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Abstract. This work focuses on generalizing the existence prob-
lems for extensions in abstract argumentation to incomplete argu-
mentation frameworks. In this extended model, incomplete or con-
flicting knowledge about the state of the arguments and attacks are
allowed. We propose possible and necessary variations of the exis-
tence and nonemptiness problems, originally defined for (complete)
argumentation frameworks, to extend these problems to incomplete
argumentation frameworks. While the computational complexity of
existence problems is already known for the standard model, we
provide a full analysis of the complexity for incomplete argumen-
tation frameworks using the most prominent semantics, namely, the
conflict-free, admissible, complete, grounded, preferred, and stable
semantics. We show that the complexity rises from NP-completeness
to Πp

2-completeness for most “necessary” problem variants when un-
certainty is allowed.

1 Introduction

Alice (A) and Bob (B) want to buy a house together. They look at
two houses and are now discussing which of them they should buy,
weighing up their advantages against their disadvantages.

A: I liked the big garden in the second house. It would be great for
having a barbecue with our friends.

B: The garden is great but also a lot of work. I like the location of
the first house, so I could ride my bike to work.

A: Yes, that would be good, but did you see the mold in the living
room? That would very unhealthy for us, or expensive to get rid
of.

B: Nope, I didn’t see that. I was just looking at the giant flat-screen
TV set we would have there.

A: You do realize that the previous owners will take their stuff with
them when they leave? So there won’t be a TV set in this house
when we move in. And the mold in the living room is really a
problem.

B: Well, I’ve actually read that mold spores help to have a quite
healthy environment: They kill off all sorts of microbes, includ-
ing really dangerous human pathogenic viruses.

A: What? That’s bullshit. Where’d you get that from?
B: From the internet, so it must be true.

Discussions like this can be represented using the well estab-
lished model of abstract argumentation frameworks introduced by
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Dung [13]. In this model, abstracting away from the actual con-
tents of arguments, a discussion is illustrated by a directed graph
whose vertices represent the arguments and whose edges display the
attack relation among the arguments. However, Dung’s model also
has a few shortcomings. For example, it cannot handle incomplete
information, like the argument mold from Alice that Bob were not
aware of. But not only arguments, also attacks can be uncertain due
to incomplete information. For instance, Bob believes that no attack
against buying his favorite house is coming from the argument mold.

Whether or not a definite argument attacks another definite argu-
ment very much depends on the agents’ individual beliefs, e.g., re-
garding causality of events. Lifting this from a private dispute among
a couple to a matter of public affairs that is crucial for mankind and
fiercely discussed these days, let us consider the abatement of carbon
emissions. While people might agree that there is global warming,
they may have different views on what is causing global warming
(i.e., whether it is human-induced or not): While some might view
“global warming” attacking the argument that “due to increasing en-
ergy demand there is a need to build more coal-fired power plants,”
others might outright deny the existence of that attack.

For such a scenario, a suitable extension of the model is needed.
Baumeister et al. [5] present the concept of incomplete argumenta-
tion framework, which can handle uncertainty and incomplete infor-
mation. The idea of uncertainty in abstract argumentation was first
studied by Coste-Marquis et al. [10] for uncertain attacks. Later on,
Baumeister et al. studied abstract argumentation with uncertain ar-
guments [6] and with uncertain attacks [3]. They then generalized
both ideas into one unified model of incomplete-information abstract
argumentation [5]. An incomplete argumentation framework repre-
sents a set of possibilities—we can either include an uncertain ele-
ment or leave it out of our system, which is captured by so-called
completions.

The reasoning problems of verification (which refers to acceptabil-
ity of a set of arguments with respect to some semantics) and of either
credulous or skeptical acceptance (both referring to acceptability of
a single argument with respect to some semantics) have already been
studied for incomplete argumentation frameworks by Baumeister et
al. [5, 4]. Completing their work, we tackle the existence problem
and the nonempty-existence (or, nonemptiness, for short) problem of
semantics in incomplete argumentation frameworks. The (nonempty)
existence problem refers to the question of whether, given an argu-
mentation framework and a semantics, there exists an acceptable (or,
a nonempty acceptable) set of arguments with respect to the given
semantics in the first place. While this is trivial for some semantics,
it is quite hard to answer for some others. Existence problems are
the foundation of reasoning in abstract argumentation, so an analysis
of existence problems for incomplete argumentation frameworks is
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Figure 1. Argumentation framework from Example 1

sorely missing and crucially needed.
Following previous work [5, 4], we look at possible and necessary

variations of our existence problems: Does there exist a completion
such that there is a set of arguments satisfying the condition of a
given semantics (this is the possible problem variant); or, for every
possible completion, does there exist a set of arguments satisfying
the semantics (this is the necessary problem variant)?

This paper is structured as follows. In Section 2, we decribe the
formal models of abstract argumentation frameworks and its exten-
sion to incomplete argumentation frameworks as well as the exis-
tence and nonemptiness problems, followed by a full analysis of
the complexity of these two problems for incomplete argumentation
frameworks in Section 3. In Section 4, we summarize our results and
point out some related work in this field.

2 Model
In this section, we describe the notion of (abstract) argumentation
framework formally, which was first presented by Dung [13]. Then
we extend this model to incomplete argumentation frameworks, as
has been done by Baumeister et al. [5].

