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Abstract. The demand for insights into how artificial intelligent
systems work is rapidly growing. This has arisen as AI systems are
being integrated into almost every aspect of our lives from finance to
health, security and our social lives. Current techniques for generat-
ing explanations focus on explaining opaque algorithms such as neu-
ral network models. However, considering the fact that these models
do not work in isolation, but are combined, either manually or auto-
matically, with other inference operations, local explanations of indi-
vidual components are simply not enough to give the user adequate
insights into how an intelligent system works. It is not unusual for
a system made up of fairly intuitive components to become opaque
when it is combined with others to build an intelligent agent.

In this paper we argue that there is the need to combine diverse
forms of reasoning in order to generate explanations that span the
entire chain of reasoning: not just explanations for the, so called,
black-box models. Our hypothesis is that:

A hybrid approach using statistical and deductive reasoning
makes possible a richer form of explanation not available to
purely statistical ML approaches.

We explore the concepts of ‘local’ and ‘global’ explanations and
show how to give users a wide range of insights, using what we term
an ‘explanation blanket’. We tackle this challenge using the FRANK
query answering system and show that its hybrid approach facilitates
this kind of reasoning with explanations. It is important to note that
the evaluation of user preferences for explanation is outside the scope
of this work.

1 INTRODUCTION

In this work, we show that FRANK’s (Functional Reasoner for Ac-
quiring New Knowledge) compositional architecture and recursive
inference algorithm [20, 18, 7] facilitates the generation of explana-
tions of its answers. We formalise the new idea of an explanation
blanket in §3.2 and show how FRANK’s inference makes possible
this novel way of providing insights into non-trivial inferences.

As AI becomes an integral part of our lives, the demand to under-
stand the outputs of these systems continues to grow. One common
area of application of AI systems is query answering. Many tech-
niques have been explored for QA including search, information re-
trieval and more recently deep neural networks. However, the current
focus in explainable artificial intelligence (XAI) tends to be limited
to providing explanations of only the core inference mechanism, e.g.,
a neural network model. This is only a small piece of the puzzle that
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needs to be unravelled for users. These methods for explaining an-
swers to users ignore several crucial aspects of the inference process
including data pre-processing, knowledge source selection and un-
certainty, to name a few.

Consider the question “What will be the population of Europe in
2022?”. An answer to this question has to be predicted from a regres-
sion on past populations of Europe, or a sum of predicted populations
of countries in Europe in 2022, or by applying another non-trivial cal-
culation. To automatically infer this answer such that it is explainable
to a user, a combination of deductive and inductive reasoning must
be applied. Explaining just the core regression model gives only a
partial insight into how the answer was arrived at. Other steps in the
inference, such as which data points were selected and from which
sources, are also vital for understanding the answer. Also, such pre-
diction tasks and the composition of answers from different pieces
of information from diverse sources introduce uncertainties into an-
swers which must be made explicit to users.

End-to-end differentiable systems used in Deep Neural Networks
(DNNs) tend to be opaque and offer very little insights into their de-
cisions, even for the simplest problems. Further, these systems lack
intuitive means to explain their decision given the internal represen-
tation of their statistical inference mechanism.

Our work is motivated by the need to improve the intelligibility
of the inference process, work around the opaqueness of some statis-
tical methods and reduce the complexity of inference (§3.1). In this
paper, we argue that the concept of “explainability” should incorpo-
rate: (1) knowledge source selection, (2) feature selection of inputs
and their pre-processing, (3) easy-to-explore inference outputs and
(4) inference uncertainty. We also argue that a hybrid system, such
as FRANK, that combines both statistical and deductive reasoning,
lends itself to explainable decisions. We show that explanation blan-
kets, which provide explanations at different levels of detail, provide
users with insight into the reasoning behind the decisions. Finally,
we evaluate Frank using a test set based on questions about country
development indicators from the World Bank.

