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Abstract. In recent years, the mean field theory has been applied to
the study of neural networks and has achieved a great deal of success.
The theory has been applied to various neural network structures,
including CNNs, RNNs, Residual networks, and Batch normaliza-
tion. Inevitably, recent work has also covered the use of dropout. The
mean field theory shows that the existence of depth scales that limit
the maximum depth of signal propagation and gradient backpropa-
gation. However, the gradient backpropagation is derived under the
gradient independence assumption that weights used during feed for-
ward are drawn independently from the ones used in backpropaga-
tion. This is not how neural networks are trained in a real setting.
Instead, the same weights used in a feed-forward step needs to be
carried over to its corresponding backpropagation. Using this realis-
tic condition, we perform theoretical computation on linear dropout
networks and a series of experiments on dropout networks with dif-
ferent activation functions. Our empirical results show an interesting
phenomenon that the length gradients can backpropagate for a sin-
gle input and a pair of inputs are governed by the same depth scale.
Besides, we study the relationship between variance and mean of
statistical metrics of the gradient and shown an emergence of uni-
versality. Finally, we investigate the maximum trainable length for
deep dropout networks through a series of experiments using MNIST
and CIFAR10 and provide a more precise empirical formula that de-
scribes the trainable length than original work.

1 Introduction
Deep neural networks have achieved exceptional results in a range of
fields since its inception [11]. Recent seminal innovations have been
proposed to improve the performance of neural networks further. For
example, residual networks [7] and batch normalization [8], which
were introduced to overcome the gradient vanishing and exploding
problem, enabled the trainable length to be very deep. Another tech-
nology is the dropout [22], which is a regularization technique for
reducing the over-fitting problem. It is also the focus of this paper. In
dropout, network units are randomly dropped during training, which
can prevent complex co-adaptations [22].

More recently, we have witnessed several signs of progress made
using mean field theory [20, 21, 17] in deep learning. The mean
field considers networks after random initialization, whose weights
and biases were i.i.d. Gaussian distributed, and the width of each
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layer tends to infinity. As a result of studying signal propagation un-
der mean field theory, an order-to-chaos expressivity phase transition
split by a critical line has been found [20]. Later, how parameter ini-
tialization may impact the gradient of backpropagation was studied,
and the conclusion that the ordered and chaotic phases correspond to
regions of vanishing and exploding gradient respectively was shown
[21]. The results were also equivalently applied to networks with or
without dropout.

The main contribution of the mean field theory for random net-
works is that it shows the existence of depth scales that limit the
maximum depth of signal propagation and gradient backpropagation.
Practically, the result is to show a hypothesis that random networks
may be trained precisely when information can travel through them.
Thus, the depth scales provide bounds on how deep a network may
be trained for a specific choice of hyper-parameters [21]. This ansatz
was tested and verified by practical experiments on MNIST and CI-
FAR10 dataset with wide width fully-connected networks [21], deep
dropout networks [21], and residual networks [24].

However, the mean field calculation for the gradient is based on
the so-called gradient independence assumption, which states that
the weights used during feed forward are drawn independently from
the ones used in backpropagation. This is in an effort to make the
calculation of gradient feasible regardless of the choice of activation
functions. This assumption was later formulated explicitly [24] for
residual networks and was illustrated in a review [25]. While it en-
joys the correct prediction of gradient dynamics in some cases, our
experiments show that under the condition in which the weights in
feed-forward are carried over to its backpropagation, the length that
gradients can backpropagate for a single and a pair of inputs are gov-
erned by the same depth scale on deep dropout networks instead.

By further studying the mean and variance of gradient statistics
metrics on deep dropout networks, we show an emergence of uni-
versality for the relationship between the mean and variance. This
universality exists regardless of the choice of hyper-parameters, in-
cluding dropout rate and activation function. After summarizing the
theoretical results about the trainable length of deep dropout net-
works governed by maximum depth of signal propagation and gradi-
ent backpropagation, we perform a series of experiments to investi-
gate it. Empirically, we find a more precise way to describe the max-
imum trainable length for deep dropout networks, compared with the
original results [21].

