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Abstract. Many areas of research are characterised by the deluge
of large-scale highly-dimensional time-series data. However, using
the data available for prediction and decision making is hampered by
the current lag in our ability to uncover and quantify true interactions
that explain the outcomes. We are interested in areas such as intensive
care medicine, which are characterised by i) continuous monitoring
of multivariate variables and non-uniform sampling of data streams,
ii) the outcomes are generally governed by interactions between a
small set of rare events, iii) these interactions are not necessarily de-
finable by specific values (or value ranges) of a given group of vari-
ables, but rather, by the deviations of these values from the normal
state recorded over time, iv) the need to explain the predictions made
by the model. Here, while numerous data mining models have been
formulated for outcome prediction, they are unable to explain their
predictions.

We present a model for uncovering interactions with the highest
likelihood of generating the outcomes seen from highly-dimensional
time series data. Interactions among variables are represented by a
relational graph structure, which relies on qualitative abstractions to
overcome non-uniform sampling and to capture the semantics of the
interactions corresponding to the changes and deviations from nor-
mality of variables of interest over time. Using the assumption that
similar templates of small interactions are responsible for the out-
comes (as prevalent in the medical domains), we reformulate the dis-
covery task to retrieve the most-likely templates from the data. Ex-
periments on sepsis prediction using real Intensive Care Unit (ICU)
data demonstrates that the discovered interaction templates are se-
mantically meaningful within the domain, and using them as features
in a prediction task produces a superior performance than when using
the raw values of the predictors.

1 Introduction

Many of the big-data sources now available correspond to com-
plex entities embedding sophisticated interactions recorded over time
(e.g. a potential diagnosis is affected by multiple symptoms, changes
in a patient’s vital signs and response to ongoing treatments, among
others). Such data sources are characterised by highly granular ob-
servations (e.g. ICU patients are monitored as frequently as every 5
seconds), and uneven reporting of data points (e.g. in the ICU, res-
piration rate is measured hourly, while heart rate is automatically
recorded every 5 seconds). Nevertheless, a small number of interac-
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tions (or rare events) may be the most important ones for predicting
outcomes and explaining deviations from usual functioning (e.g. rare
events in the ICU signal critical changes in a patient’s state). Dis-
covering such interactions is especially crucial in areas where the
ultimate goal is to monitor entities in real-time, to alert users when
abnormal behaviour of the system is present (e.g. a potential adverse
event for a patient).

This work starts with the observation that interactions among a set
of temporal variables are usually accompanied by a joint change in
these variables’ qualitative states (e.g. increase, low). Although the
metric information accompanying interactions is often unique (e.g.
specific values of the heart rate when body temperature exceeded
37.50C), abstracting away from the numerical details of event occur-
rence renders such interactions comparable. Abstraction aggregates
interactions into meaningful, qualitative concepts that can hold over
time intervals, by describing the changing effect of a given interac-
tion as well as the associated temporal arrangements. Such think-
ing is consistent with the qualitative way of reasoning adopted in
the medical domain [?, ?, ?, ?, ?]. For example, in addressing the
proper treatment of patients, including effects of drugs and volume
input, time is expressed in the relational model between time inter-
vals, abstracting away the exact time of occurrence and duration (e.g.
a period of high and increasing heart rate accompanied by periods of
low and decreasing respiratory rate). Moreover, such representation
is free from the following unrealistic assumptions made by many
temporal data mining models: (1) perfectly aligned atomic patterns
can be obtained, and (2) patterns to be discovered are of equal lengths
[?]. In reality, these two assumptions cannot be made when analysing
medical data. For example, when analysing arrhythmia episodes in
10-minute ECG scans, such events rarely occur at the same time
point in all patients, nor will they have identical durations.

In this paper, we present and evaluate a framework for discover-
ing interaction patterns in time series data by capturing qualitative
signatures embedded within the data, subsequently using those for
outcome prediction. We formulate the concept of a qualitative inter-
action graph, in which nodes correspond to qualitative change de-
scriptions of events and edges represent interactions, by encoding
qualitative temporal relations that hold between events. As most re-
sulting interactions in a qualitative interaction graph may indicate
normal functioning or are merely coincidental, our aim is to uncover
the significant interactions that play an integral part in generating the
outcomes. We do this by defining a generative model for significant
interactions upon which we perform an expectation-maximisation
procedure to iteratively evaluate the significance of found interac-
tions with respect to a given outcome.
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Figure 1: (a) Allen’s base seven temporal relations and their inverses. (b) The conceptual neighbourhood created by enforcing temporal con-
tinuity over Allen’s 14 relations. The conceptual neighbourhood graph shows the permitted transitions from one relation to another while
preserving temporal continuity. In the figure: p: precedes; m: meets; o: overlaps; s: starts,;d: during; f: finishes; pi: proceded by; si: started by;
mi: met by; oi: overlapped by; di: contains; fi: finished by; eq: equals.