2 BACKGROUND

2.1 FRANK

The FRANK query answering (QA) system [20, 18, 7], combines
deductive and statistical inference methods to infer new knowledge
using information retrieved from knowledge sources on the Internet.
It infers both its best estimate of the answer and an estimate of its
uncertainty. In the case of numeric answers, for which a probability
would not be meaningful, the uncertainty estimate is instead an error
bar.
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Figure 1. FRANK’s UI for the query “What will be the population of France in 2026?”

FRANK uses a flexible attribute-value pair data structure
known as an association list, abbreviated as ‘alist’. Alists en-
able the representation of queries, data and intermediate states
of the problem uniformly during inference. Attributes include
the standard triple found in RDF [11], i.e., subject (s), property
(p), object (o), as well as other attributes required by FRANK
e.g., time (t), inference function (h), uncertainty (u) and op-
eration variable (v). For example, the question: “What will be
the population of Europe in 2022?” is represented by the alist:
{〈h,VALUE〉,〈v,?x〉,〈s,Europe〉,〈p,population〉,〈o,?x〉,
〈t,2022〉}, where ?x is both the value of the object o and the value
to be returned v.

FRANK answers the question by constructing an inference graph
on the fly which recursively decomposes the query alist using de-
composition rules until the variables at the leaves of the inference
graph are instantiated. Once a variable is instantiated, the inference
function (h), usually a reduce operation such as regression, average,
sum, maximum, minimum, etc., in the parent of the instantiated alist,
attempts to aggregate the values returned by its children. This up-
propagation happens recursively until the operation variable in the
root node is instantiated. Thus, an inference graph can represent an
intermediate state of inference, where variables are not yet instanti-
ated, or the final inference for an answer, once all the necessary vari-
ables are instantiated and propagated to the root alist. Decomposition
operations include: (1) temporal, which decomposes by data/time at-
tributes; (2) geospatial, which decomposes by place or location at-
tributes; (3) normalisation, which decomposes nested queries into

simple ones and (4) comparison, which decomposes to determine
items to be compared.

Definition 1 (Inference Graph) An inference graph is an acyclic
graph with two kinds of nodes.

z nodes are OR nodes, each labelled with an alist representing a
sub-goal to be solved. Its children are h nodes representing each
of the alternative inference operations that could be used to solve
this sub-goal.

h nodes are AND nodes each labelled with a inference operation for
solving their parent’s sub-goal. Their children are z nodes repre-
senting the sub-goals that this inference operation needs to solve.

Leaf nodes are z nodes that can be solved by direct look up in a
knowledge source.

A proof is a sub-graph of an inference graph in which all non-leaf z
nodes have only one child, i.e., there is only AND branching.

Figure 3 depicts an inference graph.

Our reference implementation of FRANK has a web-browser user
interface (UI) supported by a back-end reasoning service. The UI
provides two forms of output: a trace of the inference process and a
graphical display of all or part of the inference graph. Figures 1 and 2
show an example of a query answered using FRANK. The purpose of
this paper is to describe the different forms of explanations generated
from FRANK’s reasoning processes and the additions to the UI to
assist with a user’s insight into answers presented.
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Figure 2. FRANK’s Inference Explorer showing the inference graph for the question “What will be the population of France in 2026?”. A context menu on
the nodes (e.g. on node 0 above) allows users to hide or show branches and to get details of the inference nodes. The “regress” node is selected and its

explanation and regression graph are displayed in the sidebar.

2.2 Explainable AI (XAI)

A critical aspect of intelligence is the ability to explain one’s decision
to others. As much as it important to make decisions or predictions in
an automated way, it is also necessary to be able to convey the ratio-
nale behind the decision to others for several reasons. These include
the desire to: (i) verify decisions, (ii) integrate into larger decision
processes, (iii) improve the system, (iv) comply with legislation and
(v) allow the subjects of the decisions to appeal them. These social
aspects of AI systems are necessary in order for intelligent systems
to coexist with humans and provide the needed support to them.

Many organisations consider explainable decisions by AI systems
as a key factor in the success and wide adoption of AI beyond
academia and information technology companies. DARPA, an ad-
vocate for XAI [12], has challenge problems in data analytics and
autonomy where an AI system learns a model to solve a task, gener-
ates an explainable model, and presents the explanations to the users
through an explanation interface.

