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Abstract. We investigate repeated win-lose coordination games and
analyse when and how rational players can guarantee eventual coor-
dination in such games. Our study involves both the setting with a
protocol shared in advance as well as the scenario without an agreed
protocol. In both cases, we focus on the case without any communi-
cation amongst the players once the particular game to be played has
been revealed to them. We identify classes of coordination games in
which coordination cannot be guaranteed in a single round, but can
eventually be achieved in several rounds by following suitable co-
ordination protocols. In particular, we study coordination using pro-
tocols invariant under structural symmetries of games under some
natural assumptions, such as: priority hierarchies amongst players,
different patience thresholds, use of focal groups, and gradual coor-
dination by contact.

1 INTRODUCTION
1.1 Repeated pure win-lose coordination games
Pure win-lose coordination games (WLC-games) were studied in our
work [8] (and the extended version [9]) as strategic form games in
which all players receive the same payoffs: 1 (win) or 0 (lose). All
players have the same goal, to coordinate on any winning strategy
profile. Here we extend that study to repeated (pure) win-lose co-
ordination games, where the players make simultaneous choices in
a discrete succession of rounds. The game continues until the play-
ers either succeed to coordinate or, alternatively, until they run out
of time, i.e., fail to coordinate in a predetermined (possibly infinite)
number of rounds. We note that these games are not of the type of re-
peated games usually studied in game theory, where not reachability
objectives but accumulated payoffs are considered.

Scenarios modelled by repeated pure coordination games occur
naturally in real life, for example when a group of people who cannot
communicate try to get together in one of several possible meeting
places and go around in search for each other. Another common sce-
nario is the phenomenon called ‘pavement tango’2, where two people
try to pass each other but end up blocking each others’ way by repeat-
edly moving to the same direction before either bumping into each
other or eventually succeeding to resolve the situation. These scenar-
ios can be regarded as a canonical examples of the kinds of repeated
coordination games that we consider here.

To give a simple example of a scenario where coordination can
be guaranteed with certainty, but not in the first round, consider a
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2 Douglas Adams and John Lloyd have jokingly coined the word ‘droitwich’
in [1] to name that phenomenon.

setting where three agents are to coordinate by meeting in one of
two possible locations. We assume that the agents can move from
one location to the other in discrete, synchronous rounds, on the tick
of the clock. They cannot communicate with each other during the
play, so clearly they cannot guarantee coordination right away in the
first round. However, assuming that each agent can observe if there
is someone else in the same location, a simple (predesigned) proto-
col will guarantee coordination within two rounds, as follows: Each
agent, after moving to some location in the first round, observes if
there is anyone else there. If so, she stays in that location; else she
moves to the other one in the second round.

In this paper we study several natural variants of repeated coordi-
nation games and investigate conditions under which such games can
be solved, i.e., coordination can be guaranteed. We adopt and extend
the technical framework of [8] and [9], where WLC-games are rep-
resented by abstract winning relations over sets of players’ choices.
We assume a common belief among the players that:

1. all players know the structure of the game;
2. all players have the same goal, viz. to coordinate, by selecting

together a winning profile, and
3. all players are rational, i.e., act towards achieving that goal.

In this paper we assume that the players want to guarantee coor-
dination (with certainty), in as few rounds as possible. That is, their
top priority is to coordinate with certainty, and if that is possible, a
further aim is to minimize the time for guaranteed coordination.

We focus on two communication scenarios between the players:

1. The case of no communication at all, neither before nor during the
play of the game. Here the players do not share any prenegotiated
strategies or conventions, but play independently of each other.

2. The case where the players may have agreed on a joint protocol
(global non-deterministic strategy for all games), but only before
the concrete game to play is presented to them. Here again the
players cannot communicate once the game has been presented.

The players’ strategies, while possibly synchronised by a joint pro-
tocol, are assumed to be indifferent to the particularities of concrete
games such as, e.g., ‘names of choices’. Technically this means in-
variance under ‘renamings’ of players and choices (see Section 3).

1.2 Structure and content of the paper
After providing preliminaries on WLC-games in Section 2, we in-
troduce the basics of repeated WLC-games and give some examples
in Section 3. In that section we also discuss possible applications of
rationality principles for solving one-shot WLC-games in the context
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of repeated games. In particular, we consider symmetry-based prin-
ciples and show that there are WLC-games that are unsolvable in the
single-round scenario of [8], but become solvable as repeated games,
simply due to reasoning based on symmetries.

The main new results are in Section 4, where we consider, e.g., dif-
ferent assumptions about visibility and distinctions in the behaviour
and roles of different players. For most of the studied cases, we es-
tablish conditions under which protocols for guaranteed coordination
exist and find bounds for the number of rounds needed to guaran-
tee coordination. We consider three different cases of visibility be-
tween players: minimal, where the players can only observe their own
choices but not those of the others; local, where they can only see
those other players with whom they currently share a winning pro-
file; and complete visibility, where the players always see the choices
of all of the other players (like in the ‘pavement tango’ scenario).

