, constraints, and the solvers. In our
work, we express the model as a neural network and use deep learn-
ing techniques to learn its parameters as detailed below.

Recently, the Tucker format was independently used in knowledge
graph embedding for modeling the interactions on the embedding
vector as a whole [1], while we only use the Tucker format for model-
ing the local interactions in our model. Thus, their model corresponds
to a vanilla Tucker model, which is the special case of MEI when
K = 1. Note that this vanilla Tucker model suffers from the scal-
ability problem when the embedding size increases, whereas MEI
essentially solves this problem. Moreover, MEI provides a general
framework to reason about knowledge graph embedding methods, as
discussed in Section 3.2.2.

Parameterized Bilinear Format To better understand how the
core tensor defines the interaction mechanism in local MEI, we can
view the local interaction in Eq. 5 as a parameterized bilinear model,
by rewriting the tensor products as

Sk(h, t, r;θ) = Wk×̄1hk:×̄2tk:×̄3rk:

= (Wk×̄3rk:)×̄1hk:×̄2tk: (6)

= h>k:(Wk×̄3rk:)tk: (7)

= h>k:MW,r,ktk:, (8)

where MW,r,k ∈ RCe×Ce denotes the matching matrix of the bilin-
ear model. Note that MW,r,k defines the interaction patterns of the
bilinear map between hk: and tk:, but itself is defined by Wk×̄3rk:.
Specifically, each element mW,r,kxy of the matching matrixMW,r,k

is a weighted sum of the entries in rk:, weighted by the mode-3
tube vector wxy:,k of Wk. Therefore, the core tensor Wk defines
the interaction patterns or the interaction mechanisms at partition k.
Compared with the standard bilinear model RESCAL, local MEI is
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more flexible and efficient because its matching matrices are gener-
ated from the relation embedding vectors. Moreover, the global core
tensors enable information sharing between all entities and relations,
which is particularly useful when the data are sparse.

Dynamic Neural Network Format For parameter learning, we
express the Tucker format as a neural network to employ standard
deep learning techniques such as dropout [20] and batch normal-
ization [10] to reduce overfitting and improve the convergence rate.
Specifically, Eq. 8 can be seen as a linear neural network, where
hk: is the input of the network, MW,r,k is the weight of the hidden
layer, h>k:MW,r,k is the output of the hidden layer, tk: is the weight
of the output neuron, and Sk is the output of the network. Note that
the weight of the hidden layer, MW,r,k, can be seen as the output of
another neural network, where rk: is the input and the core tensor
Wk is the weight. Under this format, there are four layers to apply
dropout and batch normalization: rk:,MW,r,k, hk:, and h>k:MW,r,k,
which are tuned as hyperparameters.

3.2.2 Multi-Partition Embedding Interaction

There are several reasons why Multi-Partition Interaction is superior
and preferable to Local-Partition Interaction. Here, we present some
interpretations of the full MEI model to explain its properties.

Sparse Modeling The full MEI model can be seen as a special
form of sparse parameterized bilinear models. The matching ma-
trix of the full MEI model is constructed by the direct sum of the
matching matrices of all local MEI models, and the result is a sparse
parameterized block-diagonal matrix

M
(s)
W,r =

MW,r,1 0 · · · 0
0 MW,r,2 · · · 0
...

...
. . .

...
0 0 · · · MW,r,K

 . (9)

The score function of the full MEI model can then be written as a
bilinear model

S(h, t, r;θ) = h>M
(s)
W,rt, (10)

where h, t, and r are the original embedding vectors before dividing
intoK partitions. Similarly, we can view MEI in the form of a special
sparse Tucker model, where the sparse core tensor W(s) of MEI is
constructed by the direct sum of theK local core tensors W1, . . .WK

and the score function is written as

S(h, t, r;θ) = W(s)×̄1h×̄2t×̄3r. (11)

This view provides a concrete explanation for the interaction mech-
anism in the MEI model, as it can be seen as imposing a sparsity
constraint on the core tensor, or equivalently the matching matrices,
to make the model efficient.