While the field of XAI is now gaining prominence, there is long
history of work in developing explanations for intelligent systems.
Several of these studies are captured in surveys of the field such as
[3] and [17]. These earlier studies underline the fact that explanations
are important for users interacting with complex, intelligent systems.
Early work such as [23] and [24] highlight the fact that an ability
to explain decisions is vital to the acceptance of intelligent systems.
Other studies including [22] and [4] stress the importance of expla-
nations in helping users check the accuracy of predictions, thereby
increasing their confidence in the outputs of the machine learning
system or providing the basis for appeal against them.

Explanations in an AI system can be local or global [17]. Local
explanation provide insights into specific aspects of the AI system
for specific cases. For instance, in a question such as “What will be
the population of Europe in 2022?”, a local explanation can focus on
the prediction component. At the moment, most attempts at expla-
nation in AI systems follow this approach. However such localized
explanations are not sufficient to give an adequate understanding of
the answer returned. A global explanation provides a better mental
model of the system to the user [15, 21]. Global explanations give
insights into how the whole AI system works. In the above example,
such an explanation will include details about the data selected, the
reasons for decomposing the problem in a particular way, the reason
for selecting the prediction algorithm used, etc. This gives users a
better mental model of the system and provides them with sufficient
insights that they can use to solve similar problems.

There are diverse viewpoints for explanations in intelligent sys-
tems. For example, explanation as the search for answers to why,
how and what-if questions using causal chains, goal-plan-actions hi-
erarchies and justifications [9] and explanation as a mechanism for
discovery [16].

2.3 Compositional AI Architectures

Compositionality refers to a the property that an intelligent system
exhibits by generating solutions to inference problems from an auto-
matic composition of modules that individually solve different parts
of the problem. This property plays an important role in generating
explanations from complex systems since the interactions between
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the components of the system, if carefully designed, can provide sig-
nificant insights into the workings of an AI system.

In QA, the nature of the inference pipeline used can be recursive
or non-recursive. Recursive inference algorithms dynamically and re-
cursively decompose problems into sub-goals and propagate answers
to sub-goals up the inference graph. Non-recursive ones generate an
entire program that combines different operations and then executes
it in a single shot to solve the problem. Many of the approaches to
QA tend to be non-recursive. For instance, Dependency-based com-
positional semantics (DCS) [14], Neural Module Networks [1, 2] and
The Neural Symbolic Machines [13] work on the assumption that the
knowledge base (KB) from which they look for facts contains all the
knowledge needed to solve the problem. Hence, they fail if all the
facts they need are not pre-stored in the KB.

In FRANK we make no assumptions about the existence of facts in
KBs. Alists are recursively decomposed into sub-goals and then ag-
gregated when instantiated to solve the question. This recursive algo-
rithm also means that FRANK does not commit to a particular strat-
egy to solve a question and so can choose different strategies given,
for instance, the data available. A recursive algorithm like FRANK
also allows additional information, such as uncertainty from its infer-
ence components and data, to be propagated through the inference.

3 XAI in FRANK
3.1 Motivating factors
The inference graph and trace generated by FRANK naturally pro-
vide insight into its reasoning. However, by themselves, they are not
very accessible to users since the trace can span several hundreds of
lines and the inference graph grows exponentially.

The sections that follow explore the use of English text based
on FRANK’s inference graph to explain FRANK’s reasoning aug-
mented with prediction graphs summarising intermediate data ag-
gregation and predictions. This is a contribution to the burgeoning
research area of XAI. The factors driving XAI in FRANK are:

• Intelligibility: Just the program traces and inference graphs that
FRANK previously displayed are suitable as debugging tools for
its developers, but would not be understood by lay users.

• Inherent Opaqueness: Whereas deductive reasoning can be ex-
plained by a chain of reasoning (i.e., an inference graph), machine
learning methods, such as a deep neural network, are inherently
opaque.

• Complexity: Inference trees can be very large, so user can be over-
whelmed by their sheer size.