The importance of the framework lies in its ability to extract intu-
itive and multi-variable patterns of deviation from normal behaviour,
capturing rare events in highly-dimensional, multivariate and non-
uniformly sampled data. The framework retains all the useful infor-
mation required for outcome prediction without jeopardising perfor-
mance. Moreover, and as opposed to the state of the art approaches,
the framework can explain the outcomes predicted through the use of
the aforementioned qualitative patterns.

This paper is structured as follows. After discussing related work
in Section ??, we delve into the knowledge representation aspect
of our work in Sections ?? and ??. We then formulate a pattern-
discovery model based on the Expectation-maximisation (EM) algo-
rithm in Section ??. In Section ??, we evaluate the performance of
the pattern discovery model using sepsis as a case study and real ICU
data. We perform two sets of experiments: while the first experiment
focuses on the discovery of significant interactions in a given pop-
ulation, the second is a classification experiment which verifies the
ability of discovered interactions to discriminate patients who will
develop sepsis from those who will not, eight hours before onset. Fi-
nally, we discuss the status of work and ongoing efforts in Section
??.

2 Related Work
The literature contains several data mining models that represent
time-stamped multivariate raw data as a set of time intervals, often at
a higher level of abstraction, and subsequently use discovered tem-
poral patterns for classification tasks [?, ?, ?, ?, ?, ?].

Most of these interval discovery models use Allen’s seminal work
[?], which devises binary relations to capture the order and interac-
tions between temporal intervals. Allen’s interval algebra contains
a total of thirteen mutually-exhaustive and pairwise-disjoint qualita-
tive relations, by which the temporal relationship between any two
events can be unambiguously described. These relations are given in
Figure ?? (a). The set consists of six basic relations: precedes, meets,
starts, contains, overlaps, finishes, and their inverses: preceded by,
met by, started by, during, overlapped by and finished by. In the case
of the equal relation, the basic and inverse relations are identical.
The notion of an algebra over these relations arises from considering

the intersection, union, and composition of a pair of temporal rela-
tions [?]. Allen’s algebra enforces the notion of temporal continu-
ity via the relations’ conceptual neighbourhood [?]. In a conceptual
neighbourhood, two relations between pairs of events are concep-
tual neighbours if they can be directly transformed into one another
by continuous deformation (i.e., shortening or lengthening) of the
events. Allen’s conceptual neighbourhood structure is thus obtained
and is shown in Figure ?? (b). In the figure, the intervals are replaced
by circles containing the symbolic abbreviations of the names of the
corresponding relations as given in Figure ?? (a). Solid lines depict
neighbourhood relations. The conceptual neighbourhood distance
between two qualitative relations quantifies the notion of temporal
continuity. It is defined as the shortest path between these relations
in the conceptual neighbourhood graph, giving every arc a distance
being equal to one. Given two relations ri and rj , d(ri, rj) is the con-
ceptual neighbourhood distance between the two relations and has a
minimum value of zero (when the two relations are the same).

In addition to using Allen’s algebra, most of the existing data
mining models use Shahar’s knowledge-based temporal abstraction
framework [?], which captures, among other properties, the qualita-
tive states (e.g. high, low, normal) and qualitative gradient changes
(e.g. increasing, decreasing, constant) during temporal intervals.

However, existing models that use qualitative temporal abstrac-
tions to mine time-series data, exemplified by [?, ?], have two vi-
tal shortcomings. First, they individually mine qualitative state (e.g.
high) and gradient (e.g. increasing) changes, without capturing the
richer semantics resulting from the simultaneous representation of
state and gradient changes as temporal patterns, and examining the
temporal interactions generated. This is especially vital for the med-
ical domain (and the ICU in specific) where events are described by
multiple simultaneous qualitative descriptors. Second, they generally
focus on mining frequent temporal patterns, with the assumption that
they are the highest contributors to a given outcome; an assumption
that does not hold in the medical domain as we illustrated in Sec-
tion ??. Nevertheless, we build on the knowledge generated by these
approaches, using the knowledge-based temporal abstraction model
of [?] as a foundation for defining the qualitative concepts used in
our work. In addition, we borrow the evaluation approach presented
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in [?] to show that using our discovered interactions can be used as
features in classification problems to achieve high performance. Fi-
nally, we borrow the variable abstraction knowledge base of [?] in
the processing of our data in Section ??.