First, in Section 4.1, we construct coordination protocols assum-
ing a commonly known, naturally established or prenegotiated strict
priority hierarchy of players. The hierarchy can be used, e.g., to de-
termine an order according to which the players choose with which
other players they attempt to coordinate in different, consecutive
rounds. We construct such protocols under different assumptions of
visibility and show that they have significantly different maximum
times for coordination.

Then, in Section 4.2, we study coordination based on the notion of
a patience threshold, which means the maximum number of rounds
for which a player is willing to stay in the same location (i.e., re-
peat the same choice) without observing any change. We show that
assuming different patience thresholds for all players leads to a natu-
ral way of coordinating in all repeated WLC-games. Next, in Section
4.3, we discuss coordination by joining so called focal/anchor groups
which remain stationary on a winning profile while the remaining
players try to coordinate with them.

Lastly, in Section 4.4, we explore coordination by contact, where
players who get into contact (by making simultaneous choices in the
same winning profile) can synchronise all their further actions. We
show that under local visibility, supposing a first-contact has been
made, the subsequent game can be solved in linear time in the num-
ber of choices. Furthermore, the contact assumption leads to very
quick (logarithmic number of rounds in the number of players) coor-
dination under complete visibility and using a hierarchy of players.
Concluding remarks and directions for further work are given in Sec-
tion 5.

1.3 Related work

There is a vast literature on coordination games in addition to [8].
However, most of these works only bear a somewhat superficial con-
nection to the present study, as they consider coordination games
with different (though possibly equal for all players) payoffs. This
changes the focus to a more traditional, quantitative game-theoretic
study where strategy dominance and equilibrium analysis are more
relevant. Still, some essential concepts, such as common belief in ra-
tionality, focal points, conventions, and symmetries, are of common
importance to both approaches.

We list some of the more relevant and notable references. First,
the classical works of Schelling [13] and Lewis [11] lay much of the
foundations of coordination games and demonstrate the importance
of focal points, salience, and conventions. The follow-up study on
coordination by Gauthier [5] is also relevant, and so are Sugden’s
survey on rational choice [15] and his paper [16] on focal points.
Essential general references include the book [10] on the theory of

rational choice in selecting equilibria and the books [2], [12] on re-
peated games. The work [4] on repeated coordination games is par-
ticularly relevant as, e.g., it emphasises the importance of symme-
tries. However, it indeed considers a more general set of payoffs than
the current paper, and thereby the focus is different. Our first paper
and main reference on the topic is [8], substantially extended in [9].
The work [7] extends the results in the latter to WLC games with
extra structure including, e.g., priority hierarchies of players. In all
these works we have considered one-shot games only. Other relevant
references include [14], [6], [3].

Lastly, we note that the present work is relevant in a broader sense
to distributed computing and algorithms, and some aspects of our
work (e.g., communication by contacts) are more specifically related
to gossip protocols.

2 PRELIMINARIES
To give precise definitions of the necessary technical notions, here we
adopt the notation and terminology for (pure) win-lose coordination
games from [8], to which we refer the reader for further background.

Definition 2.1. An n-player win-lose coordination game (WLC-
game) is a relational structure G = (A,C1, . . . , Cn,WG) where
A is a finite and non-empty domain of choices, each Ci is a non-
empty unary relation (representing the choices of player i) such that
C1 ∪ · · · ∪ Cn = A, and WG ⊆ C1 × · · · × Cn is an n-ary win-
ning relation. For technical reasons we assume that the players have
pairwise disjoint choice sets, i.e., Ci ∩ Cj = ∅ for all i 6= j. A tuple
σ ∈ C1 × · · · × Cn is called a choice profile for G and the choice
profiles in WG are called winning choice profiles.

In this paper we make the following additional assumptions:

1. There is at least one winning choice profile, i.e. WG is nonempty;
2. No player has a surely losing choice (i.e., a choice that does not

belong to any winning choice profile).

The assumption 1 is reasonable, as games with an empty winning
relation can never be won. The assumption 2 (which formally implies
assumption 1, as A is non-empty) is also justified, assuming that no
rational player would ever select a surely losing choice if there are
other choices available (cf. the ‘Non-losing principle’ NL in [8]).

Consider a WLC-game G = (A,C1, . . . , Cn,WG), and let X =
{p1, . . . , pk} ⊆ {1, . . . , n} be a nonempty set of players3 such that
p1 < · · · < pk. LetX := {1, . . . , n}\X denote the set of remaining
players p′1 < · · · < p′m. For any choice profile σ = (c1, . . . , cn) ∈
C1 × · · · × Cn, we define σX := (cp1 , . . . , cpk ). Let T be the set
of tuples τ in WG that contain σX as a subtuple. Then the winning
extension of σX is the relation WG(σX) := {τX | τ ∈ T}, i.e.,
the set of winning tuples that contain σX but with the subtuple σX

itself projected away. Let G∗ := (A,Cp′1
, . . . , Cp′m ,WG(σX)) and

let G(σX) to be the same as G∗ but with all surely losing choices
removed (if there are any). The game G(σX) is called the subgame
(of G) induced by the winning extension of σX . When σX is a sin-
gleton tuple, i.e., a single player’s choice c, we simply write WG(c)
and G(c) instead of WG(σX) and G(σX).