2 Related Work

The mean field theory has been applied to different network archi-
tectures, including CNNs [10], RNNs [15], Residual networks [7],
Batch normalization [8], LSTM [5], and GRUs [2]. These networks
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Figure 1. The iterative squared length mapping of Equation (2) and Equation (4) with different activations and dropout rates. (a) The iterative length map of
qlaa on a Linear network at σw = 0.5 and σb = 1.5. Theoretical predictions (solid lines) match well with network simulations (dots) within a standard error

(shadow). The intersection between map and unity line determine its fixed points q∗ab. Different color correspond to different dropout rates: ρ = 1 is red,
ρ = 0.7 is green, and ρ = 0.4 is blue. (b) The iterative length map of qlaa on a Tanh network at σw = 2.5 and σb = 0.5. (c) The iterative length map of clab

on a ReLU network at σw = 0.9 and σb = 0.5. Only intersection of network at ρ = 1 (red) is c∗ab = 1, the others are c∗ab < 1. (d) The iterative length map of
clab on a Erf network at σw = 0.9 and σb = 0.5. Again, c∗ab = 1 only holds at ρ = 1.

have been investigated by [23, 1, 24, 26, 6], respectively, which form
a large family of the mean field theory for deep neural networks.

Following the mean field theory, [17] studied all singular values
of the input-output Jacobian and found a strong connection between
dynamical isometry and fast training speed. Later, the analysis of the
spectrum of input-output Jacobian has been developed to provide a
detailed analytic understanding [18] and a nonlinear random matrix
theory for deep learning [19]. The study of the spectrum of input-
output Jacobian is based on the mean field theory, which will not be
addressed in this work since it is trivial to extend the analysis method
by [17] to the dropout networks.

In contrast to the mean field theory view to the random networks,
[3] studied the relationship between random networks and kernels
while [12, 14] adopted another view of Gaussian processes (GPs) in
the realm of Bayesian learning. The correspondence between single
infinite neural networks and Gaussian process was first observed by
[16]. Moreover, a study of the dynamics of networks in the infinite
width limit, termed as the neural tangent kernel, has achieved great
success [9, 13] recently.

Finally, dropout training in deep neural networks can be viewed
as approximate Bayesian inference in deep Gaussian processes [4].
Further, dropout can be used in the Neural Network GP [12]. While
this topic is interesting, we do not include the Bayesian learning of
random dropout networks in our work.

3 Background

In this section, we review the mean field theory for deep dropout
networks. We give the main definitions, setup, and notations, and in-
troduce the results of theory for random networks at initialization,
including signal feed-forward and gradient backpropagation, respec-
tively.

3.1 Feed Forward

Consider a feed-forward, fully-connected, untrained, and dropout
network of depth L with layer width N . We denote synaptic weight
and bias for the l-th layer by W l

ij and bli; pre-activations and post-
activations by zli and yli respectively. Finally, we take the input to be

y0i = xi and the dropout keep rate to be ρ. The information propaga-
tion in this network is governed by,

zli =
1

ρ

∑
j

W l
ijp

l
jy
l−1
j + bli, yli = φ(zli), (1)

where φ : R → R is the activation function and p ∼ Bernoulli(ρ).
We adopt the mean field theory assumption [20, 21], where W l

ij ∼
N (0,

σ2
w
N

), bli ∼ N (0, σ2
b ), and the width N tends to infinite. Since

the weights and biases are randomly distributed, these equations de-
fine a probability distribution on the pre-activations over an ensemble
of untrained neural networks. Under the mean field approximation,
zli can be replaced by a Gaussian distribution with zero mean.

Consider a single input xi;a, where the subscript a refers to the in-
dex of input. We define the length quantities qlaa = 1

N

∑N
i=1(z

l
i;a)

2,
which is the mean squared pre-activations. According to the mean
field approximation, the length quantity is described by the recursion
relation,

qlaa =
σ2
w

ρ

∫
Dzφ2(

√
ql−1
aa z) + σ2

b , (2)

where
∫
Dz = 1√

2π

∫
dze−

1
2
z2 is the measure for a normal distri-

bution. This equation describes how a single input evolves through
a random neural network. To study the property of evolution, we in-
vestigate the fixed point at q∗aa ≡ liml→∞ q

l
aa. One way to estimate

the fixed point is to plot Equation (2) with the unity line, and the in-
tersection is the fixed point. We show the result for Equation (2) with
Linear dropout network and Tanh dropout network in Figure 1(a)(b).
Note that the smaller the dropout rate ρ, the larger the fixed point
value q∗aa.