2.1 Abstract Argumentation Frameworks
An argumentation framework AF is a pair 〈A,R〉, where A is a
finite set of arguments and R is a set of attacks between arguments
with R ⊆ A × A. An argument a is said to attack b if (a, b) ∈ R.
We call an argument a acceptable with respect to a set S ⊆ A if
for each attacker b ∈ A of this argument a with (b, a) ∈ R, there
is an argument c ∈ S which attacks b, i.e., (c, b) ∈ R; we then say
that a is defended by c. An argumentation framework 〈A,R〉 can be
illustrated by a directed graph with vertex set A and edge setR.

Example 1. Let AF = 〈A,R〉 with A = {a, b, c, d} and R =
{(a, b), (b, c), (c, d), (d, c)} be an argumentation framework. The
corresponding graph is shown in Figure 1. Argument b is not ac-
ceptable with respect to A, as b is not defended against a’s attack.
On the other hand, c is acceptable with respect to A, as a defends c
against b’s attack and c defends itself against d’s attack.

In addition to argumentation frameworks, Dung [13] also intro-
duced the notion of semantics—properties that a set of arguments
should satisfy to be considered acceptable in an argumentation. A set
of arguments that satisfies a given semantics is called an extension.

The first semantics we consider is conflict-freeness. The idea be-
hind it is that a set of acceptable arguments must not contain argu-
ments that contradict (i.e., that attack) each other.

Definition 2. A set S ⊆ A is conflict-free (CF) if there are no argu-
ments a and b in S such that (a, b) ∈ R.

For every argumentation framework, there is at least one conflict-
free extension. In particular, the empty set is always conflict-free.

Definition 3. We call a conflict-free set S ⊆ A admissible (AD) if
every argument a ∈ S is acceptable with respect to S.

Definition 4. A set S ⊆ A is complete (CP) if S is admissible and
contains every argument that is acceptable with respect to S.

Definition 5. The characteristic function FAF of an argumentation
framework AF = 〈A,R〉 is a function FAF : 2A → 2A defined by

FAF (S) = {a ∈ A | a is acceptable with respect to S}.

A set S ⊆ A is grounded (GR) if S is the least fixed point of the
characteristic function of AF .

Definition 6. A set S ⊆ A is called preferred (PR) if it is a maximal
admissible set.

Definition 7. We call a conflict-free set S ⊆ A stable (ST) if for
each b ∈ A\S, there is at least one argument a ∈ S with (a, b) ∈ R.

Now, let us look at the correlations between the various semantics
defined above. The complete, grounded, stable, and preferred seman-
tics also satisfy conflict-freeness and admissibility. Every preferred,
grounded, or stable extension is also complete, and every stable ex-
tension is preferred.

For every argumentation framework, there always exists a conflict-
free, admissible, preferred, complete, and grounded extension. For
the stable semantics, existence is not guaranteed. Also, the grounded
extension is unique for any argumentation framework, whereas there
may be more than one extension for each of the other semantics.

We will study two variants of existence decision problems for the
above semantics in incomplete argumentation frameworks. For stan-
dard argumentation frameworks (in which there is no uncertainty re-
garding the arguments or attacks), the existence problem was first
discussed by Dimopoulos and Torres in [12] and later on by Dunne
and Wooldridge [16]. Let s ∈ {CF,AD,CP,GR, PR, ST} be any
of the above semantics and define the following problem:

s-EXISTENCE (s-EX)

Given: An argumentation framework AF = 〈A,R〉.
Question: Does there exist a set S ⊆ A satisfying the con-

ditions specified by semantics s?

The s-NONEMPTINESS (s-NE) problem is a refined version of
s-EXISTENCE and asks for the existence of a nonempty extension
S ⊆ A for the respective semantics. Some semantics s always
have an extension in every argumentation framework, making the
s-EXISTENCE problem trivial. The s-NONEMPTINESS problem, on
the other hand, is not trivial for any of the semantics considered here.

Both problems coincide for the stable semantics, which never pro-
duces empty extensions (provided that the set of arguments A is
nonempty, which we assume).

Observation 8. The problems ST-EX and ST-NE are the same, pro-
vided that there is at least one argument.

2.2 Incomplete Argumentation Frameworks

We now turn to the model of incomplete argumentation framework
that is due to Baumeister et al. [5].

Definition 9. An incomplete argumentation framework
〈A,A?,R,R?〉 partitions both the argument set and the attack
set into definite (A andR) and uncertain (A? andR?) elements.
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Figure 2. Incomplete argumentation framework from Example 10

An uncertain attack can be between any type of argument, so
R? ⊆ (A ∪ A?) × (A ∪ A?). These uncertain elements can be
added to or left out of an argumentation framework. For this oper-
ation, we introduce completions AF ∗ = 〈A∗,R∗〉 of an incom-
plete argumentation framework 〈A,A?,R,R?〉, which must satisfy
A ⊆ A∗ ⊆ A ∪ A? and R|A∗ ⊆ R∗ ⊆ (R ∪ R?)|A∗ . We call
R|A′ a restriction of an attack relation R to a set A′ of arguments,
withR|A′ = {(a, b) ∈ R | a, b ∈ A′}.