For technical convenience, we will use the visual presentation of
WLC-games as hypergraphs from [8]. The choices of each player are
displayed as columns of nodes, starting from the choices of player 1
on the left and ending with the column with choices of player n. The
winning relation consists of lines that represent the winning profiles.

3 We routinely identify the player indices 1, . . . , n with players.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



Example 2.2. Here are two examples of WLC-games: a 2-player
game G1 with 3 choices for both players and a total of 5 winning
profiles presented as edges; and a 3-player WLC-game G2 with 2
choices for each player and 4 winning profiles, each represented as a
triple of choices connected by (solid or dotted) lines.

G1 : a1 a2

b1
c1 c2

b2

G2 : a1 a2 a3

b1 b2 b3

We note thatG2 represents a coordination game where it suffices that
players 1 and 3 make the ‘same’ choice (i.e., both choose from the
top row or, alternatively, both choose from the bottom row) in order
to guarantee coordination.

3 REPEATED WLC-GAMES AND
SOLVABILITY BY RATIONAL PRINCIPLES

In this section we introduce repeated WLC-games and discuss solv-
ability of such games by using rational principles of coordination
studied in [8].

3.1 Basics of repeated WLC-games
Consider a scenario where the players are exptected to play a WLC-
game G repeatedly until they eventually coordinate (by selecting
some winning choice profile). This leads to a repeated play of G
which consists of consecutive one-step plays of G until (if ever) the
players select a choice profile in WG. Thus every WLC-game can be
associated with the corresponding repeated WLC-game.

We assume that the players can remember the history of the re-
peated play and use this information when planning their next choice.
The history of a play after k rounds is encoded in a sequenceHk de-
fined formally below.

Definition 3.1. Consider an n-player WLC-game G. Let Hk be a
k-sequence of choice profiles in G. We call Hk a history of G, and
the pair (G,Hk) is referred to as a stage k (or a kth stage) in a
repeated play ofG. Formally,Hk = {Hi}i∈{1,...,k} where eachHi

is an n-ary relation Hi = {(c1, . . . , cn)} for some (c1, . . . , cn) ∈
C1 × · · · × Cn.

Note that a stage k has a history containing k earlier choice tuples
in a repeated play, and thus we define the initial stage (the 0th stage
(G,H0)) so that H0 = ∅. If coordination succeeds after k rounds,
then the kth stage is called the final stage of the repeated play. Alter-
natively, the repeated play may also continue for an infinite number
of rounds without coordination.

Consider a stage (G,Hk) in a repeated play of G with Hk =
{(c1, . . . , cn)}. We sometimes say that the choice ci (which is the
most recent choice) of player i is the current location of i. This
terminology naturally comes from coordination games where choices
are different (physical) locations and selecting a choice is interpreted
as moving to the selected location.

When presenting stages in repeated WLC-games graphically, we
label the previously chosen nodes in different ways. Below is a
graphical representation of a second stage in a repeated play of the
game G2,2, which is a ‘coordination game version’ of the matching
pennies game or the ‘pavement tango’ scenario from the introduc-
tion. Here the players have failed to coordinate in round 1 and then
failed again by swapping their choices in round 2.

G2,2:

1

12

2

We now generalize the definitions of protocols and principles from
[8] to repeated WLC-games. A protocol Σ is a function that outputs
a set C ⊆ Ci of choices with the input of a player i and a stage
(G,Hk) of any WLC-game G. A principle P is any nonempty set
of protocols. As in [8], a protocol describes a (non-deterministic)
strategy in any given WLC-game in the role of any player i. Here, a
protocol also ‘sees’ all the history of the current stage and thus gives
a (memory-based) strategy for any repeated WLC-game.

Principles are properties of protocols and thus they can be seen
as ‘reasoning or behaviour styles’ which can be applied in repeated
games. Principles can usually be defined by using simple descrip-
tions in natural language. Here is an example of a principle for re-
peated games: “Change your choice in every second round”. Clearly
there are several different protocols that belong to this principle.

We say that a player follows a principle P if he uses a protocol
from P. A principle P solves a WLC-game G in k rounds if play-
ers are guaranteed to coordinate in at most k rounds when every
player follows P, and coordination is not guaranteed in fewer than k
rounds4. Similarly, we say that a protocol Σ solves G in k rounds if
the singleton principle {Σ} solves G in k rounds.

3.2 Structural equivalences and protocols
As argued in [8], it is natural to assume that rational principles only
consider ‘structural properties’ of a game. In order to define this for-
mally, a notion of renaming between WLC-games is introduced in
[8]. We need to generalize this notion here to involve stages of re-
peated games, as the history of a repeated game creates additional
structure that can be used by the players in later rounds. The for-
mal definition below is easier to understand by also considering the
related Example 3.3. The intuitive idea is to relax isomorphisms be-
tween game graphs (including histories) to allow permutations of the
players 1, . . . , n.