The propagation of a pair of inputs xi;a and xi;b, where the sub-
script a and b refer to different inputs, can be studied by looking
at the correlation between the two inputs after l layers. We definite
this correlation quantity as qlab = 1

N

∑N
i=1(z

l
i;az

l
i;b). Similarly, the

correlation qlab will be given by the recurrence relation,

qlab = σ2
w

∫
Dz1Dz2φ(u1)φ(u2) + σ2

b , (3)

where u1 =
√
ql−1
aa z1 and u2 =

√
ql−1
bb (cl−1

ab z1 +
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√
1− (cl−1

ab )2z2), with

clab = qlab/
√
qlaaq

l
bb. (4)

This equation also have a fixed point at c∗ab ≡ liml→∞ c
l
ab. It is

known that c∗ab = 1 when ρ = 1, while c∗ab < 1 when ρ < 1 [21].
We show the result of Equation (4) on the ReLU and Erf dropout
networks in Figure 1(c)(d), which demonstrate the main conclusion
about fixed-point without (ρ = 1) and with (ρ < 1) dropout.

The main contribution of mean field theory for the fully-connected
networks without dropout (ρ = 1) is that it presents a phase diagram,
which is determined by a crucial quantity,

χ1 =
∂clab
∂cl−1
ab

= σ2
w

∫
Dz[φ′(√q∗z)]2. (5)

This quantity was firstly introduce by [20] to determine whether or
not the c∗ab = 1 is an attractive fixed point. When χ1 > 1, the fixed
point is unstable. Conversely, when χ1 < 1, the fixed point is sta-
ble. Thus, the critical line χ1 = 1 separates two phases. One is the
chaotic phase (χ1 > 1), where a pair of inputs end up asymptotically
decorrelated, and the other is the ordered phase (χ1 < 1), in which a
pair of inputs end up asymptotically correlated.

We give a comment on the difference between qlaa and clab here.
The random networks in the infinite width limit can be viewed as
the Gaussian processes, where qlaa and clab are the diagonal and non-
diagonal elements of the compositional kernel[12], respectively. In-
tuitively, the non-diagonal element of the kernel measures the cor-
relation between different data points while the diagonal component
measures the information of one input itself.

The study of information propagation shows the existence of a
depth-scales ξ2, which represent the length of propagation of the fol-
lowing qualities:

|clab − c∗ab| ∼ e−l/ξ2 . (6)

where ξ2 = |1/ logχ2|, with χ2 = σ2
w

∫
Dz1Dz2φ′(u∗1)φ′(u∗2),

where u∗1 =
√
q∗aaz1 and u∗2 =

√
q∗bb(c

∗
abz1 +

√
1− (c∗ab)

2z2).
Intuitively, the depth-scales ξ2 measures how far can correlation be-
tween two different inputs survives through the network.

3.2 Back Propagation

There is a duality between the forward propagation of signals and the
backpropagation of gradients. Given a loss E, we have

∂E

∂W l
ij

=
plj
ρ
φ(zl−1

j )δli, δli = φ′(zli)
pl+1
i

ρ

∑
j

δl+1
j W l+1

ji , (7)

where δli = ∂E

∂zli
. We define the metric of gradient for both a single

input and a pair of inputs cases:

glaa ≡
1

N2

∑
ij

(
∂Ea
∂W l

ij

)2, glab ≡
∣∣∣∣ 1

N2

∑
ij

∂Ea
W l
ij

∂Eb
W l
ij

∣∣∣∣. (8)

Within mean field theory, the scale of fluctuations of the gradi-
ent of weights in a layer will be proportional to q̃laa ≡ E

[
δli;aδ

l
i;a

]
,

which can be written as, glaa ∝ q̃laa [21]. On the other hand, the cor-
relation between gradients of a pair of inputs will be proportional to
q̃lab ≡ E

[
δli;aδ

l
i;b

]
, namely, glab ∝ q̃lab.