Multiple Interactions and the Ensemble Boosting Effect An in-
tuitive explanation of MEI is that it models multiple relatively inde-
pendent interactions between the head and tail entities in a knowl-
edge graph. These interactions correspond to the separate local parti-
tions of the embedding vectors and together define the final matching
score. Technically, MEI forms an ensemble of K local interactions
by summing their scores, as seen in Eq. 3, similarly to ensemble av-
eraging. However, we argue that MEI works as an ensemble boosting
model in a similar manner to gradient boosting methods because the

summing operation is done in training and all local MEI models are
optimized together. This view intuitively explains the success of MEI
when each local interaction is very simple, such as when the parti-
tion size is only 1 or 2. It also suggests the empirical benefit of the
ensemble boosting effect in MEI withK > 1 over the vanilla Tucker.

Vector-of-Vectors Embedding and the Meta-Dimensional
Transforming–Matching Framework An important insight of
MEI is that the embedding can be seen as a vector of vectors, which
means a meta-vector where each meta-dimension corresponding to
a local partition contains a vector entry instead of a scalar entry.
Compared to scalar entry, a vector entry contains more information
and allows more expressive yet simple transformation on each entry.
By using this notion of vector-of-vectors embedding, we can view
MEI as a transforming–matching framework, where the model sim-
ply transforms each meta-dimension entry of head embedding then
matches it with the corresponding meta-dimension entry of tail em-
bedding. This framework can serve as a novel general design pattern
of knowledge graph embedding methods, as we show in Section 3.2.3
how it can explain the previous specially designed models.

3.2.3 Connections to Previous Specially Designed
Interaction Mechanisms

There exist a few generalizations of previous embedding models that
include DistMult, ComplEx, and SimplE; such as [11] explaining
them using a bilinear model, [1] using a vanilla Tucker model, and
[23] using a weighted sum of trilinear products. However, these gen-
eralizations consider the embedding as a whole, here we present a
new generalization that considers the embedding as a multi-partition
vector to provide a more intuitive explanation of these models and
their specially designed interaction mechanisms.

We first construct the multi-partition embedding vector for these
models. DistMult is trivial with C = 1 and D = K. For ComplEx
and SimplE, C = 2 and D = 2K. In ComplEx, each partition k
consists of the real and imaginary components of the entry k in a
ComplEx embedding vector. In SimplE, each partition k consists of
the two entries k in the two role-based embedding vectors. With this
correspondence, these previous models can be written in the sparse
bilinear model form of MEI in Eq. 9 and Eq. 10. For DistMult, each
matching block MW,r,k is just a scalar entry of the relation embed-
ding vector. More interestingly, for ComplEx, each matching block is
a 2×2 matrix with the rotation pattern, parameterized by the relation
embedding vector,

MW,r,k =
[
Re(rk) −Im(rk)
Im(rk) Re(rk)

]
.

For SimplE, each matching block is a 2×2 matrix with the reflection
pattern, parameterized by the relation embedding vector,

MW,r,k =
[

0 rk
r(a)

k 0

]
,

where r(a) is the augmented inverse relation embedding vector. CP
[9] is similar to SimplE, but missing r(a), making the matching ma-
trix lose the geometrical interpretation, which is probably the reason
why CP does not generalize well to new data, as reported in [23].

The interaction mechanisms of these models are totally charac-
terized by the simple and fixed patterns in their matching blocks
MW,r,k, which also specify the interaction restriction between the
entries. In MEI, the interaction restriction can be varied by setting
the partition size, and more importantly, the interaction patterns can
be automatically learned from data.
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3.2.4 Computational Analysis

Complexity For simplicity, we consider the same embedding size
D = KC for both entity and relation. The parameters in a MEI
model include the embedding vectors of all entities, all relations, and
the core tensors. On a knowledge graph with |E| entities and |R|
relations, the number of parameters in MEI is O(|E|D + |R|D +
KC3) = O(|E|D + |R|D +D3/K2). In this paper’s experiments,
we restrict them to the simplified case of one single shared-core ten-
sor for all K partitions, so the number of parameters in this case is
O(|E|D + |R|D + C3) = O(|E|D + |R|D +D3/K3).

