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Abstract. Aspect-level sentiment classification aims to distinguish
the sentiment polarity of each aspect in a given sentence. It is more
complex than text-level sentiment classification in that it is a fine-
grained task. Existing methods, which formulate this task as predict-
ing the sentiment polarity of a provided (sentence, aspect) pair, tend
to ignore the relationship between the sentiment polarity of aspects.
In this paper, we propose a sequence prediction model with a sen-
timent polarity fusion module which sequentially predicts the sen-
timent polarity of each aspect within sentence. Besides, we use the
temporal attention mechanism to keep track of what has been focused
on, which discourages repeated attention to the context words with
strong sentiment polarity when predicting the sentiment polarity of
different aspects. Experimental results on five benchmarking collec-
tions illustrate that our proposed model® outperforms a range of base-
line models by a substantial margin, and further demonstrate that the
relationship between the sentiment polarity of aspects is helpful to
solve the aspect-level sentiment classification.

1 Introduction

Aspect-level sentiment classification is an important task in the field
of natural language processing, which can be applied in many real-
world scenarios, such as opinion mining on the aspects of the prod-
uct. Given a sentence and an aspect occurring in the sentence, this
task aims at inferring the sentiment polarity (e.g. positive, negative,
neutral) of aspect. For example, in sentence “great food but the ser-
vice was dreadful!”, the sentiment polarity of aspect food is positive
while that of aspect service is negative.

In the early stage, most works typically used machine learning al-
gorithms and built sentiment classifier in the supervised manner to
handle the aspect-level sentiment classification. Among them, one of
the most successful approaches is feature based Support Vector Ma-
chine (SVM). Experts could design effective feature templates and
make use of external resources like parser and sentiment lexicons to
improve classifier performance [1], [8]. Although machine learning
algorithms have achieved acceptable results, they are mostly based
on feature-engineering which is expensive and needs labor cost.

In recent years, neural networks have achieved great success in the
field of sentiment classification [2]. With the development of neural
networks, they are also applied to the aspect-level sentiment classifi-
cation. For instance, Tang et al. introduced a deep memory network
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[21] for aspect-level sentiment classification which explicitly cap-
tures the importance of each context word when inferring the sen-
timent polarity of an aspect. Besides, to effectively identify which
words in the sentence are more important, some researchers designed
attention networks to address the aspect-level sentiment classification
and obtained comparable results, such as AE-LSTM [22]. Compared
with machine learning algorithms, neural network models are capa-
ble of learning the powerful features from the sentence without care-
ful feature-engineering and capturing semantic relationship between
context words and aspect in a more scalable way.

Though neural network models have achieved promising improve-
ments recently, there are still many details are not studied well, such
as taking the relationship between the sentiment polarity of aspects
into account. We assume that the relationship between the sentiment
polarity of different aspects contributes to improve the accuracy of
aspect-level sentiment classification. Look at a example “great food
but the service was dreadful!”. Here, according to the conjunction
but, we could know that the relationship between the sentiment polar-
ity of aspect food and service is opposite*. This relationship enables
the model to infer the sentiment polarity of aspect service accord-
ing to that of aspect food. Therefore, there are two ways to judge
the sentiment polarity of aspect service intuitively. One is based on
the descriptor dreadful of aspect service; The other is based on re-
lationship between the sentiment polarity of aspect food and service
when the sentiment polarity of aspect food and the conjunction but
are already known. However, most existing neural network models
only consider the first way but ignore the other. In other words, most
models identify the descriptor of aspect to solve the aspect-level sen-
timent classification by modelling the semantic relationship between
sentence and aspect.