The literature also contains models which aim at the discovery of
causal relations underlying a given large data [?, ?, ?, ?, ?]. How-
ever, many of the causality work requires the specification of prior
probabilities of events, which is not possible for many domains - for
example, in the ICU. To overcome the inference difficulties, causal
inference models using the expected values of domain variables to
detect rare events have been formulated [?], but are yet to take into
account the specific knowledge representation requirements of inten-
sive care. However, we acknowledge the importance and impact of
[?], and adapting its inference model to accommodate our knowledge
representation framework is part of our ongoing work.

3 Qualitative Interaction Graphs
The basic idea of the approach is to generate a set of patterns of
qualitative change embedded within time-series data and represent
their potential interactions via a graphical representation termed a
Qualitative Interaction Graph (QIG).

3.1 Knowledge-based Temporal Abstraction
(KBTA)

Given time-stamped raw data grouped by objects of interest (e.g. a
patient’s ICU stay) and comrpising a set of temporal domain vari-
ables V (e.g. all vital signs recorded in an ICU over a period of time),
a set of abstract interval-based concepts are obtained for the ob-
ject of interest by exploiting domain-specific knowledge. We use the
knowledge-based temporal abstraction (KBTA) model introduced by
Shahar [?]. The model uses cut-off values suggested in a context-
sensitive fashion by a domain expert to determine maximal intervals
whereby qualitative state changes (low, normal, high, e.g. high heart
rate) as well as qualitative gradient changes (increasing, decreasing,
stable, e.g. decreasing respiratory rate) hold. The bottom three layers
of Figure ?? show an example of KBTA for body temperature. The
numerical values are given in the lowest level of the figure, while
the second and third levels show the state and gradient abstractions
respectively.

3.2 Pattern Creation
Maximal intervals of qualitative state-gradient pairs are aggregated
into a sequence of temporally-contiguous patterns, such that within
each pattern, the same state and gradient relations hold during the
pattern’s interval, but not immediately before or after the interval.
The state-gradient temporal patterns abstracting body temperature
are shown in the top layer of Figure ??. In the figure, the interval dur-
ing which the gradient abstraction Increasing holds results in three
qualitative state-gradient patterns, by combining the gradient abstrac-
tion with the state abstractions that hold during the same interval.
The resulting patterns are: Increasing-Low, Increasing-Normal and
Increasing-High shown in the top layer of the figure.

3.3 Pattern Template Creation
For each single variable (e.g. body temperature) Vz ∈ V where
V is the set of temporal domain variables for an object of interest
(e.g. all vital signs recorded in an ICU over a period of time for a

Figure 2: A series of raw time-point data for a patient’s body temper-
ature is presented at the bottom. The data in this case are abstracted
according to their values into four interval-based states (layer 2 from
the bottom), and into four gradient abstractions (layer 3 from the bot-
tom). The resulting temporal patterns combining state and gradient
abstractions are shown in the top layer of the figure. There are exactly
six temporal patterns resulting from the joint abstractions of state and
gradient changes.

given patient), we distinguish a qualitative pattern from a qualita-
tive pattern template. Patterns are aggregated into pattern templates
such that two patterns map to the same template if they have the
same qualitative state and gradient descriptions. Therefore, for a sin-
gle variable, the corresponding set of pattern templates comprises
unique qualitative state-gradient descriptors. For now, the start and
end time of a template is the enumeration of the start and end times
of the patterns making up the template. In Figure ??, two patterns of
Decreasing-Low map to the same pattern template, resulting exactly
five pattern templates in the figure: Decreasing-Low, Increasing-
Low, Increasing-Normal, Increasing-High, and Stable-Low.