Example 10. Let IAF = 〈A,A?,R,R?〉 be an incomplete ar-
gumentation framework with argument sets A = {b, c, d} and
A? = {a} and attack relations R = {(a, b), (b, c), (d, c)} and
R? = {(c, d)}. The corresponding graph is shown in Figure 2. We
will always draw uncertain arguments and attacks dashed. An inter-
esting observation is the attack (a, b), this attack is drawn dotted,
because it is an attack between an uncertain argument a and a cer-
tain one, b, while this attack is certain, provided that both arguments
occur in the completion. That is, we are forced to add this attack to
a completion whenever the argument a is present in it. On the other
hand, if a is not in the completion, we must not add this attack to it.
Such attacks are called conditionally definite by Baumeister et al. [5].

3 Possible and Necessary Existence
In this section, we will formally define the problems of possible ex-
istence and nonemptiness necessary existence and nonemptiness in
Section 3.1 and study the former in Section 3.2 and the latter in Sec-
tion 3.3 in terms of their complexity.

3.1 Problem Definitions and Some Prerequisites
The semantics for incomplete argumentation frameworks are defined
on completions. We use the idea of possibly and necessarily satis-
fied properties. A property is possibly satisfied if there is at least one
completion of the incomplete argumentation framework in which this
property is satisfied. A property is necessarily satisfied if it is sat-
isfied in every completion of the incomplete argumentation frame-
work. Following this scheme, we can introduce the “possible” and
“necessary” variants of the existence and nonemptiness problems for
incomplete argumentation frameworks.

s-POSSIBLE-EXISTENCE (s-POSEX)

Given: An incomplete argumentation framework IAF =
〈A,A?,R,R?〉.

Question: Does a completionAF ∗ = 〈A∗,R∗〉 of IAF ex-
ist such that there exists an s-extension in AF ∗?

The s-POSSIBLE-NONEMPTINESS (s-POSNE) problem instead
asks for the existence of a nonempty extension ∅ ⊂ S ⊆ A∗ for the
respective semantics s. For the necessary variations of these prob-
lems, s-NECESSARY-EXISTENCE (s-NECEX) and s-NECESSARY-
NONEMPTINESS (s-NECNE), we ask if for all completions the con-
ditions of the s-EXISTENCE problem and the s-NONEMPTINESS

problem, respectively, are satisfied.

Our goal is to study these problems in terms of their computational
complexity, as has been done by Baumeister et al. [5] for the possi-
ble and necessary verification problems and by Baumeister et al. [4]
for the possible and necessary credulous and skeptical acceptance
problems. The relevant complexity classes all belong to the polyno-
mial hierarchy introduced by Meyer and Stockmeyer [20, 24], whose
zeroth level is P, whose first level consists of NP and coNP, and
whose second level consists of Σp2 = NPNP and Πp

2 = coNPNP.
We assume the reader to be familiar with the concepts of hardness
and completeness based on polynomial-time many-one reducibility,
and we refer the reader to, e.g., the textbooks by Papadimitriou [22],
and Rothe [23] for more background on computational complexity.

We will use a restricted version of the quantified satisfiabil-
ity (QSAT) problem for our reductions showing Π2SAT-hardness.
Specifically, employing and extending a general construction based
on the work of Dimopoulos and Torres [12] and Baumeister et al. [4],
we will use Π2SAT, the canonical problem for the complexity class
Πp

2 , which is defined below. Restricting Π2SAT even further by fix-
ing X = ∅ in its definition provides the NP-complete problem 3-
SAT, which we will use for showing NP-hardness.

Π2SAT

Given: A 3-CNF formula ϕ over a set X ∪Y of proposi-
tional variables.

Question: For all assignments τX on X , is there an assign-
ment τY on Y such that ϕ[τX , τY ] = true?

In this problem definition, X and Y are disjoint sets of proposi-
tional variables, ϕ is a formula in 3-CNF (conjunctive normal form
with at most three literals per clause) over these variables, τS is a
truth assignment on a set of literals S associated with the variables
in X and Y (i.e., a mapping τS : S → {true,false}), and ϕ[τS ]
is the truth value that ϕ evaluates to under the assignment τS .

Analogously to the construction of Baumeister et al. [4], we trans-
late a QSAT instance to one of two versions of incomplete argumen-
tation frameworks in Definition 11, the first being purely argument-
incomplete (i.e., R? = ∅) and the other purely attack-incomplete
(i.e., A? = ∅). We use this construction later in our proofs establish-
ing the complexity of these problems.

Definition 11. Given a Π2SAT instance (ϕ,X, Y ) with ϕ =
∧
i ci

and ci =
∨
j αi,j for each clause ci, where αi,j are the liter-

als in clause ci, an argument-incomplete argumentation framework
〈A,A?,R〉 representing (ϕ,X, Y ) is defined by:

A = {x̄i, | xi ∈ X} ∪ {yi, ȳi | yi ∈ Y } ∪ {ci | ci in ϕ}
∪ {ϕ, d, g},

R = {(xi, x̄i) | xi ∈ X} ∪ {(yi, ȳi), (ȳi, yi) | yi ∈ Y }
∪ {(xk, ci) | xk in ci} ∪ {(x̄k, ci) | ¬xk in ci}
∪ {(yk, ci) | yk in ci} ∪ {(ȳk, ci) | ¬yk in ci}
∪ {(ci, ϕ) | ci ∈ ϕ} ∪ {(ϕ, d)}
∪ {(d, a) | a ∈ {g, xi, x̄i, yj , ȳj , ci}},

A? = {xi | xi ∈ X}.