In this paper, inspired by the tremendous success of sequence-to-
sequence framework in machine translation [11], abstractive summa-
rization [18] and other domains, we propose a sequence prediction
model to solve the aspect-level sentiment classification. The pro-
posed model consists of an encoder and a decoder with attention
mechanism. The decoder uses a long short-term memory (LSTM) [6]
to predict the sentiment polarity of each aspect in a given sentence se-
quentially. To be specific, at time-step ¢, the decoder inputs the previ-
ous state, the representation vector of ¢-th aspect and the embedding
vector of sentiment polarity of ¢-1-th aspect, and outputs the hidden
state s¢. The model then concatenates the hidden state s; and the con-
text ¢ to judge the sentiment polarity of ¢-th aspect. Here, we apply
the attention mechanism [11] to produce the context vector c; by fo-

4 In addition to the relationship opposite, the relationship same and none may
occur. For instance, in a sentence “The food is surprisingly good and the
decor is nice!”, according to the conjunction and, the relationship between
the sentiment polarity of aspect food and decor is same.
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cusing on different portions of sentence and aggregating the hidden
representation of informative words. If we remove the embedding
vector of sentiment polarity of ¢-1-th aspect along with the previous
state in the input, our model uses only the representation vector of ¢-
th aspect in aspect-level sentiment classification. That is, our model
identifies the descriptor of aspect for judging its sentiment polarity
by modelling the semantic relationship between sentence and aspect.
Looking from the other side, if we add these two inputs, our model
will sequentially predict the sentiment polarity of each aspect within
sentence. In this case, our model also predicts the sentiment polarity
of ¢-th aspect using the polarity information of ¢-1-th aspect. For the
conjunction, we assume that the model could capture it automatically
through training, just like capturing descriptor. That is, our model
can take the relationship between the sentiment polarity of aspects
into account when predicting the polarity. Therefore, when classi-
fying, the proposed sequence prediction model not only is capable
of capturing the descriptor of aspect, but also considers the relation-
ship between the sentiment polarity of aspects. Moreover, to access
the sentiment polarity information of all previous aspects, this paper
proposes a sentiment polarity fusion module allowing the model to
take advantage of earlier sentiment polarity information. To discour-
age repeated attention to the context words with strong sentiment
polarity when inputting the different aspects, we use the temporal at-
tention mechanism to keep track of what has been focused on and
modify the conventional attention distribution.

The main contributions of our paper can be summarized as fol-
lows:

e To the best of our knowledge, this paper is first work to take advan-
tage of the relationship between the sentiment polarity of aspects
in the aspect-level sentiment classification task.

e We propose a sequence prediction model® with a sentiment polar-
ity fusion module which not only models the semantic relationship
between sentence and aspect, but also considers the relationship
between the sentiment polarity of aspects.

e To avoid repeated attention to the context words with strong sen-
timent polarity when predicting the sentiment polarity of different
aspects, we apply the temporal attention mechanism for aspect-
level sentiment classification.

e We conduct experiments on five benchmarking datasets to verify
the effectiveness of our model. Experimental results show that our
proposed model outperforms many baselines by a large margin.

The rest of this paper is organized as follows: We first give the
related work in Section 2. Then, Section 3 introduces our model in
detail and Section 4 presents the experimental results and analysis.
Finally, we conclude in Section 5.

2 Related Work

The previous studies on aspect-level sentiment classification could
be divided into two directions: traditional machine learning methods
and neural network models.

2.1 Traditional Machine Learning Methods

Traditional machine learning methods define rich features and syn-
tactic structures about sentence so as to capture the sentiment po-

5 Note that there is a previous work [12] that uses a seq2seq model. However,
there are clear differences between two works. They use a seq2seq model
to make full use of the overall meaning of the sentence in aspect term ex-
traction, while we use a seq2seq model to consider relationship between
the sentiment polarity of aspects in aspect-level sentiment classification.

larity of aspect. One of the most successful approaches in literature
is feature based SVM. Experts could design effective feature tem-
plates and make use of external resources like parser and sentiment
lexicons [1], [8]. Most machine learning methods based on feature-
engineering, however, are labor-intensive and highly depend on the
quality of features.