3.4 Generating Qualitative Interaction Graphs
Given a set of temporal domain variables V , such that the state-
gradient abstractions of each variable Vz ∈ V correspond to a set
pattern templates Pz , qualitative temporal relations between pattern
templates of different variables gives rise to a qualitative interaction
graphG = (P,R). Figure ?? shows the creation of a QIG (top of the
figure) from pattern templates of body temperature and respiration
rate (bottom of the figure). A QIG G has the following properties:
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1. G is a connected node and edge-labelled multi-graph in which the
nodes P in which each node correspond to all pattern templates of
all temporal variables of interest extracted from the data timeline
of a given object, and the edges R correspond to the qualitative
temporal relations holding between any two pattern templates.

2. Interactions among variables are captured by the temporal re-
lationships between their corresponding pattern templates. The
edges reflect the semantics of the corresponding interaction via:

(a) Edge labels, which describe the qualitative temporal relation
connecting the interacting pattern templates.

(b) Edge weights, which capture the frequency of a given interac-
tion between two templates.

3. G a multi-graph, with multiple edges between two pattern tem-
plates denote different temporal interactions between the two tem-
plates.

4. G is a directed graph, preserving the semantics of Allen’s interval
relations. We use Allen’s seven base relations described in Figure
??. This means that we do not use inverse relations (as they are
implicitly defined by edge reversal), and limit the before relation
by a maximal allowed gap, as previously done in [?, ?].

Therefore, the structure of a QIG captures the simultaneous
change in state and gradient abstractions of the domain variables for
a given object (e.g. patient).

Figure 3: A Qualitative Interaction Graph connecting the pattern tem-
plates of respiratory rate and body temperature. There are two pat-
terns which map to the same pattern template: Temp-Dec-Low; both
occur during the Res-Rate-Inc-Hi template, rendering the connecting
edge weight 2.

4 Describing and Comparing Qualitative
Interaction Graphs

We follow an approach where a qualitative interaction graph is de-
scribed by a collection of subgraphs, where each subgraph captures
several possible temporal interactions between subsets of qualitative
templates as described in Section ??. We begin by populating a sub-
graph lexicon li of n elements, to contain all possible subgraphs for

a given collection of variables, by first enumerating all pattern tem-
plates and then generating subgraphs of increasing number of nodes
to some fix bound (for a total of n subgraphs in the lexicon). Using
the subgraph lexicon, the structure of a qualitative interaction graph
of a single object i (e.g. patient) can be represented via a multi-hot
vector of length n:

θ(Gi) = [li(k) ⊆ Gi; ∀k ∈ 1...n]

The multi-hot encoding of a given graph captures the structural
properties of the graph as described by the graph lexicon. When eval-
uating the similarity of the two graphs (e.g. to evaluate the similarity
of the treatment journeys of two patients), we not only account for the
extent to which they share subgraphs (captured by their correspond-
ing multi-hot vectors), but also take into account the semantics of
the interactions, captured by the weights and labels of the subgraph
edges. For any two edges, we define their similarity as:

sim(Ei, Ej) = Ej � Ej ×
1

d(ri, rj) + |wi − wj |+ 1
(1)

Where Ej � Ej denotes the correspondence between the nodes
connecting each edge, and results in 1 when the nodes connecting the
two edges are the same, and zero otherwise. d(ri, rj) is the concep-
tual neighbourhood distance between the temporal relations ri and
rj (labeling edges Ei and Ej respectively) described in Section ??.
This enables the similarity function sim to take into account vary-
ing degrees of similarity, with the maximum value being 1 (when
the two edges are labeled with the same temporal relation, making
d(ri, rj) = 0, and have equal weights, making |wi − wj | = 0).

We can therefore define the similarity vector of two graphsGi and
Gj representing the normalised similarity of the subgraphs embed-
ded in the two graphs’ multi-hot vectors:

Θ(Gi, Gj) = [

∑
Ev∈Gi
Ew∈Gj

sim(Ev, Ew)

|R(Gi)|
, ifθ(Gi)k = 1 ∧ θ(Gj)k = 1; ∀k ∈ 1...n] (2)

Normalising the similarity of two subgraphs in the above equa-
tion, by dividing it by their mutual number of edges R(Gi), guar-
antees that the similarity value will be in the range [0, 1] and is not
influenced by the size of the subgraphs at position k.

Finally, the similarity between two graphs S(Gi, Gj)→ [0, 1] is
the normalised sum of the two graphs’ similarity vector.