Definition 3.2 (cf. [8]). Consider stages (G,Hk) and (G′,H′k) in
n-player WLC-games G and G′, where k ∈ N. A pair (β, π) is
a renaming between (G,Hk) and (G′,H′k) if there is an n-player
WLC-game G′′ and a historyH′′k of a repeated play of G′′ such that
the following conditions hold:

1. β is a permutation of {1, . . . , n} such that (G′′,H′′k) is obtained
from (G,Hk) by ‘permuting the players’. That is, we use β to
permute the choice sets Ci of players and the tuples both in the
winning relation and in the history.

2. π is an isomorphism between (G′′,H′′k) and (G′,H′k). Here it is
useful that the relations Hi in the history are part of the relational
structures together with the WLC-games G′′ and G′.

If (G,Hk) and (G′,H′k) have the same domain A, we say that
(β, π) is a renaming of (G,Hk). We say that the choices c ∈ Ci

and c′ ∈ Cj are structurally equivalent, denoted by c ∼ c′, if there
is a renaming (β, π) of (G,Hk) such that β(i) = j and π(c) = c′.
It is easy to see that ∼ is an equivalence relation on the set A of all
choices. We denote the equivalence class of a choice c by [c].

4 Note that this means the time for coordination in the worst case scenario, as
it is possible that players can coordinate by chance in fewer than k rounds
when following P.
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Example 3.3. There is a renaming between the stages (G,H2) and
(G′,H′2) below. Indeed, after swapping the players of the stage on
the left, there is an isomorphism to the stage on the right. Also note
that the choices c and d are structurally equivalent in the initial stage
(G,H0), but this equivalence is broken when player 2 selects c in
the first round.

(G,H2):
a

b

c

d

e

1
1

2 2

(G′,H′2):
u

v

r

s

t

1

12

2

We say that a protocol Σ is structural if it is ‘indifferent’ with
respect to renamings. This means that, given any stages (G,Hk),
(G′,H′k) with a renaming (β, π) between (G,Hk) and (G′,H′k),
for any i and any c ∈ Ci, we have c ∈ Σ((G,Hk), i) if and only
if π(c) ∈ Σ((G′,H′k), β(i)). Intuitively, this reflects the idea that
when following a structural protocol, one acts independently of the
names of choices and the names (or ordering) of players. However,
a structural protocol may ‘see’ all the history of the game and re-
member in which order all choices have been played. We say that a
principle is structural if it consists only of structural protocols.

3.3 Solvability of repeated WLC-games with
rational principles for one-step games

All the principles P defined for one-step WLC-games (such as the
ones defined in [8]) can be also used in repeated WLC-games. Per-
haps the simplest way of doing this is when players simply apply P
in each stage of the game the same way as they would in the one-
step WLC-game, completely disregarding the history. It is clear that
if a principle P solves the one-step WLC-game G, then it solves the
repeated version of G in one round. However, assuming the history
is ignored, if P does not solve G, then it alone does not guarantee
coordination in any number of rounds in the repeated play of G.

It is thus natural to ask the question how the history could be used
together with different rational principles. Let us first consider the
well known principle from standard game theory which prescribes
iterated elimination of dominated choices. (This can be interpreted
to mean, e.g., that the players use the principle ‘Collective rational
choices’, CRC, of [8].) Since repeated coordination attempts do not
affect domination between choices, there is no obvious way to use
the history to strengthen this principle for repeated games. For simi-
lar reasons, most of the rational principles for one-step WLC-games
presented in [8] do not give anything more for repeated WLC-games.
The only exception here are the symmetry based principles which we
will discuss in the next subsection.

It is worth noting that even if a (rational) principle P does not solve
a repeated game, it may still be useful when combined with other
principles.

3.4 Symmetry principles in repeated games
Since we have generalized the definition of renamings to cover stages
of repeated games, we can define the symmetry principle ES from [8]
exactly as defined in that article. A justification for this principle and
a related concrete example will be given after the definition.

Definition 3.4 ([8]). Consider a choice profile ~c = (c1, . . . , cn) in
a WLC-game G and let Ui := Ci ∩

⋃
j [cj ] for each i (recall the

notation [ci] from Def. 3.2). We say that (c1, . . . , cn) exhibits a bad

symmetry if U1×· · ·×Un 6⊆WG. Moreover, a choice c generates
a bad symmetry if every choice profile that contains c exhibits a bad
symmetry. We can now define the principle of Elimination of bad
symmetries (ES) as follows: “Never play choices that generate bad
symmetries, if possible”. We also assume that all protocols in ES are
structural.

The justification for ES is that—assuming no communication or
conventions—rational players should be indifferent between struc-
turally equivalent choices. Therefore players may assume that ev-
eryone follows a structural protocol. By this assumption, if a choice
generates a bad symmetry, then coordination is not guaranteed by
choosing it and thus it should be avoided, if possible.

Example 3.5. Consider the game G2,3 (or G(3(1× 1)) in the nota-
tion established in [8]) with 2 players and 3 winning profiles, pictured
below. Intuitively, this can be seen as a game where two players try
to meet at one of three locations—under the assumption that they
can somehow always see (or infer) which location was chosen by the
other player.

