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1 MOTIVATION

Robots collaborating with humans in complex domains have to rea-
son with different descriptions of incomplete domain knowledge and
uncertainty. These descriptions include commonsense knowledge,
e.g., default statements such as “textbooks are usually in the library”
and “cereal boxes are typically in the kitchen”, which hold true in all
but a few exceptional circumstances. At the same time, information
extracted by processing noisy inputs from sensors is often associated
with quantitative measures of uncertainty, e.g., statements such as “I
am 90% certain I saw the robotics book in the office”. In addition,
any robot operating in dynamic domains will have to augment or re-
vise its existing knowledge over time, often using data-driven meth-
ods. Furthermore, for effective collaboration with humans, robots
should be able to describe their decisions, the underlying knowledge
and beliefs, and the experiences that informed these beliefs. We have
developed an architecture, REBA-KRL, which supports these capa-
bilities by exploiting the complementary strengths and principles of
step-wise refinement, non-monotonic logical reasoning, probabilistic
planning, and interactive learning.

2 ARCHITECTURE OVERVIEW

Figure 1 is an overview of REBA-KRL, the refinement-based archi-
tecture for knowledge representation, explainable reasoning, and in-
teractive learning, which is based on tightly-coupled transition dia-
grams at different resolutions. It may be viewed as a logician, statis-
tician, and an explorer working together. The transition diagrams are
described using an extension of action language ALd. The basic ver-
sion has a sorted signature with statics, fluents, and actions, and sup-
ports three types of statements: causal laws, state constraints, and ex-
ecutability conditions, and the extension supports non-Boolean flu-
ents and non-deterministic causal laws [5]. REBA-KRL also expands
the notion of a history of a dynamic domain to support prioritized
defaults [5]. Depending on the domain and tasks at hand, the robot
chooses to reason, learn, and execute actions at two specific reso-
lutions, but constructs on-demand descriptions of decisions, beliefs,
and experiences in the form of relations between relevant objects,
actions, and domain attributes at other resolutions. For ease of un-
derstanding, the description below focuses on two resolutions.

Knowledge representation and reasoning: The robot represents
and reasons with incomplete commonsense domain knowledge, at
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Figure 1: Architecture reasons with tightly-coupled transition dia-
grams at different resolutions, combining the strengths of declarative
programming, probabilistic reasoning, and interactive learning.

an abstract level, in the coarse-resolution. For example, a robot fetch-
ing objects in an office building would reason about places, objects,
default locations of objects, and some axioms governing domain dy-
namics. This knowledge also includes a adaptive theory of intentions
that incorporates principles of non-procrastination and persistence
to respond to unexpected successes and failures. For example, if a
robot plans to move two books, one at a time, from an office to the
library and unexpectedly finds the second book in the library after
moving the first one, it would stop executing the plan; if, after mov-
ing the second book to the library, it finds the first book missing, it
will plan and execute actions to find and move the second book to the
library. The domain’s fine-resolution transition diagram is formally
defined as a refinement of the coarse-resolution diagram. This defini-
tion includes a theory of observations that models the robot’s ability
to sense the values of domain fluents using knowledge-producing ac-
tions. Continuing with our example of fetching objects in an office
building, the robot would now observe and reason about grid cells in
rooms and parts of objects, attributes that were previously abstracted
away by the designer. This definition of refinement guarantees that
for any given state transition in the coarse-resolution diagram, there
is a path in the corresponding fine-resolution diagram between states
that are refinements of the coarse-resolution states. In addition, the
refined diagram is randomized to model uncertainty in action out-
comes. Then, for any given goal, the robot first computes a plan of
intentional abstract actions using non-monotonic logical reasoning
at the coarse-resolution. In REBA-KRL, this reasoning is achieved
using Answer Set Prolog, a declarative programming paradigm [1].
Each abstract transition is implemented as a sequence of concrete
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Figure 2: Architecture combining strengths of deep learning, inductive learning, and reasoning with commonsense knowledge, for scene
understanding; example of simulated scene in which robot has to estimate occlusion of objects and stability of object structures.

actions by automatically zooming to, and reasoning with, the part of
the fine-resolution diagram relevant to the abstract transition. Each
concrete action is then executed using algorithms that use learned
probabilistic models of the uncertainty in perception and actuation.
The outcomes of the fine-resolution action execution are added to
the fine-resolution history, resulting in suitable entries being added to
the coarse-resolution history and used for subsequent reasoning. Ex-
perimental results in simulation and on robots indicate reliable and
efficient reasoning in complex domains [2, 5].

Interactive learning: Reasoning with incomplete domain knowl-
edge can result in incorrect or suboptimal outcomes. State of the
art machine learning algorithms, especially deep learning algorithms,
require a large number of labeled examples and considerable compu-
tational resources, which are often not available in many practical
domains. REBA-KRL enables the robot to acquire knowledge of ac-
tions, action capabilities, and related axioms using three strategies:
(i) human verbal descriptions of observed behavior; (ii) exploration
of previously unexplored state transitions; and (iii) exploration of
transitions that produce unexpected outcomes; these strategies are
formulated as inductive learning or relational reinforcement learn-
ing (RRL) problems. Reasoning and learning inform and guide each
other, enabling the automatic and efficient identification and use of
only the relevant information to construct suitable mathematical for-
malisms (e.g., MDP for RRL) [6]. Figure 2 shows an example of the
learning approach for the specific task of estimating the occlusion of
objects and stability of object structures. State of the art methods use
deep networks to extract image features and another deep network
for making stability/occlusion decisions. In our case, features are ex-
tracted from any given input image and spatial relations between ob-
jects are grounded incrementally [3]. The agent first reasons with
commonsense knowledge, image features, and spatial relations to
make and relationally describe the occlusion and stability decisions.
Relevant regions of interest are automatically extracted from images
for which reasoning fails to make a decision, and used to train a deep
network; these examples also induce constraints that are used for sub-
sequent logical reasoning. Results indicate that this approach signif-
icantly improves the reliability and reduces computational effort in
comparison with baseline deep network architectures—see [4, 8].

Explainable reasoning: Our approach for explainable reasoning is
based on a theory of explanations for human-robot collaboration.
This theory comprises (i) claims about representing, reasoning with,
and learning knowledge to support explanations; (ii) a characteriza-
tion of explanations along three axes based on abstraction of rep-
resentation, explanation specificity, and explanation verbosity; and
(iii) a methodology for constructing explanations as descriptions of
decisions, beliefs, and experiences in the form of relations between
relevant objects, actions, and domain attributes. This theory is imple-
mented in REBA-KRL by coupling the construction of explanations
to the representation, reasoning, and learning components summa-

rized above. The robot receives requests or questions as (verbal) in-
put from a human. This input is parsed using existing tools (e.g.,
for natural language processing) and an underlying controlled vo-
cabulary for human-robot interaction. The human user is then able
to interactively obtain relational descriptions at the desired level of
abstraction, specificity, and verbosity. Experimental results indicate
the applicability of this approach to different complex domains [7].

Summary: REBA-KRL exploits the interplay between knowledge
representation, explainable reasoning, and interactive learning, to ad-
dress key challenges in human-robot collaboration. These capabili-
ties have been evaluated in simulation and on physical robots assist-
ing humans in different tasks and domains, demonstrating reliable
and scalable reasoning, learning, and explanation generation, in the
presence of incomplete knowledge, violation of defaults, noisy ob-
servations, and unreliable actions.
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