Our aim is to make every node in FRANK’s inference graph ex-
plainable based on the alist or decomposition operator that labels it
and its neighbours.

3.2 Explanation Blanket
FRANK’s UI is interactive and so selecting the root node of the infer-
ence graph provides an explanation for the answer FRANK returns.
However, for deeper inference graphs the explanation will only be
a high-level one. It is therefore necessary to generate explanations
for both root and non-root nodes if we’re to give users insights into
FRANK’s reasoning. We use the idea of an explanation blanket to
achieve this.

An explanation blanket is a sub-tree of the inference graph from
which a meaningful, non-trivial explanation can be generated for the

alist that labels a node. An explanation describes (1) what FRANK is
doing at a given step of its reasoning, (2) why it needs to do this and
(3) how it is achieving this. We map these to the explanation blanket
as follows:

1. what: the reduce operation performed by the node n on its chil-
dren;

2. why: the map operation (decomposition) of the parent node;
3. how: the manner in which the children are combined. e.g. relevant

details of algorithm used and the children selected for reduction.

For example, FRANK generates this explanation for its answer to
the query:

What is the country in Africa with the lowest population in
2010?
We found entities that have type ‘country’ and are located in
Africa and calculated the minimum of the population in 2010
of the entities. Inferred country is Seychelles3.

3.2.1 Definitions

Once a proof has been found within the inference graph, the values at
the leaf nodes are propagated up through the proof to the root node
to provide the answer to the original query. Propagation is defined
recursively as follows.

Definition 2 (Propagation of Values)

Base Case: The values of leaf nodes are provided by look-up in a
knowledge source.

Step Case: Let x be a z-node which is decomposed by the infer-
ence operation ∆ labelling its z-node(s) child(ren). Let ∆ have m
z-node children and assume recursively that they return the val-
ues v1, . . . , vm, respectively. Let h be the inference function of x.
Then the value returned by x is h(v1, . . . , vm).

Uncertainty estimates are also propagated up the proof, from
leaves to root, in a similar way. Uncertainty is not the subject of this
paper, but more details can be found in [19].

An explanation blanket is a sub-graph of the inference graph that
has the following δ-complete property.

Definition 3 (δ-complete sub-graph) A δ-complete sub-graph is a
sub-graph of the inference graph that has a z-node as its root and
z-nodes at its leaves.

Explanation blankets can be centred on either z-nodes or h-nodes.
To generate an explanation for node n, a blanket must be centred on
n with its length (height and depth) specified

Definition 4 (Size of an Explanation Blanket)

The height, LH , of an explanation blanket is the length of the path
from the central node to its highest ancestor.

The depth, LD , of an explanation blanket is the length of the path
from the central node to each of its lowest descendants.

Either LH or LD can be 0. In fact, an explanation blanket centred
on the root node must have LH = 0 and one centred on a leaf must
haveLD = 0. Note that, in order to satisfy the δ-complete property, a
z-centred explanation blanket must have even numbered height and
depth and an h centred one must have odd numbered height and
depth.

Figure 3 depicts both a z and an h explanation blanket.
3 FRANK did not receive the territory of Saint Helena, Ascension and Tristan

da Cunha as a country from the KBs it searched.
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OPERATIONS TEMPLATES
DECOMPOSITIONS
temporal Could not find the 〈property〉 of 〈subject〉 [in 〈time〉]. Attempted to infer the required value in 〈time〉

by finding the 〈property〉 of 〈subject〉 at other times between 〈timemin〉 and 〈timemax〉.
geospatial Could not find the 〈property〉 of 〈subject〉 [in 〈time〉]. Finding the 〈property〉 [in 〈time〉] for the

constituent parts of 〈subject〉: 〈entities from sub-query〉.
normalize Had to solve the sub-queries before determining the 〈property〉 [in 〈time〉].
comparison Need to solve the sub-queries to determine the items to compare.
FAILED REDUCTIONS
eq, gt, gte, lt, lte Could not compare the values since the values of all items being compared are not known.
comp Failed to solve the sub-problem.
value, values Failed to find the 〈operation〉 of 〈property〉 [in 〈year〉].
regress and others (min, max, sum,
avg, etc.)