G2,3:

l13

l12

l11

l23

l22

l21

We assume that the players are not able to communicate before or
during the play, but their choices are recorded in a history. The nodes
l11, l

1
2, l

1
3 are the choices of player 1 and l21, l22, l23 are the choices of

player 2; the circles around some of the choices represent a history,
to be discussed below. Indeed, we will sketch an argument showing
that—even without communication—the players are guaranteed to
win this simple game in at most two rounds by using symmetry-
based reasoning principles. We note that all choices here are initially
structurally equivalent and generate a bad symmetry. Therefore,G2,3

is structurally unsolvable (cf. [8]), i.e., unsolvable by any structural
principle as a one-step coordination game.

Now, due to the structural equivalence of all choices, when fol-
lowing ES in the repeated coordination game, the players make their
first choices randomly. Suppose that they fail to coordinate in the first
round, e.g., due to picking the choices l11 and l22 (with dotted circles
around them in the figure). When the history of the first round is
added to the next stage of the game, we have l11 ∼ l22, l12 ∼ l21 and
l13 ∼ l23. Hence the choices l11, l12, l21, and l22 generate a bad symme-
try, but the choices l13 and l23 do not. Thus, following ES, the players
will choose (l13, l

2
3) in the second round, thereby succeeding to coor-

dinate.

For further examples and discussion on the rationality of the sym-
metry principle ES, see [8].

The reasoning in Example 3.5 can easily be generalized to those
2-player WLC-games where the winning relation forms three iso-
morphic components in the bipartite game graph. If players select
their choices from different components in the first round, then, in the
second round, they can both select a choice from the third remaining
component. This alone does not typically guarantee coordination, but
other principles in [8] can be additionally applied in order to try to
coordinate in the remaining third component.

Another natural generalization of the gameG2,3 isG2,m with two
players and m winning profiles that can all be drawn horizontally,
i.e., each choice coordinates with precisely one choice of the other
player. For any odd m, the protocol from Example 3.5 can now be
generalized so that after every round where the players have failed to
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coordinate, they always select a new (previously not selected) choice,
until eventually a single unselected choice remains. Clearly coordi-
nation is then guaranteed whenever m is odd and it then takes at
most dm/2e rounds. It is also easy to see that coordination cannot be
guaranteed in G2,m by any structural protocol when m is even.

4 PROTOCOLS FOR GRADUAL
GUARANTEED COORDINATION

In this section we consider several multi-player scenarios where play-
ers guarantee coordination gradually with the help of their observa-
tions, memory, and also possibly some additional features, such as
players’ priority hierarchies and patience thresholds, to be defined
formally further. In most of our examples it is natural to assume that
the players use a joint protocol which is agreed upon before they are
presented with the actual game to play.

First, we need to distinguish three basic cases with respect to the
visibility amongst players during the play.

Definition 4.1. We say that a repeated WLC-game has:

• complete visibility if each player can see (and remember) the
choices of all other players after every round. Here the protocols
used by a player may depend on the complete historyHk.

• local visibility if each player can only see their own choices and
the current choices of those other players who he shares a winning
profile with (i.e., those other players who he is ‘currently coordi-
nating’ with). In such games the protocol used by a player may
only depend on those choices, inHk, which he has seen earlier in
the game.

• minimal visibility if each player can only see the choices that he
has made during the play. Here the protocols used by a player may
only depend on their own choices inHk.

One could naturally consider a more general notion for visibil-
ity by using visibility graphs. With this approach, each player can
observe (and remember) only choices made by the players she can
‘see’. We leave this analysis for a further work.

4.1 Hierarchical coordination
If players have a commonly known strict hierarchy (technically, a
linear priority order) amongst them, they can use that hierarchy in
several natural scenarios involving gradual coordination. When a hi-
erarchy is present, it naturally allows protocols which violate some
symmetries between different players.

We consider the scenario where all players attempt, one-by-one,
to coordinate with all those who are ‘senior’ to them in the hierarchy.

Theorem 4.2. Consider WLC-games with a commonly known total
hierarchy amongst the players. Then there is a protocol which guar-
antees coordination in every repeated n-player WLC-gameG within
N rounds, where

1. N = n, if the players have complete visibility,
2. N = 1 + (m − 1)(n − 1), where m is the maximal number of

choices per player, if the players have local visibility,

3. N =

(
1

|C`|
n∏

i=1

|Ci|
)
− w` + 1, if the players have minimal

visibility, where ` is the most senior player and w` is the largest
number of winning choice profiles containing a fixed choice of
player `. (Recall that |Ci| is the cardinality of Ci.)

Proof. Suppose, w.l.o.g., that the priority hierarchy arranges the
players into the order 1 < 2 < · · · < n, with n most senior.

1. Under complete visibility, the protocol is straightforward: in the
first round all players choose randomly. If they coordinate, the game
ends. Otherwise, the most senior player n remains stationary in his
location, i.e., keeps repeating his first choice u, and, recursively, the
play continues in the subgame G(u), i.e., the game induced by the
winning extension of u in G (see Sec 2). In G(u), the remaining
n − 1 players try to coordinate in exactly the same way, with the
player n− 1 now being the most senior player. Clearly coordination
is guaranteed to ultimately occur within n rounds.