2.2 Neural Network Models

In recent years, some neural network models have been used for
aspect-level sentiment classification. Lakkaraju et al. [9] proposed a
hierarchical deep learning based framework for solving the problem
of aspect-level sentiment classification in which the joint modeling of
aspect and sentiment is carried out. Nguyen and Shirai [14] presented
an extension of recursive neural network (RNN) that takes both de-
pendency and constituent trees of a sentence into account to identify
sentiment of an aspect. Tang et al. [21] developed a deep memory
network that captures importance of context words for aspect-level
sentiment classification. Compared with RNN, this approach is sim-
pler and faster. In addition, Wang et al. [22] designed an attention-
based LSTM to learn the aspect embedding, and examined the latent
relatedness of aspect and sentiment polarity in the aspect-level sen-
timent classification. Ma et al. [13] proposed an interactive attention
network which considers the separate modeling of aspects and could
interactively learn attention in the context words and aspect. Gu et
al. [5] proposed a position-aware bidirectional network for aspect-
level sentiment classification which utilizes the position embedding
of aspect for calculating the attention weights. Despite the effective-
ness of these neural network models, they formulate the aspect-level
sentiment classification task as predicting the sentiment polarity of
a provided (sentence, aspect) pair yet tend to ignore the relationship
between the sentiment polarity of aspects.

3 The Proposed Model

We introduce the proposed model in detail in this section. Firstly,
we give the overview of model. Then, we introduce the details of
the proposed sequence prediction model. Finally, we present the loss
function.

3.1 Overview

First of all, we define some notations and describe the aspect-
level sentiment classification task. Given a sentiment polarity
set P, such as {positive, negative, neutral}, a sentence x =
{w1, w2, ...;ws, ..., wn } consisting of n words and m aspects
{a1, a2, ..., am } occurring in sentence x, the aspect-level sentiment
classification aims at determining the sentiment polarity of each as-
pect in the sentence x. For example, in a comment about restaurant
saying “great food but the service was dreadful!”, the polarity of as-
pect food is positive, while the polarity towards aspect service is neg-
ative. Unlike text-level sentiment classification where one sentiment
polarity is assigned to sentence x according to the global context,
each aspect within sentence x in the aspect-level sentiment classifica-
tion is assigned with sentiment polarity according to the local context
(i.e. the descriptor of aspect). Besides, as we mentioned above, the
relationship between the sentiment polarity of aspects is also an ob-
vious characteristic of aspect-level sentiment classification. From the
perspective of sequence-to-sequence, the aspect-level sentiment clas-
sification task can be modeled as finding an optimal sentiment polar-
ity sequence y* that maximizes the conditional probability p(y|x),
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Figure 1.

The overview of our proposed model. Attention denotes the temporal attention mechanism. Fusion denotes the sentiment polarity fusion module.

The symbol BOS is regarded as the initial sentiment polarity. In this figure, the sentence x consists of eight words {great, food, but, the, service, was, dreadful,
/} and contains two aspects {food, service} whose sentiment polarities are positive and negative respectively.

which is calculated as follows:

m

p(y|x) = [ [ pwelyr, s ye-1,%) (D

t=1

The overview of our proposed model is shown in Figure 1. We
input the aspect in turn according to the order in which it appears
in the sentence. As shown in Figure 1, the text sequence x is en-
coded to the hidden states h. On each time-step ¢ of decoding, the
decoder first receives the embedding vector of previous sentiment
polarity y;—1 (while training, this is the previous ground truth sen-
timent polarity; at test time it is the previous sentiment polarity pre-
dicted by the decoder) and the representation vector of current aspect
at, then updates its hidden state s;. Finally, the softmax layer takes
the context vector ¢; and the current hidden state s; of the decoder as
inputs to calculate the probability distribution of sentiment polarity
y¢. Here, the context vector ¢, produced by the temporal attention
mechanism which can modify the conventional attention distribution
to avoid paying attention to the context words with strong sentiment
polarity repeatedly, is an aggregation of the hidden states of the en-
coder h. Besides, to use earlier sentiment polarity information, our
model integrates a sentiment polarity fusion module which produces
the polarity embedding vector including the polarity information of
all previous aspects.

3.2 The Proposed Sequence Prediction Model

In this subsection, we introduce the details of the proposed model.