Similarly, given (ϕ,X, Y ) as above, an attack-incomplete argumen-
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tation framework 〈A,R,R?〉 representing (ϕ,X, Y ) is defined by:

A = {xi, x̄i | xi ∈ X} ∪ {yi, ȳi | yi ∈ Y } ∪ {ci | ci in ϕ}
∪ {ϕ, d, g},

R = {(x̄i, xi) | xi ∈ X} ∪ {(yi, ȳi), (ȳi, yi) | yi ∈ Y }
∪ {(xk, ci) | xk in ci} ∪ {(x̄k, ci) | ¬xk in ci}
∪ {(yk, ci) | yk in ci} ∪ {(ȳk, ci) | ¬yk in ci}
∪ {(ci, ϕ) | ci ∈ ϕ} ∪ {(ϕ, d)}
∪ {(d, a) | a ∈ {g, xi, x̄i, yj , ȳj , ci}},

R? = {(g, x̄i) | xi ∈ X}.

Arguments ci are called clause arguments and arguments zi ⊆ αi,j
are called literal arguments. For every literal argument zi, there is
a counterargument z̄i. We construct a completion AF τX for a given
truth assignment τX onX from the constructed incomplete argumen-
tation frameworks above. For the argument-incomplete case, we con-
struct AF τX = 〈AτX ,RτX 〉, with xi ∈ AτX ⇔ τX(xi) = true.
For the attack-incomplete case, we generate AF τX = 〈AτX ,RτX 〉,
with AτX = A and (g, x̄i) ∈ RτX ⇔ τX(xi) = true. For
full assignments τX and τY , we denote a corresponding set of ar-
gumentsAτX [τX , τY ] = {xi | τX(xi) = true}∪ {x̄i | τX(xi) =
false} ∪ {yj | τY (yj) = true} ∪ {ȳj | τY (yj) = false} in
the completion AF τX .

Lemma 12. Let (ϕ,X, Y ) be a Π2SAT-instance, let 〈A,R,R?〉
or 〈A,A?,R〉 be an incomplete argumentation framework cre-
ated for the instance according to Definition 11. Let τX be an as-
signment on X . In the completion AF τX , the argument ϕ has to
be in every nonempty extension that satisfies the semantics s ∈
{AD,CP,GR, PR, ST}.

Proof. The argument d attacks every argument except ϕ, but we
cannot use d in any extension because it attacks itself and therefore
violates conflict-freeness. So if there is a nonempty s-extension, we
need to attack the argument d and ϕ is the only argument attack-
ing d. q

Lemma 13. Let (ϕ,X, Y ) be a given Π2SAT-instance and let τX
and τY be assignments on X and Y , respectively. Let IAF be an
incomplete AF created by Definition 11 for (ϕ,X, Y ). Let AF τX

be its completion corresponding to τX and let AτX [τX , τY ] be the
set of literal arguments corresponding to the total assignment. If
ϕ[τX , τY ] = true, then there exists an extension AτX [τX , τY ] ∪
{g, ϕ}, which is admissible, complete, preferred, and stable.

Proof. Assume that ϕ[τX , τY ] = true. From Lemma 12 we
know that ϕ is in every nonempty extension of AF τX . We show that
E = AτX [τX , τY ] ∪ {g, ϕ} is a stable extension in AτX . This will
imply that this extension is also admissible, complete, and preferred.

For an extension E to satisfy the stable semantics, it has to attack
every attacker of ϕ ∈ E and every argument not in the extension.
These attackers are the clause arguments ci. Every clause argument
is attacked by its literal arguments. Since we have a satisfying assign-
ment, for every clause at least one literal is satisfied. So, for every
clause argument, there is at least one literal argument attacking it in
AτX [τX , τY ]. A literal argument zi over X ∪ Y is part of the exten-
sion if it has a corresponding literal that is satisfied. For the Y argu-
ments, it is straightforward that we can use either yi or ȳi. For these
arguments, their attackers are always attacked. Up to this point, this
construction works on both variants, the purely argument-incomplete

and the purely attack-incomplete variant. The only distinction is the
X part of the literals.

Consider the argument-incomplete variant first. An argument xi
is part of a completion if the corresponding literal is satisfied. This
argument xi is then only attacked by d and also attacks its coun-
terargument x̄i. If the literal is not satisfied, xi is then not part of
the completion and x̄i is only attacked by d. Therefore, we can use
the arguments corresponding to the assignment of the literals in the
extension. In this variant, we have to use the argument g in the ex-
tension because it is only attacked by d, which cannot be used in any
conflict-free extension.

In the attack-incomplete variant, argument xi is attacked by its
counterargument x̄i. But if the literal xi is satisfied, then this coun-
terargument is attacked by g and g is only attacked by d. So argument
g cannot be attacked by any extension and we have to use this argu-
ment in any stable extension. If xi is not satisfied, then this attack
between g and x̄i is not in the completion and we can then use x̄i in
the extension. Therefore, every argument is either attacked by argu-
ments in E or is a member of E . So in both variants, the extension
contains ϕ, τX , τY , and g, and this extension is stable. q

With Lemmas 12 and 13, we see that the two constructions of
Definition 11 behave similarly and can therefore be interchanged. We
will only use the argument-incomplete case, yielding the hardness of
the problems for the general case with uncertainty for arguments and
attacks.