In order to work out the recurrence relation for q̃laa and q̃lab, an ap-
proximation was made [21], named gradient independence assump-
tion, that the weights used during forward propagation are drawn in-
dependently from the weights used in backpropagation. In this way,
the term φ′(zli), δ

l+1
j and W l+1

ji in Equation (7) can be addressed
independently. Then, the recurrence behavior of q̃laa and q̃lab are
achieved,

q̃laa = q̃l+1
aa χ1, q̃lab = q̃l+1

ab χ2. (9)

where we redefine the quantity χ1 for the dropout networks,

χ1 =
σ2
w

ρ

∫
Dz[φ′(√q∗z)]2. (10)

Equation (9) has an exponential solution with,

q̃laa = q̃Laae
−(L−l)/ξ1 , q̃lab = q̃Labe

−(L−l)/ξ2 . (11)

Similar to the signal propagation, gradient backpropagation can limit
the trainable length in the way of gradient vanishing or gradient ex-
ploding, which is measured by the depth-scales ξ1 and ξ2.

4 Gradient Backpropagation

In this section, we first calculate the metrics of gradient gaa and gab
theoretically without the gradient independence assumption on linear
dropout networks. We then conduct a series experiment for metrics
of gradient on deep dropout networks, including non-linear cases.
Finally, we show an emergence of a universal relationship between
mean and variance of metrics of the gradient.

4.1 Breaking the gradient independence
assumption

We follow the fact that weights used in a feed-forward are carried
over to its back-propagation. We first provide a theoretical treatment
to the linear networks in which we assume the output is the last layer
of network yLi = zLi without soft-max. The labels of data are set to
be zeros, and the loss is the mean squared loss.

For space reason, we omit details of the calculation and present the
primary analysis and final results here. The main problem is that we
should expand δl+1

j when calculating δli in Equation (7), since δl+1
j

can correlate withW l+1
ji without the gradient independence assump-

tion. Using glaa as an example, we perform:

1. Starting from the last layer L, we compute δLi,a = ∂Ea

∂zLi,a
= 2zLi,a

and use this result to compute gLaa = E
[
(
pLj,a
ρ
zL−1
j,a δLi,a)

2

]
.

2. Then we compute gL−1
aa = E

[
(
pL−1
j,a

ρ
zL−2
j,a δL−1

i,a )2
]

with the re-

sult of δL−1
i,a = ∂Ea

∂zLi,a

∂zLi,a

∂zL−1
i,a

=
∑
j 2z

L
j,a

pLi,a
ρ
WL
ji and zLi =

1
ρ

∑
jW

L
ijp

l
jz
L−1
j + bLi .

3. By parity of reasoning, we obtained the results for the penultimate
layer gL−2

aa . The correlation between terms that contain WL
ij and

WL−1
ij are considered.

4. As the index of the layer decreases, the amount of calculation
becomes larger and larger. Thus we use the induction method to
achieve the results for left layers.
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Figure 2. Theoretical calculations versus network simulations for metric of gradient. (a) glaa as a function of layer l, for a 200 layers random linear network
with σ2

w = 0.5 and σ2
b = 0.1. Excellent agreement is observed between empirical simulations of networks of width 1000 (dashed lines) and theoretical

calculations (solid lines). (b) glab as a function of layer l. Theoretical calculations (solid lines) fail to predict empirical simulations (dashed lines). (c) glab as a
function of layer l in the range of length l = 170− 200. Theoretical calculations (solid lines) can predict empirical simulations (dashed lines) in the few last
layers. (d) glab as a function of layer l. The solid lines are glab ∝ χ

L−l
1 for different ρ. Theoretical calculations failed to predict empirical simulations (dashed

lines).
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Figure 3. The metric of gradient with one and two different inputs, glaa (solid lines), g̃lab (dashed lines), and gl ∝ χL−l1 (dotted lines) as a function of layer l
with different activation. (a) ReLU network with σ2

w = 1.0 and σ2
b = 0.1. (b) Tanh network with σ2

w = 1.4 and σ2
b = 0.1. (c) Hard Tanh network with

σ2
w = 1.4 and σ2

b = 0.1. Excellent agreement is observed between empirical simulations of glaa, g̃lab, and formula gl = gl+1χ1.

We use the same approach to derive the result for glab. As a result, we
have,

glaa = 4(
q∗aa
ρ

)2(
σ2
w

ρ
)L−l[ρ+

L−l∑
j=1

(
σ2
w

ρ
)j ],

glab = 4(q∗ab)
2(σ2

w)
L−l[1 +

L−l∑
j=1

(
σ2
w

ρ2
)j ].