We note a few interesting observations. First, the core tensor size
of the vanilla Tucker (when K = 1) is much larger than the sparse
core of MEI, up to K2 times in non-shared-core MEI and K3 times
in shared-core MEI. These factors can become crucial in practice; for
example, with D = 1000 and K = 10, C = 100, the vanilla Tucker
core has 1 billion parameters, making it infeasible on most GPUs,
while shared-core MEI has only 1 million parameters in the core ten-
sor. Second, the partition size C can be set independently from the
embedding size D; thus, the core tensor sizes can be considered as
growing linearly with K in the former case of non-shared-core MEI,
and as constant in the latter case of shared-core MEI.

Parameter Efficiency By using Tucker format for local interac-
tions, MEI with block term format is fully expressive. However, in
practice, we usually do not care about the parameter upper bound for
fully expressiveness of the model. The more interesting property of
the model is its ability to efficiently capture complex patterns in the
knowledge graph. In this regard, we define the criteria to measure
the expressiveness and parameter efficiency of the model. To the best
of our knowledge, we are the first to formally study the parameter
efficiency in knowledge graph embedding.

From the interpretation of MEI as a transforming–matching frame-
work in Section 3.2.2, where the model first transforms each head
embedding partition then simply matches it with the corresponding
tail embedding partition, we see that the ability to capture complex
patterns depends totally on the transformation system.

Definition 1. (Expressiveness) The expressiveness of the MEI
model is measured by the degrees of freedom of the model provided
by its transformation system.

For example, a linear transformation in a 3-dimensional space has
9 degrees of freedom: 3 for translation, 3 for rotation, and 3 for scal-
ing. For a MEI model with two partitions of size C = 3, the sum
score of two local interactions has 9 + 9 = 18 degrees of freedom.

As mentioned earlier, the vanilla Tucker model can become ex-
cessively expensive when the embedding size is large, in which case,
it is necessary to use a MEI model with a smaller partition size. To
compare fairly across models, we define the parameter efficiency.

Definition 2. (Parameter efficiency) The parameter efficiency of a
model is measured by the ratio of its expressiveness and the number
of parameters.

The size of a MEI model depends on the number of partitions and
the partition size. Changing any of them affects the parameter count
of the model, its expressiveness, and its parameter efficiency. The ef-
fect is rather complicated; when the partition size is small, the expres-
siveness and model size depend mainly on the number of entities and
relations; however, when the partition size becomes large enough, the
effects of the core tensor outweigh that of the embeddings. Interest-
ingly, we show that the optimal partition size can be determined on
any dataset with mild assumptions as stated in the following theorem.

Theorem 1. (Optimal parameter efficiency) Given any MEI model
that represents an arbitrary knowledge graph over |E| entities and
|R| relations, it is optimal in terms of maximizing the parameter ef-
ficiency P if and only if the partition size

C = min(b
√
|E|+ |R|e

P
, D),

where b·eP denotes a special rounding function that selects the floor
or ceiling values depending on where P evaluates to a larger value.

Proof. Consider an arbitrary knowledge graph over |E| entities and
|R| relations, where |E|, |R| ∈ Z+ fixed for this knowledge graph,
and an arbitrary MEI model representing the given knowledge graph
with partition size C, number of partitions K, and embedding size
D = KC, where C,K,D ∈ Z+. The total parameter count is

T = |E|D + |R|D +KC3 = |E|D + |R|D +DC2.

There are |R| distinct matching matrices corresponding to the num-
ber of relations, each of which include K local interactions, so the
total expressiveness of the model is

E = |R|KC2 = |R|DC.

The parameter efficiency of the model as defined in Definition 2 is
P = E

T
. For simplicity, consider its inverse,

P−1 = T
E

= |E|+|R|
|R|C + C

|R|

and assume its continuous extension by interpolation3. Noting that
P−1 only depends on C, we can take its first derivative w.r.t. C as

d
dC

[P−1] = − |E|+|R||R|C2 + 1
|R| ,

which evaluates to 0 when C =
√
|E|+ |R|. The second derivative

of P−1 w.r.t. C is

d2

dC2 [P−1] = 2 |E|+|R||R|C3 ,

which is positive everywhere.
(⇐) By the derivative tests,C =

√
|E|+ |R| is the global maximum

of the unimodal parameter efficiency function P ; thus, the optimal
partition sizes must be its floor or ceiling values, which are selected
depending on P evaluations, that is, C = b

√
|E|+ |R|e

P
. When

the embedding size D < b
√
|E|+ |R|e

P
, we use the largest possi-

ble partition size; thus, the optimal C = min(b
√
|E|+ |R|e

P
, D),

as required.
(⇒) By Fermat’s theorem on stationary points, all local maxima oc-
cur at critical points. C =

√
|E|+ |R| is the only feasible critical

point; thus,C = min(b
√
|E|+ |R|e

P
, D) must be the only possible

optimal partition sizes, as required.