We start our complexity analysis by stating all cases where exis-
tence of an extension is trivial.

Proposition 14. For s ∈ {CF,AD,CP, PR,GR}, s-POSEX and
s-NECEX are trivial.

Proof. The empty set always exists and this set fulfills all the prop-
erties needed for each of the given semantics s. Hence, the answer to
this problem will always be “yes.” q

Next, we will provide hardness results for the remaining (nontriv-
ial) existence and nonemptiness problems.

3.2 Possible Existence and Nonemptiness
Before presenting our hardness results for the possible existence and
nonemptiness problems, we start with an easy polynomial-time algo-
rithm for conflict-freeness.3

Proposition 15. CF-NECNE and CF-POSNE are in P.

Proof. A set with only one argument and no self-attack is always
conflict-free and also nonempty. Thus, in an AF, we only need to find
one argument without a self-attack to get a nonempty conflict-free
extension in that AF. Conversely, if all arguments in an argumen-
tation framework have a self-attack, then no nonempty set of argu-
ments can be conflict-free.

Using these considerations, CF-POSNE can be solved by check-
ing whether all arguments—both certain and uncertain—in the given
incomplete AF have (conditionally) definite self-attacks. If yes, the
answer to CF-POSNE is “no,” and vice versa. Similarly, IAF ∈
CF-NECNE if and only if IAF has a definite argument with no def-
inite or uncertain self-attack. q

3 Note that Proposition 15 contains also a result on a necessary-nonemptiness
problem, CF-NECNE. Those problems are actually considered only in Sec-
tion 3.3. However, since this proof is closely related to the proof for CF-
POSNE, we provide both results together in the present subsection.
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Proposition 16. ST-POSEX is NP-complete.

Proof. To prove NP-membership, we look at the quantifier repre-
sentation. ST-POSEX can be written as

∃ completion AF ∗ of IAF : ∃E ⊆ A∗ : E is stable in AF ∗?

These two polynomial bounded existential quantifiers can be merged
into one existential quantifier, with an inner predicate in P, so the
problem is in NP.

Hardness of this problem can be deduced from the NP-hardness
of the ST-EX problem, which was shown by Chvátal [9]. q

From Observation 8 we know that the existence problem is the
same problem as the nonemptiness problem for the stable semantics.
From Proposition 16 it thus follows that ST-POSNE is NP-complete.

Corollary 17. ST-POSNE is NP-complete.

Proposition 18. For s ∈ {AD,CP, PR}, s-POSNE is NP-complete.

Proof. Again, we have two existential quantifiers in our problem
definition, which can be merged into one to provide an NP upper
bound for each of the problems considered.

The NP lower bounds are inherited from the s-NE problems for
the same semantics s, which were shown to be NP-complete by Di-
mopoulos and Torres [12]. q

On the other hand, for the grounded semantics, possible nonempti-
ness is easy to solve, though not in a trivial way.

Theorem 19. GR-POSNE is in P.

Proof. It is apparent that an AF has a nonempty grounded exten-
sion if and only if it has at least one unattacked argument—if the
AF has an unattacked argument, then this argument is a member
of the grounded extension, and if it doesn’t, then no argument can
be acceptable with respect to the empty set, so the empty set is the
grounded extension. Therefore, the GR-POSNE problem is equiva-
lent to asking whether an incomplete AF has a completion which has
an unattacked argument.

First, given an incomplete argumentation framework IAF =
〈A,A?,R,R?〉, we search in the minimal completion AF ∗ =
〈A,R|A〉 that only contains the definite parts of the incomplete ar-
gumentation framework. If AF ∗ has an unattacked argument, the
answer for the GR-POSNE instance is clearly “yes.” Otherwise, for
every uncertain argument x ∈ A?, let AF ∗x = 〈A ∪ {x},R|A∪{x}〉
be the completion that contains only x and all definite elements. If
any of these completions AF ∗x has an unattacked argument, we can
again answer “yes.” If none of them have an unattacked argument,
it is clear that no completion can have one, since adding several un-
certain arguments simultaneously or adding additional attacks can-
not produce unattacked arguments that were not unattacked before.
Therefore, we can answer “no” in this case.

This algorithm requires to check at most |A?|+ 1 completions for
unattacked arguments, which can be done in polynomial time. q

3.3 Necessary Existence and Nonemptiness
We now turn to the necessary existence and nonemptiness problems
(besides CF-NECNE, which has already been handled in Proposi-
tion 15, and the trivial cases of necessary existence problems handled
in Proposition 14) and show that most of them are hard for the second
level of the polynomial hierarchy. We start with the upper bounds for
the nonemptiness problems.

Proposition 20. For s ∈ {AD,CP, PR, ST}, s-NECNE is in Πp
2 .

Proof. To show membership, we can look at the quantifier repre-
sentation. We can formulate the problems as

∀ completion AF ∗ of IAF : ∃E ⊆ A∗ : E is s in AF ∗?

For this representation, we use polynomially length-bounded quan-
tifiers. The existentially quantified inner part is the problem s-
NONEMPTINESS—this problem is NP-complete, as shown by Di-
mopoulos and Torres [12]. Hence, we have an existential quantifier
followed by a statement checkable in polynomial time. This expres-
sion is preceded by a universal quantifier over completions. Both
quantifiers yield a problem in Πp

2 . q

Theorem 21. ST-NECEX is Πp
2-complete.