Failed to calculate the 〈operation〉 value of 〈property〉 [in 〈year〉].

SUCCESSFUL REDUCTIONS
fact retrieval Retrieved fact(s) from the 〈kb1, . . . , kbn〉 knowledge base(s).
eq, gt, gte, lt, lte Inferred value is 〈inferred〉. Did a comparison to determine if 〈child1〉 is 〈operation〉 〈child2〉.
comp Solved the sub-query and found the following 〈type〉 values: 〈child projections〉
regress Generated a regression function from times between 〈timemin〉 and 〈timemax〉.
others (for alist with aggregate only) The 〈operation〉 value of the 〈property〉 [in 〈year〉] of 〈subject〉 is 〈aggregate value〉.
others (for alist with both aggregate and
projected variable)

The entity whose 〈property〉 [in 〈year〉] has the 〈operation〉 value of 〈aggregate value〉 is
〈projected entity〉.

Table 1. Templates for generating explanations for various decomposition operations and inference operations for reducing alists.
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Figure 3. A z-node blanket of length 2 (LH = 2 and LH = 2) and a
h-node explanation blanket of length 1.

3.3 Adjusting the Richness of Explanations

We can increase the richness of the explanation of an alist or infer-
ence operation by increasing the height and/or depth of the explana-
tion blanket of the selected node. By enlarging the explanation blan-
ket, we can generate a more detailed account of the decompositions
involved in an inference step, as well as richer account of reductions
of descendants that lead to the answer inferred at the node being ex-
plained. The default height and depth in our current implementation
is 1. The user can change this in the Inference Explorer UI (see 2).

3.4 Evaluation

Recall that our hypothesis was:

A hybrid approach using statistical and deductive reasoning

makes possible a richer form of explanation not available to
purely statistical ML approaches.

To evaluate this hypothesis, Frank was run on a test set of queries.
The results are shown in Table 2. The columns show: the query asked;
the answer returned; the height and depth of the explanation blankets
set; and the explanation given for each setting. Heights and depths
were set to be equal in these tests, but needn’t have been. Note that
larger explanation blanket settings generated more detailed explana-
tions for the same query. The test set was chosen to demonstrate: both
quantitative and qualitative queries; both direct look-up and inferred
answers; the diversity of the knowledge sources consulted; predic-
tions; and nested queries.

Figures 1 and 2 are screenshots of FRANK’s GUI when some
of these queries are answered. Together they illustrate: the answers
generated and its uncertainty; the depiction of explanation blankets
and the UI to change their size; the graphical depiction of regres-
sion used in prediction; explanation in English; and the knowledge
sources consulted.

We claim that this evidence supports our hypothesis. More discus-
sion about this claim can be found in §5

3.5 Templates
The English explanations in Table 2 were generated by instantiating
templates associated with the inference operations and the explana-
tion blanket currently chosen.

These templates are generic and not specific to any particular do-
main. They depend only on the inference operations used and not on
the domain. They have been successfully tested on a range of dif-
ferent domains. We are continuously introducing new question types
and their corresponding templates.

The templates are listed in Table 1, organised by the different in-
ference operations currently available to FRANK.

3.5.1 Geospatial decomposition template

Geospatial decomposition turns a query over a composite entity, e.g.,
a continent, into a set of sub-queries by asking the same query for
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Question Answer EB size. Explanation

Q1. What was the gdp of Ghana in
1998?

7481000000 1 The value of the gdp of Ghana in 1998 is 7480968858. Retrieved fact(s) from the
World Bank and Wikidata knowledge sources.

Q2. What will be the population of
France in 2026?

69250000. 1 The value of the population of France in 2026 is 69247799. HOW: Generated a
regression function from times between 2010 and 2018.The predicted value of
the population of France in 2026 is 69247799. Retrieved fact(s) from the World
Bank and Wikidata knowledge sources.. WHY: Could not find the population
of France in 2026. Attempted to infer the required value in 2026 by finding the
population of France at other times between 2010 and 2018

Q3. Country in Africa with the lowest
urban population in 2010?