Theorem 1 predicts that on WN18 and WN18RR with ≈ 40, 000
entities and relations, the optimal partition size would be ≈ 200.
On FB15K and FB15K-237 with ≈ 15, 000 entities and relations,
the optimal partition size would be ≈ 122. When C increases, P in-
creases and is maximized at the optimal partition sizes and then starts
decreasing. Thus, when the computational budget is high enough for
a large embedding size D = KC, it is more parameter efficient to
keep the partition size C close to the optimal value and increase the
number of partitionsK. These predictions are empirically verified in
Section 4.2. Note that this criterion only provides a general guideline

3 Not to be confused with analytic continuation of analytic functions.
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for choosing model size, but there are other detailed factors that can
affect the model performance in practice, such as data sparsity, data
distribution, and the ensemble boosting effect. When the dataset is
very large, sparse, and unevenly distributed, it may be preferable to
restrict C and try to maximize the empirical benefit of the ensemble
boosting effect with a large number K of small local MEI models.

3.3 Learning
The learning problem in knowledge graph embedding methods can
be modeled as the binary classification of every triple as existence
and nonexistence. Because the number of nonexistent triples w.r.t. a
knowledge graph is usually very large, we only sample a subset of
them by the negative sampling technique [16], which replaces the h
or t entities in each existent triple (h, t, r) with other random entities
to obtain the locally related nonexistent triples (h′, t, r) and (h, t′, r)
[4]. The set of existent triples is called the true data D, and the set of
nonexistent triples is called the negative sampled data D′.

To construct the loss function, we define a Bernoulli distribution
over each entry of the binary data tensor G to model the existence
probability of each triple as p̂htr = ghtr . The predicted probability
of the model is computed by using the standard logistic function on
the matching score as phtr = σ(S(h, t, r;θ)). We can then learn
both the embeddings and the core tensor from data by minimizing
the cross-entropy loss:

L(D,D′;θ) = −
∑

(h,t,r)∈D∪D′

(
p̂htr log phtr

+(1− p̂htr) log(1− phtr)
)
,

(12)

where p̂ = 1 in D and 0 in D′.

4 Experiments
4.1 Experimental Settings
Datasets We use four popular benchmark datasets for link predic-
tion, as shown in Table 1. WN18 [4] and WN18RR [6] are subsets of
WordNet [17], which contains lexical relationships between words.
FB15K [4] and FB15K-237 [22] are subsets of Freebase [3], which
contains general facts. WN18 and FB15K are more popular, whereas
WN18RR and FB15K-237 are recently built and more competitive.

Table 1. Datasets statistics.

Dataset |E| |R| Train Valid Test
WN18 40,943 18 141,442 5,000 5,000
FB15K 14,951 1,345 483,142 50,000 59,071
WN18RR 40,943 11 86,835 3,034 3,134
FB15K-237 14,541 237 272,115 17,535 20,466

Evaluations We evaluate and analyze MEI on the link prediction
task [4]. In this task, for each true triple (h, t, r) in the test set, we
replace h and t by every other entity to generate corrupted triples
(h′, t, r) and (h, t′, r), respectively. The goal of the model is to rank
the true triple (h, t, r) before the corrupted triples based on the score
S. We compute popular evaluation metrics including MRR (mean
reciprocal rank, which is robust to outlier rankings) and H@k for
k ∈ {1, 3, 10} (Hits at k, which is how many true triples are cor-
rectly ranked in the top k) [25]. The higher MRR and H@k are, the

better the model performs. To avoid false-negative error, i.e., some
corrupted triples are actually existent, we follow the protocols used
in other works for filtered metrics [4]. In this protocol, all existent
triples in the training, validation, and test sets are removed from the
corrupted triples set before computing the rank of the true triple.