Proof. The Πp
2 upper bound of this problem follows immediately

from Observation 8 and Proposition 20.
To show Πp

2-hardness of this problem, we reduce from the problem
Π2SAT. Given a Π2SAT instance (ϕ,X, Y ), we create an argument-
incomplete argumentation framework IAF = 〈A,A?,R〉 according
to Definition 11.

Assume that for every assignment τX on X there exists an assign-
ment τY on Y such that ϕ[τX , τY ] is true. Then we have a “yes”-
instance of Π2SAT and we need to show that there is always a stable
extension E . In Lemma 13, we have shown that ifϕ[τX , τY ] = true
then there is an extension, namely E = AτX [τX , τY ] ∪ {g, ϕ}, that
satisfies the stable semantics.

For the other direction of the proof, assume there exists a stable
extension E . The argument d cannot be in E , because it attacks itself.
Therefore, this extension contains ϕ, as it is the only argument that
attacks d and for an extension to be stable, for each argument that it
does not contain, it must contain an argument attacking the outside
argument. The arguments ci cannot be in E , since they all attack ϕ
and because for an extension to be stable, it must be conflict-free.

The only arguments left are the literal arguments zi ∈ X ∪ Y and
the argument g. It is obvious that we need either zi or z̄i for a stable
extension and cannot use both. Since we have a stable extension,
every ci must be attacked by at least one zi in E . Now, there could
still be some literals zj for which neither argument zj nor argument
z̄j are in E . For each of these, either zj or z̄j (but not both) must be
in E . Finally, g is in E , since ϕ defends it against its only attacker d.

Consequently, we can define a total assignment based on the stable
extension E depending on whether the literal arguments are in or
out of E : If an argument zi is in E , we set the corresponding literal
αi,j to true; and if it is not, we set ¬αi,j to true. We know that
this assignment must be a satisfying assignment, since every clause
argument is attacked by E and, accordingly, every clause is satisfied
by the assignment. q

Example 22. Consider the Π2SAT instance ϕ = (x1 ∨ ¬y1) ∧
(y1 ∨ ¬y2), with X = {x1} and Y = {y1, y2}. We get A =
{x̄1, y1, ȳ1, y2, ȳ2, c1, c2, ϕ, d, g} andA? = {x1} by using our con-
struction. This instance is a “yes”-instance of Π2SAT, since for ev-
ery assignment τX on X , there is an assignment τY on Y such
that ϕ[τX , τY ] = true—in particular, the assignment τY (y1) =
false and τY (y2) = false satisfies ϕ irrespective of the assign-
ment on X used.

Figure 3 shows the corresponding graph. This ST-NECEX in-
stance is a “yes” instance, too: For τ1X with τ1X(x1) = true, the
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Figure 3. Graph for Example 22

set {ϕ, x1, ȳ1, ȳ2, g} is stable in the completion AF τ
1
X , and for τ2X

with τ1X(x1) = false, the set {ϕ, x̄1, ȳ1, ȳ2, g} is stable in the
completion AF τ

2
X , so there exists a stable extension in every com-

pletion.

From Observation 8 we know that the existence problem is the
same as the nonemptiness problem for the stable semantics. With
Theorem 21 we thus obtain that ST-NECNE is Πp

2-complete.

Corollary 23. ST-NECNE is Πp
2-complete.

Theorem 24. AD-NECNE, CP-NECNE, and PR-NECNE each are
Πp

2-complete.

Proof. The Πp
2 upper bounds have been shown in Proposition 20

already.
To prove the Πp

2 lower bounds, we can use the same construc-
tion as in the proof of Theorem 21. Specifically, we construct an
argument-incomplete IAF = 〈A,A?,R〉 from a Π2SAT instance
(ϕ,X, Y ) according to Definition 11. We know from Lemma 12 that
ϕ has to be in every nonempty extension, which satisfies the admis-
sible semantics. We also know that E = AτX [τX , τY ]∪{g, ϕ} is an
admissible extension if ϕ[τX , τY ] = true. For the other direction
of this proof, we can use the same idea as in Theorem 21.

With the admissible extension we can also prove the CP and PR
cases, because here, the admissible extension contains every argu-
ment that is acceptable with regard to E . So this extension is com-
plete. Also, every argument is either in E and acceptable, or not in
E and not acceptable. Consequently, we cannot add any arguments
to our extension E and, therefore, this extension is maximal admis-
sible, that is, it is preferred. If a nonadmissible completion exists for
the incomplete argumentation framework, then at least one ci is not
attacked. Hence, ϕ cannot be acceptable by this extension and we
cannot find any nonempty preferred or complete extension. q

Finally, we turn to necessary nonemptiness for the grounded se-
mantics. While the necessary existence problem, GR-NECEX, was
shown to be efficiently solvable on purely trivial grounds in Proposi-
tion 14, GR-NECNE is also efficiently solvable but by an algorithm
that is far from trivial.

Theorem 25. GR-NECNE is in P.

Proof. The idea behind this proof is to prevent the existence of a
grounded extension. Assume we have an incomplete argumentation
framework. We start with a completion that contains no uncertain ele-
ments and then add arguments or attacks, which can possibly destroy
a grounded set.