2. Under local visibility, first the most senior player n fixes a
choice cn in the 1st round. Then the next most senior player, n − 1
‘finds’ n on some winning profile containing cn. This takes at most
m−1 more rounds and fixes the choice cn−1 of player n−1. Mean-
while, all the other players wait exactly m − 1 additional rounds
(after round 1), to make sure that players n and n − 1 have coordi-
nated. Thereafter the procedure continues likewise. Thus, each player
1, . . . , n− 1 will take at most m− 1 additional rounds to coordinate
with the more senior ones.

3. Lastly, under minimal visibility, the protocol consists, intu-
itively, in traversing all choice profiles in a systematic (lexicographic)
way until reaching a winning choice profile, as follows (recall the as-
sumption that no choice is surely losing). First, the most senior player
n fixes a ’best choice’ u, which is inw` winning choice profiles. Note
that such a best choice need not be unique, and therefore we cannot
assume that the other players know it. Then each other player i, for
i < n, fixes an ordering of the set Ci of his choices5. Now, in every
round, each player i picks a choice, starting from the first one in the
fixed order, so that each of his choices is repeated (if necessary) for
exactly ri := |C1×· · ·×Ci−1| consecutive rounds (where r1 := 1)
before moving to the next choice. This is done until a winning choice
profile is reached, in a cyclic order, i.e., player i begins again from
his first choice after his last choice gets repeated ri times.

This protocol guarantees that all possible choice profiles contain-
ing player n’s choice u will be tried systematically by the remain-
ing players 1, . . . , n − 1, and that a winning choice profile will be
reached with that procedure within at most N rounds, for N defined
as in the theorem. Indeed,

∏n−1
i=1 |Ci| is the total number of possible

joint choices of players 1, . . . , n−1, andw` of them coordinate with
the choice u, so in the worst case none of these w` joint choices will
be explored until the end of the procedure, but the first one of them
to be reached will result in coordination.

Clearly the upper bounds in Theorem 4.2 can be improved in many
games G based on the particular structure of G. For example, in the
extreme case where a player has a surely winning move, it obviously
makes sense to choose it right away. Also, the upper bound in case 3
can be improved if not only the most senior player’s choice is made
optimally, but also the orderings of the choices of the other players
are suitably fixed in some suitable order (say, the order of decreasing
sizes of winning extensions), or if the most senior player has a unique
best choice, that can be guessed by the other players, et cetera. Like-
wise, the upper bound in case 2 can be improved, but this requires
more involved reasoning which we omit here.

Moreover, the number of rounds needed for coordination in the
complete visibility case can be reduced essentially to a logarithm in

5 This ordering may be assumed to first list those choices that occur in the
winning choice profiles of player n’s best choices. This assumption would
generally improve the efficiency of the procedure, but it is not needed for
the proof.
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the number of agents if they can coordinate in gradually increasing
groups where the groups coordinate with each other as if they were
single agents; this idea is described in more detail in Section 4.4.

On the other hand, there are cases where the respective upper
bounds for 1 and 3 are realized in the worst case. In the case of com-
plete visibility, this is when the winning profiles are the branches of
an unordered tree with |Cn| successors of the root representing the
choices of player n and each of these with |Cn−1| successors rep-
resenting the choices of player n − 1, et cetera. down to the leaves
representing the choices of player 1. In the case of minimal visibility,
the worst case is reached, e.g., in games where every choice belongs
to a single winning choice profile.

4.2 Coordination based on patience thresholds
In scenarios with repeated games, it often makes sense for players to
take time to ‘wait’ for their partners to move, for example to learn
their strategic behaviour. However, the waiting must stop at some
stage, after which the player moves to a new location in ’search’ of
the other players. This leads to the notion of a patience threshold.

Formally, the patience threshold of a player i is a positive integer
p(i) which gives an upper bound of the number of rounds which that
player is willing to stay in the same location if no change occurs in his
observable part of the game. Thus, a player with patience threshold k
will stay in the same location while observing no change in the game
for at most k consecutive rounds.

Assuming complete visibility, we will next design a protocol
that guarantees coordination in all WLC-games without a hierarchy
amongst the players, but where all players have fixed and differ-
ent patience thresholds. We note that the players are not assumed
to know the patience thresholds of each other. The assumption of
different patience thresholds is reasonable in scenarios where the
game moves are done in essentially continuous time. In such set-
tings, the players could in general signal their intention to move in the
next round once they have run out of patience, but since we assume
no form of communication during play, such signalling is impossi-
ble. Nevertheless, this can be compensated by the different patience
thresholds assumption. Alternatively, the assumption can be satisfied
by design, when a team of artificial agents is designed with the in-
tention to be able to coordinate without communication. While the
assumption may seem ad hoc at first, it is in fact quite natural and
common. Indeed, this is how many coordination problems, both in
real life (e.g., the ‘pavement tango’) and in artificial scenarios (asyn-
chronous distributed computing) are solved in practice.

Proposition 4.3. Assuming complete visibility and different patience
thresholds for each player, there is a protocol based on these patience
thresholds which solves every n-player WLC-game inN+1 rounds,
whereN is the sum of the patience thresholds of all the n−1 players
excluding the most patient one.