(12)

By analyzing the first formula of Equation (12), we find that
glaa = gl+1

aa χ1. This can be better observed by dividing the ex-
pression related to layer l into two factors: one is (σ

2
w
ρ
)L−l, and the

other is
∑L−l
j=1(

σ2
w
ρ
)j . The first factor accounts for glaa = gl+1

aa χ1,

where χ1 =
σ2
w
ρ

for linear dropout networks. And second factor will
be stable after several layers starting from the last layer L due to
σ2
w < ρ. We show an excellent match between the theoretical cal-

culation above with simulation using networks with width N = 500
and layer L = 200 over 100 different instantiations of the network
in Figure 2(a).

Despite the successful prediction of theoretical calculation for glaa,
our theoretical results for glab only hold on the case of ρ = 1 while
fail to predict the experimental behavior except for last few layers

when ρ < 1, as shown in Figure 2(b)(c). After a few layers from
L, the variances began to increase dramatically as shown in Figure
2(c). We noticed that unlike the case of computing qlab, using χ2 is
prohibitive for computing glab. On the other hand, we try a function
regarding χ1 to fit glab, and find an interesting observations that χ1

is a much more compatible term for glab, i.e, glab = gl+1
ab χ1. This is

demonstrated in Figure 2(d).
The incompatible phenomenon between theoretical calculation

and experimental results for glab begins with the emergence of vari-
ance, as shown in Figure 2(c). One possible explanation is that the
emergence of variance is caused by limited network length. Thus, we
can reduce this variance by increasing network length only. To check
if this explanation works, we further investigate the relationship be-
tween variance and mean of glab with different network widths N .
The answer is that glab = gl+1

ab χ1 holds regardless of the finite width.
We will demonstrate it in the next section.

After studying the gradient behavior at the linear networks, we
conduct a series of experiments on the nonlinear case since the theo-
retical formulation for nonlinear activation or with the soft-max layer
is intractable. We firstly use glab as the metric of gradient and find it
has a huge variance when ρ < 1. This is because the element of
the gradient matrix with a pair of inputs can be either negative or
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positive. To find a metric with low variance, we consider the metric
g̃lab ≡ 1

N2

∑
ij | ∂Ea

W l
ij

∂Eb

W l
ij

| whose elements are all positive. Besides,

it is the `1 norm of the gradient matrix.
We plot glaa and g̃lab as a function of l in Figure 3. Interestingly,

our simulations show that both glab and g̃ab are governed by χ1 in a
range of activations. Thus we make a conjecture that the relation,

glaa = gl+1
aa χ1, glab = gl+1

ab χ1, (13)

holds on deep dropout networks.

4.2 Emergence of Universality

We have studied three statistical metrics of the gradient, i.e. gaa, gab,
and g̃ab using their mean value. Inevitably, the variance of these met-
rics can give us essential information about the gradient. To do this,
we performed a series of experiments to obtain the mean and vari-
ance of gaa, gab and g̃ab with different activation and different net-
work width N .

First, we show the relationship between variance and mean of the
metric of gradient with different activations, including Linear, ReLU,
Tanh, and Hard Tanh. We denote the mean of gaa, gab and g̃ab as
ml
aa,ml

ab, and m̃l
ab, while naming the variance as V laa, V lab, and Ṽ lab

respectively. We show the variance as a function of mean in Figure
4, and find the emergence of universality between the variance and
mean regardless of dropout rate and choice of activation for gaa, gab,
and g̃lab.

The plot of variance as a function of mean shows a power-law
between them since it is like a straight line in the log-log plot. To
estimate the power, we use a simple equation V ∝ m2 to compare
with the experiment results. Surprisingly, all three curves are consis-
tent with V ∝ m2. Thus we make a conjecture that the universal
power coefficient between the variance and mean is 2.

Then, we investigate the relationship between variance and mean
with different network widthN and show the results in Figure 5. This
time, we perform experiments on the ρ = 0.9 Tanh networks with
different network width N . Again, the relationship between variance
and mean satisfies universality, which means the Equation (13) does
not depend on the network width of N .

We want to point out that we have performed the same investiga-
tion on qlaa and clab. However, we did not observe a similar universal
relationship between variance and mean of qlaa and clab. This may
occur due to the different behavior of qlaa (qlab) and glaa (glab). As
Equation (6) shows, the mean of clab will converge to a fixed point
after several layers, which means that the mean of clab will be stable
in deeper layers. So, we won’t expect a universal relation between
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Table 1. Summary of depth-scale for theoretical results i.e. signal propagation and gradient backpropagation, and empirical results under different condition
or assumption.