Seychelles 1 The entity whose urban population in 2010 has the minimum value of 47880.0 is
Seychelles. HOW: Retrieved fact(s) from the World Bank and Wikidata knowl-
edge sources. Had to solve the sub-queries before determining the urban popula-
tion in 2010.

2 The entity whose urban population in 2010 has the minimum value of 47880.0
is Seychelles. HOW: The country values found for the sub-query include:
Botswana, Algeria, Cameroon, Angola, Benin, Burundi, Cape Verde, etc. Re-
trieved fact(s) from the World Bank and Wikidata knowledge sources. Had to
solve the sub-queries before determining the urban population in 2010.

Q4. Country in Asia with the highest en-
ergy consumption in 2012?

2 The entity whose energy consumption in 2010 has the maximum value of
61093297.293516 is People’s Republic of China. HOW: The country values
found for the sub-query include: Israel, Laos, Malaysia, Jordan, Bahrain, Japan,
etc. Retrieved fact(s) from the World Bank and Wikidata knowledge sources. Had
to solve the sub-queries before determining the energy consumption in 2010.

Q5. What will be the population in 2025
of the country in Europe with the
highest gdp in 2010?

8176000 3 The value of the population of Germany in 2025 is 85632039.0. HOW: The entity
whose gdp in 2010 has the maximum value of 3417094562648.95 is Germany.
The entity whose gdp in 2010 has the maximum value of 3417094562648.95 is
Germany. The value of the population of Germany in 2025 is 85632039. Gen-
erated a regression function from times between 2010 and 2018.The predicted
value of the population of Germany in 2025 is 85632039.0. Retrieved fact(s)
from the World Bank and Wikidata knowledge sources. Had to solve the sub-
queries before determining the population in 2025.

Q6. Will the population of Ghana in
2022 be greater than the population
of Belgium in 2030?

True 1 Inferred value is ’true’. Did a comparison to determine if 31890697 is greater
than 12224774. WHY: Need to solve the sub-queries to determine the items to
compare. HOW: An input value for operation is 31890697.399999857. An input
value for operation is 12224774.890931368. Retrieved fact(s) from the World
Bank and Wikidata knowledge sources.

4 Inferred value is ’true’. Did a comparison to determine if 31890697 is greater
than 12214670. WHY: Need to solve the sub-queries to determine the items to
compare. HOW: The value of the population of Ghana in 2022 is 31890697.
Generated a regression function from times between 2010 and 2018. The pre-
dicted value of the population of Ghana in 2022 is 31890697. An input value
for operation is 12214670. The value of the population of Belgium in 2030 is
12214670. Generated a regression function from times between 2010 and 2018.
The predicted value of the population of Belgium in 2030 is 12214670. Retrieved
fact(s) from the World Bank and Wikidata knowledge sources.

Table 2. Examples of queries, answers returned and explanations of various blanket lengths. Answers to questions are displayed to 4 significant figures, while
the full figures are shown in the explanations. It is also worth noting that these answers are based on real-time data present the in the Wikidata, World Bank and

Geonames knowledge bases at the time of they were queried.

each of its constituents, e.g., countries. This template describes these
constituents. For example, to predict the African country that will
have the highest population in 2021, first Africa is broken into a set of
its constituent countries: {Algeria, . . . , Zimbabwe}, then the pop-
ulation prediction is asked of each constituent of this set. The country
with the maximum population is then returned as the answer.

3.5.2 Normalisation template

This template describes the need to first solve sub-queries and their
intermediate results. For queries containing a sub-query where the
type of constituents are specified, the query alist is normalised by
creating a sub-query (child alist) that has a comp (set comprehen-
sion) operation for aggregation. Entity types are extracted from the
description of the filters in the sub-query. For example, to predict
which country in Africa will have the largest population in 2021,
FRANK first creates a sub-query to find all the countries in Africa,
which is returned as a set using comp. Next, the population in 2021
of each member of this set is predicted by a temporal decomposition

and the member with the maximum predication is returned.