3.2.1 Encoder

We first use the WordPiece® [23] technique to segment words in
sentence x into subword-level, i.e. x = {wy/, war, ..., Wyry ooy Wy }
where n’ > n. And then each subword w;s is embedded to a dense
embedding vector by WordPiece embeddings E., € RIVI*dw Here
|V| is the size of vocabulary, and d,, is the dimension of embedding
vector.

BERT’ [3] is designed to produce the deep bidirectional represen-
tations by jointly conditioning on both left and right context in all

6 WordPiece can segment out-of-vocabulary words into subword-level. For
example, if word “displaying” is not in vocabulary, it is segmented into
“display” and "##ing”, where “##” means not the beginning of a word.

7 In this paper, BERT refers to BERTpASE.

layers. In this work, to obtain the high-quality representations, we
use a BERT to read the text sequence x and compute the hidden
states {hcrs, b1, h2, ..., hi, ..., hys } for all subwords. Note that the
first token of every text sequence is always a special symbol CLS
in the original settings. The final hidden state corresponding to this
symbol hcrs is used as the aggregate text sequence representation.
Since it is not very useful for our work, we remove it, let the hidden
states of the encoder h = {h1, ha, ..., hs, ..., hppr }.

3.2.2 Decoder

The decoder uses a LSTM to forecast the sentiment polarity of as-
pects sequentially. It predicts the current sentiment polarity y; based
on the previously predicted sentiment polarity y:—1 and the current
aspect a:. Therefore, the proposed model could consider the rela-
tionship between the sentiment polarity of aspects by predicting the
sentiment polarity sequentially through LSTM structure (here, the
conjunction is automatically captured through training).
The hidden state s; of the decoder at time-step ¢ is updated as
follows:
St = LSTM(St*h [eat; eyt—l}) (2)

where [eq, ; €y,_, ] means the concatenation of vectors e,, and e, .
In this work, we employ the WordPiece technique to segment words
in the current aspect a; into subword-level, and use the average of
WordPiece embeddings of these subwords as the representation vec-
tor eq, ; we embed the sentiment polarity y:—1 to a dense embedding
vector ey, _, by sentiment polarity embeddings Ep € RFI*9 Here
|P| is the size of sentiment polarity set, and dj, is the dimension of
embedding vector.

When the model predicts the sentiment polarity of different as-
pects, not all context words make the same contribution. The atten-
tion mechanism is an effective way to consider this. The attention
mechanism produces a context vector c¢; by focusing on important
portions of the text sequence x and aggregating the hidden represen-
tation of informative words. Specially, the attention mechanism [11]
assigns a weight ai; to w;s at time-step ¢ as follows:

e = s; Wahi 3)
ne,ﬂcp(eti) @

Zj:l exp(et;)

where W, is weight parameter and s is the current hidden state of

the decoder. For simplicity, all bias terms are omitted in this paper.

Qg =
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Figure 2. The sentiment polarity fusion module.

The final context vector c¢; is calculated as follows:

e =Y aih 3)
i=1

Then, c; obtained by Equation 5 is fed into a fully-connected layer
along with the hidden state s;, followed by a softmax normalization
layer to yield a probability distribution p; € Rl over sentiment
polarity decision space:

S¢ = tanh(We[se; ct]) (6)
pe = softmax(Wo,8s) @)

where W, and W, are weight parameters. It can be seen that s; has
contained the previous polarity information y;—1. Then according to
the automatically captured conjunction information, our model could
consider the relationship between the sentiment polarity of aspect
at—1 and a¢, and further judge the polarity of current aspect a;.

However, for aspect-level sentiment classification task, the con-
ventional sequence-to-sequence framework has two disadvantages:
i) the model does not have the ability to use earlier sentiment polar-
ity information; ii) the attention mechanism is prone to focus on the
context words with strong sentiment polarity repeatedly. Thus, in this
paper, we introduce sentiment polarity fusion module and temporal
attention mechanism to avoid these two disadvantages.