Summary feed-forward propagation gradient backpropagation empirical results
metric qaa qab gaa gab

realistic condition (our work) - ξ2 ξ1 ξ1 min{12ξ1, 12ξ2}
independent assumption [21] - ξ2 ξ1 ξ2 6ξ2
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Figure 6. The number of steps τ to reach test accuracy p ≈ 0.25 as a function learning rate η. (a) Network without dropout, colors reflect different network
depth L from 50 (black) to 400 (green). They all collapse to a single universal curve when the learning rate η is re-scaled by L. (b) Network with dropout

ρ = 0.99, colors reflect different network depth L from 20 (black) to 120 (green), additional L = 300 is colored blue for comparison. Curves with L ≤ 120
collapse to a universal curve without any re-scale. (c) Network with dropout ρ = 0.98, colors reflect different network depth L from 10 (black) to 55 (green),

additional L = 200 is colored blue for comparison. Curves with L ≤ 55 collapse to a universal curve without any re-scale.

the mean and the variance in this case.
In summary, we have tried all the freedom of parameters that we

can tune, the universal power coefficient between the variance and
mean remains the same. We conclude that once the topological struc-
ture of the neural network is set, the power coefficient is universal.

5 Experiments

According to the theoretical results, during feed-forward, we expect
that length-scale ξ2 controls the propagation of clab, while ξ1 mea-
sures the number of layers that gradient metrics glaa and glab can
survive during backpropagation. However, [21] claimed that both
networks with or without dropout networks have a limited trainable
length, which is governed by the depth-scale ξ2. As our experimental
results show, which be demonstrated later, this statement is not ex-
actly right. To summarize, we present the comparison for the length-
scale between [21] and our work in Table 1.

5.1 Training speed

Before investigating this problem, we study the relationship between
training speed and choice of hyper-parameters. We confine the hyper-
parameters at the critical line χ1 = 1 for the network with and
without dropout and train networks of a range of length with width
N = 400 for 103 steps with a batch size of 103 on the standard CI-
FAR10 dataset. Strictly speaking, χ1 = 1 is not the critical line when
ρ < 1, since χ2 < 1. For learning rates of each network, we consider
logarithmically spaced in steps 101. To search the optimal learning
rate, we select a threshold accuracy of p = 0.25 and measure the first

step τ when performance exceeds p. We show the steps τ as a func-
tion of learning rate η on the networks of dropout rate ρ = 1.0, 0.99,
and 0.98 in Figure 6.

We find that for networks without dropout, there is a universal
scaling τ = f1(ηL) between the steps and learning rate, where f1 is
a scaling function, as shown in Figure 6(a). Note that it is different to
the result that τ/

√
L = f ′1(ηL) in [17] where they use the standard

CIFAR10 dataset augmented with random flips, crops, and so on. The
difference may be caused by the pretreatment of the dataset in [17].
Besides, we study the networks with ρ = 0.99 and ρ = 0.98, and
find that the scaling τ = f2(η) can be kept under a limited length
L = 120 for ρ = 0.99 and L = 55 for ρ = 0.98, as shown in Figure
6(b) and (c) respectively.

5.2 Trainable length

Now we study the problem of trainable length. We consider random
networks of depth 10 ≤ L ≤ 250, and 1 ≤ σ2

w ≤ 4 with σ2
b = 0.05.

We train these networks using Stochastic Gradient Descent (SGD)
and RMSProp on MNIST and CIFAR10 with Gaussian and Orthog-
onal weights, which can be seen as another variant of weight initial-
ization in the mean field theory [17]. We perform four experiments
on the network without dropout (ρ = 1) with different datasets,
optimizer, and learning rate to conduct a comprehensive study, and
plot the results in Figure 7(a)-(d). Besides, four experiments are con-
ducted on the dropout networks (ρ < 1), and results are shown in
Figure 7(e)-(h). We color in bright yellow the training accuracy that
networks achieved as a function of σ2

w and L for different dropout
rates. From the heatmap, we can observe a boundary in which ac-
curacy began to drop. We noticed that there are two boundaries, left
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Figure 7. The training accuracy for neural networks as a function of the depth L and initial weight variance σ2
w from a high accuracy (bright yellow) to low