Baselines To evaluate the prediction on the optimal parame-
ter efficiency, we compare MEI1×200 (vanilla Tucker model) and
MEI3×100. The aim is to show that the model with optimal parameter
efficiency can achieve better results with even fewer parameters. We
also evaluate MEI against several strong baselines including classic
models such as TransE, RESCAL, DistMult, and recent state-of-the-
art models such as ComplEx, SimplE, and ConvE. We also com-
pare MEI with TorusE that uses larger embedding size, ComplEx at
K = 400 that was retuned with reciprocal relation and full softmax
loss, and RotatE without the adversarial sampling technique as this
technique is not subjected to a specific model.

Implementations We trained MEI using mini-batch stochastic
gradient descent with Adam optimizer [12]. We followed the 1-N
scoring procedure in [6] for negative sampling of (h, t, r), where
negative samples are reused multiple times for computation effi-
ciency and the number of negative samples is different for each triple.
The results of MEI1×200 are reproduced from the vanilla Tucker
model in [1]; note that the relation embedding size Dr = 30 on
WN18 and WN18RR only. All hyperparameters of MEI3×100 are
tuned by random search [2], including batch size, learning rate, decay
rate, batch normalization, and dropout rates, which we will publish
together with the code. Note that in these experiments, we restrict
them to the simplified case of one single shared-core tensor for all
K partitions, as an analogy to single interaction patterns in previous
specially designed models.

4.2 Main Results
Link Prediction Performance Tables 2 and 3 show the main re-

sults. In general, MEI strongly outperforms the baselines. MEI and
ConvE both aim to learn the interaction between the embedding
vectors, and interestingly, the multi-partition embedding interaction
used in MEI can achieve better results than the convolutional neural
networks used in ConvE. MEI also outperforms the general bilin-
ear model RESCAL and other recent state-of-the-art bilinear models
DistMult, ComplEx, and SimplE, which is explained by the fact that
they are special cases of MEI with specific interaction patterns, as
shown in Section 3.2. Compared with TorusE, the results show that
an expressive interaction mechanism can help a smaller model out-
perform a much larger model. There are some recent techniques that
help to improve the performance of old models, but we show that
MEI can still outperform retuned ComplEx and RotatE reported with
comparable settings. Moreover, note that MEI is highly general and
potentially preferable for sophisticated datasets.

Optimal Parameter Efficiency Empirical results agree very well
with the predictions of Theorem 1 about the optimal parameter ef-
ficiency. On WN18 and WN18RR, MEI1×200 consistently outper-
forms MEI3×100 using fewer parameters. On FB15K and FB15K-
237, the model sizes are reversed due to different numbers of en-
tities and relations, with MEI1×200 having two times more param-
eters than MEI3×100. On FB15K, as predicted, MEI3×100 consis-
tently outperforms MEI1×200. On FB15K-237, MEI3×100 outper-
forms MEI1×200 most of the time, although not by a large margin,
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Table 2. Link prediction results on WN18 and FB15K. † are reported in [18], ‡ are reported in [25], other results are reported in their papers. Best results are
in bold, second-best results are underlined.

WN18 FB15K

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
TransE [4] † 0.495 0.113 0.888 0.943 0.463 0.297 0.578 0.749
ConvE [6] 0.943 0.935 0.946 0.956 0.657 0.558 0.723 0.831
RESCAL [19] † 0.890 0.842 0.904 0.928 0.354 0.235 0.409 0.587
DistMult [29] ‡ 0.822 0.728 0.914 0.936 0.654 0.546 0.733 0.824
ComplEx [25] 0.941 0.936 0.945 0.947 0.692 0.599 0.759 0.840
SimplE [11] 0.942 0.939 0.944 0.947 0.727 0.660 0.773 0.838
TorusE [8] 0.947 0.943 0.950 0.954 0.733 0.674 0.771 0.832
ComplEx new tuning [15] – – – – 0.790 – – 0.872
MEI1×200 0.953 0.949 0.955 0.958 0.795 0.741 0.833 0.892
MEI3×100 0.950 0.946 0.952 0.957 0.806 0.754 0.843 0.893

Table 3. Link prediction results on WN18RR and FB15K-237. † are reported in [7], ‡ are reported in [6], other results are reported in their papers. Best
results are in bold, second-best results are underlined.