To this end, we first look at two extreme cases separately, concern-
ing attack-incompleteness and argument-incompleteness, and then
combine them so as to capture the general case.
Case 1 (attack-incompleteness): For purely attack-incomplete ar-
gumentation frameworks, we can just add all possible attacks to the
argumentation framework. In this maximal completion, the set of
unattacked arguments is minimal, because, by adding attacks to a
completion, the number of unattacked arguments can decrease or
maybe stay the same, but it cannot grow.

If there exists a nonempty grounded extension in the maximal
completion, then there must be a nonempty grounded extension in
every completion, since every argument that is unattacked in the
maximal completion is also unattacked in any other completion.
Constructing the maximal completion and testing if there exists a
nonempty grounded extension in the maximal completion is possible
in (deterministic) polynomial time.
Case 2 (argument-incompleteness): For purely argument-
incomplete argumentation frameworks, we add all arguments to
our completion that are attacked by at least one other argument
contained in this completion. We begin with the argumentation
framework AF0 = 〈A0,R〉, where we only use the arguments that
are certain. That is, A0 = A for any incomplete argumentation
framework AF ∗ = 〈A,A?,R,R?〉.

Step by step, we now add uncertain arguments that are attacked by
arguments from the previous step, i.e., AFi+1 = 〈Ai+1,R〉 with

Ai+1 = Ai ∪ {a | (b, a) ∈ R ∧ b ∈ Ai}.

With the addition of uncertain arguments, we may also add
some conditionally definite attacks to the completion. So we add
no unattacked argument and possibly add attacks to some previ-
ously unattacked arguments. Consequently, we minimize the set of
unattacked arguments.

When looking at the algorithm from Modgil and Caminada [21]
for generating grounded sets, we can see that the starting points are
the unattacked arguments. In the modified completion we do not
add new starting points. By adding more arguments to a comple-
tion, some previously unattacked arguments can be attacked by these
new arguments, because these new arguments may have condition-
ally definite attacks against other arguments.

If there exists a nonempty grounded extension in the thus modified
argumentation framework, then there must be a nonempty grounded
extension in every other completion, and the process of checking if
there is a grounded extension in a complete argumentation frame-
work can again be done in (deterministic) polynomial time.
Case 3 (general case): For the general case, we can just combine
both solutions. We first add all uncertain attacks to the completion
according to Case 1, and then add arguments according to Case 2
to the completion. Therefore, we minimize the set of unattacked ar-
guments and if there exists a grounded extension in this case, there
exists a grounded extension in every other completion as well. q

Example 26. Now, let us have a look at an example for the
problem GR-NECNE. Let IAF = 〈A,A?,R,R?〉 be an incom-
plete argumentation framework with A = {a, b, c, d, g}, R =
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Table 1. Summary of complexity results. NP-c stands for “NP-complete” and Πp2-c for “Πp2-complete.” Results due to this paper are marked by the
corresponding theorem, proposition, or corollary, and results due to previous work are marked by the respective reference.

EX NE POSEX POSNE NECEX NECNE

CF trivial trivial trivial (Prop. 14) in P (Prop. 15) trivial (Prop. 14) in P (Prop. 15)
GR trivial in P [21] trivial (Prop. 14) in P (Thm. 19) trivial (Prop. 14) in P (Thm. 25)
AD trivial NP-c [12] trivial (Prop. 14) NP-c (Prop. 18) trivial (Prop. 14) Πp

2-c (Thm. 24)
CP trivial NP-c [12] trivial (Prop. 14) NP-c (Prop. 18) trivial (Prop. 14) Πp

2-c (Thm. 24)
PR trivial NP-c [12] trivial (Prop. 14) NP-c (Prop. 18) trivial (Prop. 14) Πp

2-c (Thm. 24)
ST NP-c [9] NP-c [9] NP-c (Prop. 16) NP-c (Cor. 17) Πp

2-c (Thm. 21) Πp
2-c (Cor. 23)

a b c

d ef

g

Figure 4. Graph for Example 26

{(a, b), (b, c), (c, d), (b, d), (d, e), (e, g), (f, d)}, A? = {e, f}, and
R? = {(b, a)}. The corresponding graph is depicted in Figure 4. The
grounded extension for the minimal completion that drops all uncer-
tain elements is {a, c, g}. The arguments a and g have no attack-
ers, so they must be in the grounded extension, and a also defends c
against b. Looking first at the uncertain attacks (Case 1), we add the
attack (b, a). Since argument a now is attacked, it must leave and so
can no longer defend c; therefore, the grounded extension only con-
tains g now. For the uncertain arguments (Case 2), we first look at the
argument f . We do not add this argument to the completion because
it has no attackers. Otherwise, the set of unattacked arguments would
get bigger, increasing the chance for a nonempty grounded exension.
But we would add e to the completion, because d attacks e, so e is
already attacked in the completion. When we combine both cases
(Case 3), we first add the attack between (b, a) and then the argu-
ment e to the completion. Here, the grounded extension is empty at
the end, showcasing that the algorithm successfully identified a com-
pletion with no nonempty grounded extension and correctly provides
a “no” answer to this GR-NECNE instance.

4 Conclusion

The contribution of this work is to solve the open questions of the
existence and nonemptiness problems for incomplete argumentation
frameworks. We pinpointed the complexity of two variations of both
problem, the possible and the necessary variant. A summary of all
results can be found in Table 1. When we compare the complexity of
the incomplete problems with their corresponding complete versions,
we can see that the complexity for the possible cases stays the same
(due to collapsing existential quantifiers), whereas the complexity of
the necessary cases grows to Πp

2 for several semantics. The s-POSNE

and s-NECNE problems for s ∈ {CF,GR} have the same complex-
ity as the respective base problem for standard argumentation frame-
works, while not relying on collapsing quantifiers.