S(Gi, Gj) =

n∑
k=1

Θ(Gi, Gj)

n
(3)

5 A Framework for Uncovering Rare Interactions

The aim of this work is to establish the grounds for finding interac-
tions that are embedded within a temporal dataset, and have the high-
est contribution to generating a given outcome. In order to distinguish
such significant interactions from all other interactions which may
indicate normal functioning or spurious events, the following model
is assumed to underlie the generation of significant interactions for
the domain of interest.
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5.1 Prior Distribution Over Pattern Templates

We describe the underlying prior probability distribution P (G) over
sets of potential interaction subgraphs G = {G1, ....Gm} as an ex-
ponential distribution:

P (G) = exp(−λ1W(G) + λ2N (G) + λ3F(G)) (4)

The description of the distribution reflects the characteristics that
we would like our potential target interactions to possess. First, the
distribution favours interactions with small weights, as larger weights
signal interactions that are more frequent with respect to a given ob-
ject (e.g. patient), and those are less likely to have caused the out-
come, as described in the introduction. Hence the exponentially de-
creasing function ofW(G), which returns in the average weight of a
given subgraph.

Second, the distribution favours larger interaction subgraphs,
which is reflected by the exponentially increasing function ofN (G).
This may seem counter intuitive, going against the observations con-
cerning the medical domain, where the number of variables leading
to an outcome is orders of magnitude less than the number of vari-
ables measured. However, we will make the reasoning behind this
clear after examining the third component of the distribution.

Finally, the distribution favours subgraphs with maximum
favouritism with respect to the population, which is calculated by
aggregating its similarity to other graphs in the population:

F(G) = log(
∏
Gz∈G

S(G,Gz)) (5)

Hence the final component describing the distribution is an expo-
nentially increasing function of F(G).

Although the second component N favours larger subgraphs, its
effect is smoothed by the third component F , because as subgraphs
become larger, the likelihood of finding similar subgraphs in the pop-
ulation decreases. In fact, the two competing functions N and F
force the distribution to generate smaller subgraphs to achieve a high
favouritism score.

The parameters of the independent components of the distribution
are used to find the optimal significant interactions of a (latent) out-
come for a given dataset, as described in ?? below.

5.2 Parameter Estimation

Since enumerating all possible interactions and evaluating their sig-
nificance is infeasible, the EM algorithm [?] is applied to estimate the
parameters of the distribution and use those to find significant inter-
pretations of the model. An interpretation I is a subgraph containing
a subset of the interactions in a population of qualitative interaction
graphs G. There are three parameters in the model: λ1 − λ3. Along
with the three generative functions fλ1 − fλ3 , they define the dis-
tribution generating significant interactions as per Equation ??. The
expected value of the log likelihood functionQ(λ, λ∗) becomes:

Q(λ, λ∗) =
m∑
k=1

3∑
i=1

Eλ∗
i
(log fλi(I)|Gk)

m is the total number of generated graphs, which correspond to the
number of objects in the dataset (see Section ??). Since each object
is described by many records (with each record corresponding to a
time-stamped value for a given variable), m�M, whereM is the

number of records in the raw dataset. Another note is that the func-
tions N andW used to partially compute Q are linear with respect
to a given interpretation I.

For the M-step, we estimate the values of the parameters λ1 − λ3

and functions fλ1 − fλ3 that maximizeQ(λ):

λmax = arg maxQ(λ, λ∗)

Upon convergence of the EM procedure, we sample the distri-
bution of interpretations to obtain the significant interactions of the
model, giving preference to interpretations interpretations with lower
mean edge weight.

Because iterating over the set of all possible interpretations via the
EM algorithm is also infeasible, we include a pre-processing step to
obtain clusters of interpretations that are likely to be optimal, using
the graph lexicon to cluster the interaction graphs embedding the in-
teractions within the data using self-tuning spectral clustering [?].

6 Experimental Evaluation
Our experiments are based on the discovery and evaluation of inter-
actions that can best explain a given outcome. To achieve this, we
organise our evaluation into two steps:

1. Pattern Discovery: by using the model presented here to discover
significant patterns describing a population of subjects with a
given outcome, comparing the generated patterns with those gen-
erated by existing temporal pattern discovery models.

2. Outcome Discovery: by using the discovered patterns as predic-
tors of a given outcome in a classification experiment, and com-
paring the performance against those of a number of classification
machine learning algorithms whose performance is established for
the given domain problem.