WN18RR FB15K-237

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
TransE [4] † 0.182 0.027 0.295 0.444 0.257 0.174 0.284 0.420
ConvE [6] 0.43 0.40 0.44 0.52 0.325 0.237 0.356 0.501
DistMult [29] ‡ 0.43 0.39 0.44 0.49 0.241 0.155 0.263 0.419
ComplEx [25] ‡ 0.44 0.41 0.46 0.51 0.247 0.158 0.275 0.428
TorusE [7] 0.452 0.422 0.464 0.512 0.305 0.217 0.335 0.484
RotatE w/o adv [21] – – – – 0.297 0.205 0.328 0.480
MEI1×200 0.470 0.443 0.482 0.526 0.358 0.266 0.394 0.544
MEI3×100 0.458 0.426 0.470 0.521 0.359 0.266 0.395 0.544

but uses only half the number of parameters. These results are partic-
ularly interesting because they suggest that when the embedding size
D is large enough, MEI with K > 1 can both scale to larger embed-
ding sizes and have better results than MEI with K = 1 partition.

4.3 Analyses

Parameter Scale Comparison Table 4 compares the performance
of MEI with that of ConvE [6], which aims to learn interaction mech-
anisms by a neural network, at different parameter scales. The re-
sults show that MEI achieves better results than ConvE at the same
parameter count. Moreover, the small MEI model at 0.95M param-
eters remarkably outperforms the other model at 1.89M parameters.
These results suggest that MEI is an effective framework to utilize
the parameters of the model and to learn the interaction mechanisms
automatically for knowledge graph embedding.

Table 4. Parameter scaling on FB15K-237.

Param. Emb. H@
Model count size MRR 1 3 10
ConvE 1.89M 96 .32 .23 .35 .49
ConvE 0.95M 54 .30 .22 .33 .46
MEI 1.89M 3×40 .34 .25 .38 .53
MEI 0.95M 3×20 .33 .24 .36 .51

Parameter Trade-off Analysis There are two kinds of parame-
ters in the MEI model, the embeddings and the core tensors. Theo-
rem 1 provides a guideline to trade-offs between them. For example,
on FB15K-237, the parameter efficiency increases when the partition
size increases up to C ≈ 122. However, there are other factors af-
fecting this trade-off, such as the ensemble boosting effect that favors
larger K and smaller C. We argue that due to this effect, MEI with
K > 1 has an empirical advantage compared with MEI withK = 1.
To evaluate this claim, we analyze the performance of MEI models
with approximately the same parameter counts but different core-
tensor sizes on FB15K-237. To disambiguate the effects of larger
core tensor, we made sure that the models with larger core tensors
would have smaller parameter counts. Table 5 shows that the models
with larger core tensor consistently achieve better results with even
fewer total parameters, agreeing very well with Theorem 1. Interest-
ingly, MEI with K = 3 achieves competitive results compared with
MEI with K = 1, which suggest that the ensemble boosting effect
benefits MEI with K > 1, as we argued.

Table 5. Parameter trade-off analysis on FB15K-237.

Emb. Param. W H@
size count size MRR 1 3 10

12×11 1.95M 1K 0.335 0.247 0.367 0.514
6×21 1.87M 9K 0.339 0.249 0.371 0.518
3×40 1.84M 64K 0.344 0.253 0.378 0.527
1×82 1.76M 551K 0.344 0.255 0.378 0.522
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5 Conclusion and Future Work
In this work, we proposed MEI, the multi-partition embedding inter-
action model with block term format, to systematically control the
trade-off between expressiveness and computational cost, to learn
the interaction mechanisms from data automatically, and to achieve
state-of-the-art performance on the link prediction task. In addition,
we theoretically studied the parameter efficiency problem and de-
rived a simple criterion for optimal parameter trade-off. We discussed
several interpretations and insights of MEI as a novel general design
pattern for knowledge graph embedding, and we applied the frame-
work of MEI to present a new generalized explanation for several
specially designed interaction mechanisms in previous models.

In future work, we plan to conduct more experiments with MEI,
especially regarding the ensemble boosting effect and the meta-
dimensional transforming–matching framework. Other interesting
directions include more in-depth studies of the embedding internal
structure and the nature of multi-partition embedding interaction, es-
pecially with applications in other domains such as natural language
processing, computer vision, and recommender systems.
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