Beside the original semantics we covered in this work, there are
more semantics like the stage semantics [25], the CF2 semantics [1],

the semi-stable semantics [7], or the ideal semantics [14]. The com-
plexity of IAF generalizations of existence problems for these se-
mantics is an interesting task for future work.

Other models that also represent uncertainty in AFs include Con-
trol AFs (CAFs) by Dimopoulos et al. [11] which also incorporate
uncertainty in the form of a control part and an uncertain part, simi-
lar to uncertain arguments in IAFs. The results obtained in our paper
could potentially be adapted for CAFs. Cayrol et. al. [8] introduce
attack-incomplete AFs as Partial AFs (PAFs). Instead of reducing
the semantics of PAFs to the semantics of AFs via completions (like
IAFs do), they define new semantics for Partial AFs, which coincide
with the completion-based approach for conflict-freeness, but gen-
erally not for the more advanced semantics. Maher [19] presents a
model of strategic argumentation, which simulates a game between
a proponent P and an opponent O, where P tries to make an argu-
ment a accepted, while O tries the opposite. In this model, there are
three sets of arguments,ACom (common knowledge),AP (arguments
of P), and AO (arguments of O), where AP and AO are compara-
ble to uncertain arguments in IAFs. However, this model allows no
uncertain attacks between arguments; every attack is definite. Fur-
ther, IAFs have some similarities to AF expansion due to Baumann
and Brewka [2], where new arguments and new attacks incident to
at least one new argument may be added. Opposed to IAFs, the set
of new arguments and attacks is not fixed, and new attacks among
existing arguments are not allowed.

Existence and nonemptiness problems are not the only interesting
problems for incomplete argumentation frameworks. As mentioned
earlier, Baumeister et al. [5] studied verification problems. A sec-
ond question that was already studied for incomplete argumentation
frameworks are acceptance problems. There are two important vari-
ants of them: One is credulous acceptance, where the question is
whether a given argument belongs to some extension for a certain
semantics; the other is skeptical acceptance, where the question is
whether an argument is in every extension satisfying a certain seman-
tics. For this problem, Baumeister et al. [4] showed that the complex-
ity grows in the incomplete case compared to the complete case.

Another variation of our model could be to add weights to the un-
certain elements. So far, we tried to minimize extensions only with
respect to the number of arguments in them. Also, in the model
used here, arguments and attacks are treated essentially equally,
which may not always be intended, especially not with uncertainty
in the model. Previous work from Dunne et al. [15], who looked at
weighted attacks, could help to better refine our model. Similarly, Li
et al. [18] followed a probabilistic approach, using probabilities both
for arguments and attacks, and later on, Fazzinga et al. [17] studied
the complexity of problems defined in this probabilistic model.

Acknowledgements: The research reported here was supported by
the Deutsche Forschungsgemeinschaft under grants KE 1413/11-1
and RO 1202/14-2.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



REFERENCES

[1] P. Baroni, M. Giacomin, and G. Guida, ‘SCC-recursiveness: A general
schema for argumentation semantics’, Artificial Intelligence, 168(1-2),
162–210, (2005).

[2] R. Baumann and G. Brewka, ‘Expanding argumentation frameworks:
Enforcing and monotonicity results’, in Proceedings of the 3rd Interna-
tional Conference on Computational Models of Argument, pp. 75–86.
IOS Press, (September 2010).

[3] D. Baumeister, D. Neugebauer, and J. Rothe, ‘Verification in attack-
incomplete argumentation frameworks’, in Proceedings of the 4th In-
ternational Conference on Algorithmic Decision Theory, pp. 341–
358. Springer-Verlag Lecture Notes in Artificial Intelligence #9346,
(September 2015).

[4] D. Baumeister, D. Neugebauer, and J. Rothe, ‘Credulous and skeptical
acceptance in incomplete argumentation frameworks’, in Proceedings
of the 7th International Conference on Computational Models of Argu-
ment, pp. 181–192. IOS Press, (2018).

[5] D. Baumeister, D. Neugebauer, J. Rothe, and H. Schadrack, ‘Verifica-
tion in incomplete argumentation frameworks’, Artificial Intelligence,
264, 1–26, (2018).

[6] D. Baumeister, J. Rothe, and H. Schadrack, ‘Verification in argument-
incomplete argumentation frameworks’, in Proceedings of the 4th In-
ternational Conference on Algorithmic Decision Theory, pp. 359–
376. Springer-Verlag Lecture Notes in Artificial Intelligence #9346,
(September 2015).

[7] M. Caminada, ‘Semi-stable semantics’, in Proceedings of the 1st Inter-
national Conference on Computational Models of Argument, pp. 121–
130. IOS Press, (September 2006).

[8] C. Cayrol, C. Devred, and M. Lagasquie-Schiex, ‘Handling igno-
rance in argumentation: Semantics of partial argumentation frame-
works’, in Proceedings of the 9th European Conference on Symbolic
and Quantitative Approaches to Reasoning and Uncertainty, pp. 259–
270. Springer-Verlag Lecture Notes in Artificial Intelligence #4724,
(November 2007).
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