6.1 The Medical Problem
Sepsis, defined by a life-threatening response to infection and poten-
tially leading to multiple organ failure, is a devastating condition and
one of the most significant causes of worldwide morbidity and mor-
tality [?]. Sepsis is implicated in 6 million deaths annually, with costs
totaling $24 billion in the USA alone [?].

Early identification of sepsis is a known crucial factor in improv-
ing its outcomes [?]. Yet, existing sepsis prediction models using ma-
chine learning have shown mixed results reflecting the difficulty in
pinpointing the factors leading to sepsis onest [?], and heterogeneity
in populations [?] and methodologies [?].

Recently [?] proposed a temporal data mining approach using gra-
dient and state abstractions of temporal intervals to find the most fre-
quent patterns in a population of septic patients. Comparing those to
temporal patterns in non-septic patients found significant statistical
differences. The work does not evaluate the ability of the discovered
patterns to perform sepsis prediction; a task which we perform as
part of our evaluation.

6.2 The Dataset
We used the Medical Information Mart for Intensive Care III
(MIMIC-III) [?], a large and freely-accessible de-identified inten-
sive care database from Boston, Massachusetts, USA. MIMIC-III
contains demographics, vital sign measurements, laboratory test re-
sults, procedures, medications, caregiver notes and imaging reports
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recorded over time, in addition to mortality data (both in and out of
the hospital) for over 46,520 critical care patients.

We processed the data contained within MIMIC-III to exclude:
1. non-adults, less than 15 years of age at the time of admission,
2. invalid admissions, which frequently correspond to clerical errors
and are characterised by the absence of heart rate, incomplete ad-
ministrative recordings or admission and discharge and no charted
observations, and 3. stays shorter than 4 hours, as those tend to have
high rates of incomplete data and are therefore of little value for our
purpose. We then queried the MIMIC-III database for patients sat-
isfying the conditions the third international definition of sepsis [?],
under the guidance of two domain experts, and using surrogates of
an organ dysfunction component of acute increase in SOFA score
beyond 2 points and persistent hypotension (mean blood pressure <
65) requiring vasopressors to maintain mean arterial pressure.

The resulting set comprises 4,720 ICU records for 4,403 patients
(a single patient may have multiple ICU visits). We divided the
records into two sets of 2,360 ICU records each. The first set will
be used for pattern discovery, while the second will be used for eval-
uation. In addition, we extracted an equivalent 2,360 records from
the records that did not satisfy our inclusion criteria to serve as nega-
tive examples for the classification experiments of our evaluation. We
extracted the variables shown in Table ?? and used the state and gra-
dient abstraction cutoffs shown in the table to abstract the raw data
into more meaningful concepts. The knowledge base given in the ta-
ble is an exact replica of that used in previous work using temporal
knowledge-based temporal abstraction to prediction sepsis [?].

Table 1: The knowledge base detailing the variables and state and
gradient cutoff values for temporal abstraction of ICU vitals and lab-
oratory tests

Clinical ’Normal’ State Gradient
Concept Abstraction Abstraction
Albumin 3.4-5.4 g/dL ∆ > 0.5
Bilirubin 0.2 - 1.2 mg/dL ∆ > 0.5
chloride 96 106 mEq/L ∆ >5
Fibrinogen 200 400 mg/dL ∆ > 50
Creatinine 0.6-1.3 mg/dL ∆ > 0.2
Glucose 70 100 mg/dL ∆ > 10
Hemoglobin 11 18 g/dL ∆ >2
Lactate 0.5 - 2.2 mmol/L ∆ >1
PCO2 38 42 mm Hg ∆ >2
Urea 10 20 mg/dL ∆ >5
Sodium 135 145 mEq/L ∆ >5
TCO2 22 28 mmol/l ∆ >2
WBC 4.5 10 × 109/L ∆ >1
Body Temperature 36 38 ◦ C ∆ >0.5
Glasgow Coma Scale 8-12 ∆ >2
Diastolic Blood Pressure 70 90 mmHg ∆ >10
Systolic Blood Pressure 110 140 mmHg ∆ >10
Mean Blood Pressure 65 - 80 ∆ >5
Heart Rate 60 80 bpm ∆ >10
Spontaneous Respiratory Rate 7 14 breath/pm ∆ >3
Platelets 150 400 × 109/L ∆ > 50
PO2 (PaO2 in Andrea) 75 100 tor ∆ >10
PCO2 (PaCO2 in Andrea) 38 42 mm Hg ∆ >2