3.5.3 Temporal decomposition template

Temporal decomposition turns a query about a time for which the
answer is not yet known into a set of similar queries for times for
which the answer is known. This template describes the new times
for which child alists are created and the subsequent regression oper-
ation that is performed. For example, to predict a population at some
point in the future, FRANK first finds the population for previous
census dates. Regression is then used to turn the set of time/answer
pairs into a function. This function is then extrapolated (or interpo-
lated) to estimate an answer for the original time.

3.5.4 Comparison decomposition template

FRANK supports queries that compare one value to another. Ques-
tion 6 in Table 2 is an example of such a query. The comparison
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decomposition first solves the sub-queries while ensuring the instan-
tiation of the pair of operation variables to be compared before the
up-propagation. The template describes the values being compared
and the outcome of the comparison.

3.5.5 Aggregation templates

During the aggregation phase, templates are used to generate addi-
tional explanations of the aggregations performed. The regress
(regression) and comp (set comprehension) operations are explained
with the temporal and normalisation decompositions.

At the leaf nodes, we describe the sources from which the vari-
ables are instantiated. For example: “Retrieved facts from the world
bank and geonames knowledge sources.

4 ADDITIONAL SOURCES OF INSIGHT
4.1 Graphical Explanations
Graphical explanations can be used to support the textual explana-
tions generated for the alists. It helps users to visually understand
parts of the inference process especially when the underlying aggre-
gation operations are dense and difficult to understand textually. A
typical example of this is regression. For problems that include re-
gression as an inference step, FRANK returns not only the predicted
value, but also the prediction function (e.g. the coefficients in the lin-
ear equation). Again, using the explanation blanket, we plot (1) a pre-
diction graph using the regression function calculated in the regress
node; (2) the underlying data points from the child nodes; and (3) the
predicted value from the value propagated to the parent node. Figure
2 shows an example of the resulting graphical plot in the reference
implementation of FRANK. Such prediction graphs provide insights
into the intermediate inference steps in FRANK as it infers answer.

4.2 Interactive Inference Graph
The recursive inference algorithm constructs an inference graph
through the sequence of alist decompositions, with z nodes labelled
by alists and h nodes labelled by inference operations. In our imple-
mentation of FRANK, the entire inference graph is presented to the
user in real-time via the Inference Explorer view shown in Figure 2.
Each node has a context menu that allows a user to view the details of
the node including its alist as well as an explanation for a specified
explanation blanket length. The menu also allows a user to choose
how much of the inference graph to view by collapsing or expanding
sub-graphs. This is in the spirit of the second author’s earlier work
on proof planning and hiproofs [6, 8]. Visually, this makes the entire
inference transparent and enables users to decide on which parts of
the inference to focus.

5 DISCUSSION
In this section we show how our claims about our work are con-
firmed. Examples of questions, answers and explanations generated
by FRANK are shown in Table 2.

Firstly, our algorithm for FRANK naturally lends itself to a com-
bination of deductive reasoning for developing the inference graph
and statistical/arithmetic operations for combining instantiated alists
in the graph.

Although FRANK’s integration of explanation into its inference
mechanism is novel, our underlying viewpoints of explanations is
motivated by earlier work. First is the view in [9] that explanation

is the search for answers to why, how and what-if questions using
causal chains, goal-plan-actions hierarchies and justifications. We
leave the ‘what-if’ question for future work, and replace it with a
‘what’ question. In the context of QA, our use of explanation blan-
kets achieves this view of explanations in a manner that scales from
very local explanations to global ones as the blanket size is increased.

Richer explanation does not only mean adding more detailed text
to support an answer. Rather, it is about providing different view-
points as well as using different modalities to support an answer. In
some cases, an explanation blanket of depth 1 on the root node, sim-
ilar to the explanation in Figure 1, suffices. But in other cases such
as question Q3: “What will be the population in 2025 of the country
in Europe with the highest gdp in 2025”, where the answer is ob-
tained from a deep inference graph, a blanket of depth 1 on the root
node is restrictive as it presents only a high-level explanation to a
user. By allowing a user to interactively centre explanation blankets
on any node in the inference graph, FRANK gives the user diverse
viewpoints of explanations. The interactive inference graph makes
the entire QA process transparent to the user. Using this to gener-
ate explanations based on specified blanket lengths provides further
insights to the user.