accuracy (black). Comparison is made by plotting 12ξ1 (white solid line), 6ξ2 (green dashed line), and 12ξ2 (white dashed line). (a) 2000 training steps of
ρ = 1 network with Gaussian weights on the MNIST using SGD. (b) 1000 training steps of ρ = 1 network with Gaussian weights on the MNIST using
RMSProp. (c) 2000 training steps of ρ = 1 network with Orthogonal weights on the MNIST. (d) 3000 training steps of ρ = 1 network with Orthogonal

weights on CIFAR10. (e) 3000 training steps of ρ = 0.99 network with Orthogonal weights on the MNIST. (f) 3000 training steps of ρ = 0.98 network with
Orthogonal weights on the MNIST using SGD. (g) 10000 training steps of ρ = 0.98 network with Gaussian weights on the MNIST. (h) 3000 training steps of

ρ = 0.95 network with Orthogonal weights on the MNIST using SGD.

and right. In order to show its relationship with ξ1 and ξ2, we super-
impose them onto the heatmap.

In figure 7(a), we use the same learning rate and optimizer as those
in Figure 5(a)-(c) of [21]. We use a learning rate of 10−3 for SGD
when L ≤ 200, and 10−4 for larger L. From the plot, we find the 6ξ2
underestimates the scope of train-ability in the σ2

w-L plane, while
12ξ1 is more compatible with the experimental result. We note the
phenomenon that 6ξ2 underestimates the scope of train-ability also
happened in Figure 5(b)(c) of [21]. In figure 7(b), we adopt the same
learning rate and optimizer as those in Figure 5(d) of [21], where
we use a learning of 10−5 and RMSProp optimizer. Here, the only
difference is that we use 1000 training steps instead of 300 training
steps in [21]. According to the simulation result, 12ξ1 (solid line) and
ξ2 (dashed line) are identical on the left boundary, while they differ
on the right side. We make a comparison between 12ξ1 and 12ξ2, and
find that 12ξ1 has a much better argument with the trainable length
while 12ξ2 overrates the trainable length on the right side.

Based on the analysis of Figure 7(a)(b), we may conclude that
12ξ1 can be used to measure the maximum trainable length of the
network without dropout. We further reinforce this conclusion by
performing experiments on different learning rates, weight initializa-
tion, and datasets. In figure(c), we use orthogonal weight initializa-
tion. In figure(d), we perform experiment on CIFAR10 dataset and
adopt a learning rate of η = c/L, where c is constant. These learn-
ing rates were selected for the reason that each learning rate can lead
to the fast step to a certain test accuracy at χ1 = 1, as shown in
Figure 6. In a word, we attribute the maximum trainable length to
L ≤ min{12ξ1, 12ξ2} = 12ξ1, where the relation ξ1 ≤ ξ2 holds on
the network without dropout.

Furthermore, we consider the dropout case in Figure 7(e)-(h). We
have studied three different dropout rate: ρ = 0.99 (Figure 7(e)),
ρ = 0.98 (Figure 7(f)(g)), and ρ = 0.95 (Figure 7(h)). We find that
both ξ1 and ξ2 have connections to the trainable length: the networks
appear to be trainable when L ≤ min{12ξ1, 12ξ2}. Networks on
the left side are influenced by 12ξ2 while they are constrained by the
12ξ1 on the right size. Note that the formula L ≤ min{12ξ1, 12ξ2}
is valid in the no dropout case as discussed above. To conclude, we
show an improved relationship between maximum trainable length
and length scale ξ1 and ξ2 than [21]. This conclusion that both ξ1
and ξ2 have connections to the trainable length instead of only ξ2
[21] is more compatible with the theoretical results.

6 Discussion

In this paper, we have investigated the dropout networks by calcu-
lating its statistical metrics of gradient during the backpropagation
at initialization and conjecture that both gradients metric with a sin-
gle input and a pair of inputs are governed by the same quantity χ1.
We further investigate the relationship between variance and mean of
statistical metrics empirically and find an emergence of universality.
Our finding of a universal relationship between variance and mean
of statistical metrics of gradient backpropagation suggests a deeper
mechanism behind it. This mechanism may be comprehended bet-
ter by studying more different network structures such as Resnet.
Finally, for networks with or without dropout, we attribute the max-
imum trainable length to the formula L ≤ min{12ξ1, 12ξ2}, which
is novel and important.
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