6.3 Experiments and Results
6.3.1 Discovering Significant Sepsis Patterns

This experiment aims to discover significant patterns of interactions
within the septic population 8 hours prior to sepsis onset (similarly

to [?]). We re-queried the dataset to only include vitals which have
been recorded over 8 hours before the confirmation of sepsis was
recorded in the patient’s records. We used the 2,360 records allo-
cated to pattern discovery, which were all septic patients. After fil-
tration, 1,679 records satisfied the temporal constraint enforced on
the records. Summary of the discovered interactions is given in Ta-
ble ??. In the table, the first column describes the sampling rate: the
percentage of significant interactions sampled from the distribution
of interpretations after the convergence of the EM procedure of Sec-
tion ??. The second column shows the number of patterns discovered
using the corresponding sampling rate in the first column. The third
column describes the percentage of septic patients with the sampled
patterns being subsets of their qualitative interaction graphs, while
the fourth column describes the same percentage non-septic patients.

The table clearly shows that the top 5% of the discovered inter-
actions are almost only exclusively found in the septic population.
Moreover, comparing these results with the temporal patterns dis-
covered via frequent pattern mining in [?] shows the clear contrast
in the two approaches and highlights the advantages of searching for
rare interactions. [?] found a total of 6,168 patterns with exclusive
prevalence in the septic population and 14,384 patterns found to be
present in both septic and non-septic patients.

Table 2: The distribution of significant patterns across septic and non-
septic patients

Sampling Number of Prevalence in Prevalence in
Rate Patterns Septic Patients Non-septic Patients
5% 39 99% < 0.05%
10% 75 94.8% 0.08%
40 % 302 0.82% 0.2%
80% 610 0.79% 0.26%

We note that the visible improvement in the number and discrim-
inatory power of the discovered interactions is achieved despite the
fact that our EM procedure is unsupervised, and was only given a
population of septic patients (no negative examples or labeling per-
formed). This is in contrast to [?], which performed the pattern dis-
covery process using clearly labeled sepsis and non-sepsis records.

Given the stark difference in discriminatory power of discovered
interactions, we argue that the QIG model not only enables the dis-
covery of more useful interactions, but the semantics of the model
captured by the joint representation of qualitative state and gradi-
ent change highly contribute to the derivation of a smaller and more
meaningful set of significant interactions.

Table 3: Prevalence of interaction subsets in the QIG most significant
patterns

Node 1 Node 2 Temporal Rel Prevalence
SysBP-Low-Dec Temp-Hi-Incr Finishes 77%
WBC-Norm-Inc Temp-Hi-Incr Overlaps 61%
Heartrate-Hi-Stab Temp-Hi-Stab Overlaps 49%
Lactate-Hi-Stab Heartrate-Hi-Stab During 35%

We further examined the top 5% (39) patterns discovered by our
QIG model for the clinical significance of the most prevalent subsets
of interactions. These are given in Table ??.

Close examination of the most prevalent interaction subsets (with
the help of two domain experts) show that the variables and the or-
der of their changes in the interactions is semantically meaningful
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Table 4: Comparison of performance metrics of the QIG model in predicting sepsis 8 hours prior to ICU admission, with the performance of
state of the art sepsis prediction models obtained from the literature. AUROC: Area Under the Receiver-operator Curve. PLR: Positive Like-

lihood Ratio (
sensitivity

1− specificity ), NLR: Negative Likelihood Ratio (
1− sensitivity
specificity

). Note: * indicates values calculated using the reported

sensitivity and specificity.

Model Sensitivity Specificity AUROCC PLR NLR
(95% CI) 95% CI (95% CI) (95% CI)

QIG 0.98 (0.96-0.99) 0.95 (0.91 - 0.99) 0.97 19.6 0.02
Kam 0.94 (0.93-0.95) 0.91 (0.88-0.94) 0.929 10.45∗ 0.07∗