Furthermore, our work presents insights into FRANK’s inference
through different modalities. These include textual explanations, as
well as the interactive inference graph. Additionally, for a node la-
belled by a temporal decomposition, a regression graph is presented
to the user to support the prediction at that node.

Finally, the prediction examples in Table 2 show that even with
opaque statistical methods such as neural networks for regression
(e.g. Q6), we are able to give a user meaningful insights into answers
and how they are found or inferred. This is only possible because
our approach to explanations focuses not only on the key operation
such as regression, but on all operations leading to an answer includ-
ing variable instantiations with facts from KBs. Combining this with
regression graphs allows FRANK to give users adequate insights to
justify its answers.

6 RELATED WORK
FRANK’s algorithm facilitates explanations that are better than other
data-intensive QA systems such as [10, 5], similar QA systems such
as Wolfram|Alpha4 and, more recently, search engines that attempt
to return exact answers instead of results lists (e.g. search via Google
Knowledge Graph5). FRANK returns not only an answer, but its en-
tire inference graph. Given the full graph of decompositions and ag-
gregations, we are able to elicit simple English explanations of com-
putations that led to the answer. Even in the case where FRANK fails
to find an answer, an interrogation of the inference graph can give the
user some insights into why FRANK failed. For instance, in Figure
2, the grey coloured nodes show the nodes whose alists FRANK was
unable to instantiate.

Our algorithm for FRANK also provides insights into the answers
by looking not only at the primary inference algorithm, e.g. regres-
sion, but at other inference operations, such as knowledge sources
from which variables in alists were instantiated, and the uncertainties
of the various facts retrieved and how they propagate to the answer.
While this happens in a single hop for those current QA systems that
we are aware of, which answer questions at web-scale, FRANK can
provide such insights at all levels of decomposition in the inference
graph.

4 https://www.wolframalpha.com
5 https://developers.google.com/knowledge-graph
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FRANK’s UI provides a simple query-answer page that is tradi-
tionally found for most QA systems. Additionally, FRANK provides
an “Inference Explorer” view that exposes FRANK’s entire inference
graph to the user in an interactive UI. This gives a user access to both
the detailed level instantiations of variables and the high level infer-
ences that are applied to give an answer. A user can view the content
of alists as well as generate explanations based on their chosen ex-
planation blankets. The examples in Table 2 show how a user can
obtain both local and global explanations for a node by changing the
explanation blanket lengths.

7 CONCLUSION AND FUTURE WORK
This work explored the underlying architecture of a QA system to
facilitate or inhibit the generation of intuitive explanations for the an-
swers it infers. Subsequent work will focus on how users engage with
the QA system, the kinds of interactions they have with the system
and how they use the explanations generated by the system to inform
subsequent actions and confidence in its answers. More details about
the inference operations will also be added to the template.

We plan to enable users to explore ‘what-if’ scenarios. For in-
stance, we would allow users to change the value being returned by
either a terminal or non-terminal node in the inference graph and
then discover what effect this has on both the inference process and
the answer it returns. For instance, suppose FRANK has predicted
the population of the UK in 2025 on the basis of previous census
data, but that the user would now like to explore the possible effect
of Brexit, suspecting that this might cause an exodus of non-UK EU
citizens. FRANK could be used to both predict the population in the
upcoming 2021 census and estimate what proportion of non-UK EU
citizens it contains. The user could then create a terminal node for
the 2021 results and provide a value for the population which takes
into account the anticipated exodus. The 2025 population prediction
could then be re-run.

We will also enhance a user’s insights into FRANK’s reasoning
by allowing users to questions the inference itself. By enabling the
persistence of not only the answer, but of the entire inference graph,
we could allow users to ask follow-up questions about the answer
returned by FRANK. This is especially important in cases where a
graphical UI is not available, such as a smart speaker and in devices
that provide accessibility to the visually impaired.
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