Proof. The coordination protocol is similar to the one in the case
of total hierarchy and complete visibility in Theorem 4.2. Suppose,
w.l.o.g., that the patience thresholds of the players decrease with their
natural order, i.e., p(1) > · · · > p(n). The protocol prescribes that in
the first round, all players make random choices. If they coordinate,
the game ends. Otherwise, they all stay in their first locations for
p(n) rounds, after which player n runs out of patience and moves
to another choice (location) u and remains there until the end of the
play. Thereafter the play continues recursively in the subgame G(u)
where the remaining n− 1 players try to coordinate. When only the
most patient player is left to move, she does not wait anymore but

coordinates with the rest in the next (and last) round. Clearly, the
coordination is guaranteed to occur within N + 1 rounds.

Note that the assumption that all players have different patience
thresholds is essential, as otherwise two players with the same pa-
tience threshold could start moving in a lock-step fashion and possi-
bly never coordinate.

The visibility assumption is essential in Proposition 4.3, too, as
the next simple example shows. Consider the game G2,3 from Ex-
ample 3.5 where both players have minimal visibility (i.e., they see
and remember only their own choices). Suppose they start with non-
matching choices and, when each of them runs out of patience, they
keep moving in any order that preserves the mismatch forever. This
endless discoordination scenario can occur regardless of the players’
patience thresholds, different or equal. Thus, coordination in this case
is not guaranteed in any number of rounds.

4.3 Coordination by joining anchor groups

We call a group of players who have selected their choices from the
same winning choice profile a coordinating group. Under the as-
sumption of complete visibility, after every round the players can ob-
serve which coordinating groups have been formed by the previous
choices. One natural mode of behaviour (also in real life scenarios) is
that players try to coordinate with a coordinating group of maximal
size, that is, with one of the majority groups; the players in majority
groups remain stationary and wait for the others to coordinate with
them, as long as they are still in a majority group. However, after
each round the set of majority groups may change, so this behaviour
is revised accordingly.

This leads to the Majority group principle (MG) which dictates
that a player should pick a choice from a winning extension of one of
the majority groups—unless he is part of a majority group, in which
case he should simply repeat his previous choice.6 The 3-player game
G3,2, displayed below, is solvable by MG in 2 rounds as a majority
group of size 2 (at least) is formed in the first round. (Cf. the example
given in the introduction.)

G3,2:

The 5-player gameG5,3 (where there are 3 disjoint winning profiles)
is likewise solvable by MG in 3 rounds: after the first round there
could be two majority groups of size 2, but then the player outside
these groups will join one of them and thus there will be a majority
group of size 3 after round 2.

Many natural variations and extensions can be defined for the MG.
For instance, if there is exactly one group of players whose winning
extension is a Cartesian product of all possible choices (so, coordi-
nation with that group is guaranteed to succeed), then the Unique
winning group principle instructs all other players to coordinate
with that group.

The idea to coordinate by identifying a unique group, under the
assumption of complete visibility, can be extended further to the con-
cept of anchor group, or focal group. That is a group of players that
have already coordinated with each other, being on some winning
choice profile, and thereafter remains stationary while all others try

6 This principle leads to a deadlock if at some point all players are clustered in
majority groups of the same size. In order to avoid this, one could modify
this principle so that in such cases the players make a random choice to
break the symmetry—possibly after their patience runs out.
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to coordinate with that group. Various real life coordination scenar-
ios are often based on such behaviour (e.g., a group that is in some
special location, or that consists of the most ‘senior’ members, etc.).
This idea leads to a family of principles using unique focal groups.

4.4 Gradual coordination by contact
Here we briefly discuss a variant of repeated coordination games
where the players can gradually establish communication contacts
with each other in the course of the play. This can be advantageous,
especially in scenarios with limited visibility, e.g., local visibility.
Making a contact could be achieved in several ways, but here it
amounts to selecting choices on the same winning profile. After mak-
ing contact, the players can communicate with each other, agree on
some specific conventions, and thus thereafter synchronise their fur-
ther actions by using a collective protocol. The communication al-
lows players to select their joint actions freely and thus allows any
group, that has made contact, to violate structurality in their proto-
cols.

Suppose, e.g., a scenario of meeting in a city with the assumption
that the players can see each other and make contact if and only if
they meet at the same place. By making a contact, two (or more)
players could agree for example to:

1. move together to look for the others, or
2. decide to meet again ‘at the same location’ after an agreed number

of rounds, and then synchronise further again, or
3. decide that some of them ‘wait’ at the current location (by re-

peating their choices) while the others search for the remaining
players, etc.

Assuming that the group of all players has a ‘leader,’ coordination
by contact becomes quite easy: the leader chooses a winning profile
and stays stationary, while everyone else searches for the leader until
they make contact with him, and then finally everyone gathers on
some chosen profile. The number of required rounds is not more than
the total number of choices.

We next present another natural example where coordination by
contact can be successful, under the additional assumption that, once
the players have established contact, they can maintain it from a dis-
tance for the rest of the game (e.g., by exchanging mobile numbers).