Mao 0.98 (0.96- 0.99) 0.8 (0.78-0.82) 0.915 4.90∗ 0.03∗

Desautels 0.80 (0.79-0.81) 0.79 (0.780.81) 0.791 3.8∗ 0.25∗

Nemati 0.85 (0.84 - 0.86) 0.84 (0.82 - 0.86) 0.85 5.3∗ 0.18∗

Calvert 0.9 (0.890.91) 0.81 (0.800.82) 0.86 4.7∗ 0.12∗

from a clinical perspective. For instance, the first pattern describes
periods where a patient has a low and consistently decreasing sys-
tolic blood pressure, such that these periods are temporally equiv-
alent (in a qualitative sense) to the finishing intervals of increasing
high temperature. Clinically, having a high temperature is one of the
first alarming signs in an ICU patient and is a valid reason to look
for signs of infections. As the possibility of an infection increases in
a given patient, her other vitals start showing signs of deterioration,
and a low and decreasing Systolic blood pressure is one of the first
to show significant values changes. Similarly, increasing (yet still in
the normal range) white blood cell count indicate that the body is
preparing to fight an infection. However, if fever develops during this
period of incremental increase in WBC count, this may indicate that
the body is in alarm mode and an infection maybe imminent.

6.3.2 Using Significant Patterns as Predictors of Sepsis

Using the set of 2,360 ICU records of septic patients not used in
pattern discovery as positive examples, and the 2,360 ICU records
of non-septic patients as negative examples, and further filtering the
data to exclude variables recorded less than 8 hours of confirmed
sepsis diagnosis, we performed a classification task with sepsis di-
agnosis as outcome and using the top 10% interaction patterns as
features for the learning task (for a total of 39 features). Using the
XGBoost classification algorithm, the classifier’s parameters were
optimised through a bootstrapped grid search over is hyperparam-
eter space. After filtering the records by time, our dataset contained a
substantial class imbalance (only 36% positive examples). We there-
fore employed cost-sensitive learning by placing a heavier penalty on
misclassifying the minority class (septic patients). The classifier was
training over 1,000 iterations of a 10-fold cross-validation, incorpo-
rating class weights into each.

In addition to the performance metrics of the QIG-based classifier
reported in Table ??, we collected the reported performance met-
rics of five models representative of current sepsis predictors: [?]
(referred to as Kam), [?] (referred to as Mao), [?] (referred to as De-
sautels), [?] (referred to as Nemati), and [?] (referred to as Calvert).
Indeed, the results underline the current bottleneck of ML-based sep-
sis prediction: the highest performance of the models available in the
literature was reported by Mao and Kam. Mao relies on feature se-
lection to achieve performance, but only reports high sensitivity at
the fixed specificity value of 0.8. In contrast, Kam is a neural net-
work model which does not perform explicit feature selection. While
it reports high sensitivity and specificity, the black-box nature of the
Kam model hinders its clinical utility in practical settings. It is worth

noting that the improved performance of the QIG model is especially
pronounced in the specificity of predictions, in which more explain-
able models (Mao) underperforms by not distinguishing septic pa-
tients from those with inflammations and comorbidities; a general
bottleneck in ML sepsis prediction [?]. It is also worth noting that
only [?] claims to be a fully interpretable model (by virtue of feature
importance).

7 Conclusions, Limitations and Future Work
In this work, we have proposed a framework for the discovery of
rare patterns of interactions from highly-dimensional, multivariate
and non-uniformly sampled time series data. The model uses quali-
tative abstraction to capture meaningful semantics embedded within
the raw data and formulates a probabilistic model governing rare in-
teractions. We used an expectation-maximisation procedure to un-
cover temporal interactions with the highest contributions to a given
outcome. The paper presents experiments using the framework on
real ICU data to discover rare temporal interactions contributing to
the onset of sepsis. The results show that using the patterns identi-
fied by our model as features in classification experiments yields a
superior discriminatory power to when using the raw data, as well as
superior performance to state of the art machine learning algorithms
that have been specifically optimised for sepsis prediction.

Our present research focuses on a number of areas of improve-
ment. To begin with, QIGs learned from the data can be further op-
timised using the topological constraints of Allen’s relations to re-
move redundant labels by inferring them from the graph [?]. More-
over, using a multi-resolutional representation of time to create QIGs
can accommodate imprecise, gradual and intuitive relations between
points and intervals [?]. We are also designing a causal rare event
discovery framework exploiting the rich semantics captured by our
representation. Finally, we are working on the algorithmic aspects
of pattern discovery to devise efficient and scalable algorithms for
the fast detection of rare temporal interactions, overcoming the slow
EM algorithm implementation, which is far from the ultimate goal of
real-time monitoring.
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