Proposition 4.4. Consider a repeated WLC-game G with n play-
ers, a maximum of m possible choices per player, and local visibil-
ity. Then any protocol for coordination by maintaining contacts that
guarantees that some (any) two players will eventually meet on a
winning profile within N rounds, can be modified to a protocol that
guarantees coordination of all players in at most N +m rounds.

Proof. Suppose there is a protocol Σ0 that guarantees that some two
players will eventually meet on a winning profile. The final coordi-
nation protocol Σ is defined as follows. First Σ0 is followed for N
rounds. This guarantees that at least 2 players end up in the same
winning profile. If there are several winning profiles where the group
ends up, one is distinguished, called hereafter their ‘home base.’
There may be more than one such group, and groups can keep grow-
ing in the procedure. Once a group has formed, the players in it keep
repeating their choices (stay in the ‘home base’) untilN rounds have
passed from the beginning of the game play.

After the firstN rounds, every formed group starts collecting other
players as follows. All but one of the players in the group remain in
their ‘home base’ (i.e., start repeating their choices) as ‘stationary

players,’ whereas the remaining one, which we call the ‘searching
player,’ starts going through all the other choices in some order. The
searching player sends all players who he finds to his home base
(i.e., instructs them to make the respective choices from that profile).
Every player who after round N ends up ‘alone’ (not sharing any
winning profile with other agents) must remain there (keep repeating
their choice) until he is ‘visited’ by a searching player on some shared
winning profile, and then follow the searching player’s instructions.

When two (or more) searching players, say A and B, meet on a
winning profile, they merge their groups into one, e.g., into the group
of A. Then player B instructs all players who are at his home base
to move to the home base of A, whereas A continues visiting all
other choices. Thus, an arbitrary winning profile is visited by at least
one searching player within m rounds and all players from there are
directed to a location where they join the others.

The case when the number of choices n is greater than the maxi-
mum number of choicesm per player is particularly natural here. By
the pigeonhole principle it follows that some players inevitably make
contact in the first round and thus, by Proposition 4.4, it takes at most
m+ 1 rounds for everyone coordinate.

We also note that the protocol described in the proof of Propo-
sition 4.4 can be improved when larger groups of players make a
contact. The search can then be done more quickly, e.g., when only
one player in the group remains stationary and the others divide the
search in a suitable way.

We note that the assumption of maintaining contacts is essential
for proving Proposition 4.4. Indeed, consider the 4-player game in
the next figure. One possible way to guarantee contact of two players
without communication is that players 1 and 2 apply symmetry-based
reasoning to establish contact on the dashed-line profile on top, while
players 3 and 4 likewise establish contact on the dashed-line profile
in the bottom, already in the 1st round.

1 2 3 4

Thereafter, the searching players for both groups may continue acting
in a completely symmetric way, thus never meeting each other, but
each of them only meeting the stationary player of the other group.
Then, if they cannot maintain contacts within the two groups, they
can never agree on where to merge the groups.

We then present a coordination-by-contact protocol, using a prior-
ity hierarchy of players and complete visibility, that significantly im-
proves the coordination times of Theorem 4.2. The speed-up could
be crucial in scenarios involving large numbers of players.

Proposition 4.5. In any WLC-game with n players with complete
visibility and priority hierarchy the players can coordinate by contact
in 1 + dlog2 ne steps.

Proof. The proof idea is to use the priority hierarchy in the following
way, again assuming, w.l.o.g, that the hierarchy is 1 < · · · < n.
In the first round, the players choose randomly. If they coordinate,
the game ends. Else, in the second round, every odd-number ranked
player remains stationary and each of the other players with rank 2i
coordinate with the stationary player 2i− 1 ‘to the left’ of them, i.e.,
the player 2i chooses from some winning extension of the choice of
2i−1. This creates coordinated groups of two players; if n is odd, the
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last group is the singleton {n}. In the third round, every second group
(i.e., the groups {1, 2}, {5, 6}, {9, 10}, . . . ) remains stationary and
the remaining groups coordinate with the stationary group ’to the
left’, i.e., {3, 4} moves to some winning extension of {1, 2}, etc.
Note that here the players 3, 4 are assumed to be able to proceed to
the same winning extension of {1, 2} based on their contact. This
coordination of groups of pairs creates coordinated groups of four
(with again possible exceptions at the right end of the hierarchy).
Continuing this way, it is easy to see that all players can eventually
coordinate in 1 + dlog2 ne steps.

5 CONCLUDING REMARKS
We list some of the main conclusions of the present work:

• The study of repeated WLC-games extends essentially the study
of one-step WLC-games in [8].

• Many repeated WLC-games can be solved by protocols agreed in
advance but with no communication during the play, while their
one-shot versions are unsolvable.

• Under some natural additional assumptions, such as a commonly
known total hierarchy amongst the players or different patience
thresholds and complete visibility, etc., all repeated WLC-games
become solvable and optimising the time for guaranteed coordi-
nation becomes the main question.

Finally, we list some ongoing/future work:

• analysis of expected coordination times in repeated WLC-games
where coordination cannot necessarily be guaranteed,

• search for protocols which give optimal guaranteed (or expected)
coordination times in different scenarios,

• analysis of boundedly repeated WLC-games, where coordination
must occur within a prescribed number of rounds.
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