3.2.3 Sentiment Polarity Fusion Module

As described above, we assume that the previously predicted sen-
timent polarity and the automatically captured conjunction may do
a favor in inferring the sentiment polarity of current aspect. Conse-
quently, as shown in Equation 2, we take the concatenation of the
representation vector of aspect a; and the embedding vector of sen-
timent polarity y:—1 as input. However, this operation only guaran-
tees the use of sentiment polarity information of the last time step.
As a result, the model is incapable of taking advantage of earlier
sentiment polarity information. For example, in a sentence “Huge
portions, great and attentive service, and pretty good prices!”, when
predicting the sentiment polarity of aspect prices, the model fails
to acquire the sentiment polarity information of aspect portions be-
cause we only input the sentiment polarity of aspect service. In fact,
according to the conjunction and, the relationship between the senti-
ment polarity of aspect portions and prices also conduces to predict.

The simplest way to utilize the sentiment polarity of all previous
aspects is to concatenate them directly, i.e. the input in Equation 2
is changed from [eq,; €y, ;] 10 [€q;; €yo; €yr; ---; €y, |- HOWever, it
is known that these sentiment polarities do not make the same con-
tribution and the concatenation result often contains some common
information. Thus, the simply concatenating may hinder the model
learning an accurate representation of sentiment polarity and make
the process of optimizing the objective function more difficult.

To tackle this problem, this paper proposes a sentiment polarity
fusion module which enables the model not only to access the sen-
timent polarity information of all previous aspects, but also to learn

an accurate sentiment polarity representation automatically. This fu-
sion module is illustrated in Figure 2. Here, we maintain a sentiment
polarity accumulation vector r;, which denotes some earlier senti-
ment polarity information. Note that r; is a zero vector. To avoid the
disadvantages of concatenation operation, we need to distill the com-
plementary information from ;. Inspired by the gate mechanism in
LSTM, a gate is designed to eliminate the common information in r
that has already appeared in the sentiment polarity information of the
last time step ey, _, . Specifically, the gate is designed as:

g=1—c(Wgre) Oey,_,) ®)

where o is the sigmoid function, W, is weight parameter and © de-
notes the element-wise multiplication. From the definition of gy, it
can be seen that if the values on some specific dimension of W, r;
and e,, , are both large, which indicates the same information ap-
pears in both earlier sentiment polarity information 7; and sentiment
polarity information of the last time step ey, ,, the gate g¢ will be
closed. So, if Wy, r; is multiplied to the gate g;, the information that
is only contained in 7; is allowed to pass through. Thus, the comple-
mentary information in r; is eventually computed as:

7t = (Wgre) © g ©))

Then, we concatenate the complementary information 7 to the
sentiment polarity embedding of the last time step e, , to produce
the final sentiment polarity embedding:

€y, = Wy, [eyt—l;Ft] (10)

where Wy, is weight parameter. In this way, given the sentiment po-
larity accumulation vector r; and the sentiment polarity embedding
vector of the last time step e, _, , we successfully extract the comple-
mentary information from r; and create the final sentiment polarity
representation €,, .

Finally, we use the sentiment polarity information of all previous
aspects €,, , to update r; and change Equation 2

Tt+1 = éyt71 )
¢ = LSTM(s¢_1, [€ar; €ys_,]) (12)

In this way, the decoder can produce the richer hidden state s; based
on &y, _, including the sentiment polarity information of the last time
step as well as earlier sentiment polarity information. Thus, for same
conjunction information, the model using the richer hidden state is
more capable of judging the sentiment polarity of current aspect ac-
curately than that using the hidden state computed by Equation 2.

3.2.4 Temporal Attention Mechanism

When the model predicts the sentiment polarity of different aspects,
the attention mechanism focuses on different portions of the sen-
tence. Therefore, the attention mechanism can play a critical role in
modeling semantic relatedness between context words and aspect.
Actually, this critical role is based on the foundation that the atten-
tion mechanism can pay attention on aspect related context words
when predicting its sentiment polarity. However, the attention mech-
anism may lead to the different aspects mistakenly attending to the
identical context words as descriptors. Look at a concrete example
“Its size is ideal and the weight is acceptable.”. The word ideal is
noticed when inferring the sentiment polarity of aspect size, which
is the same as expected. Nevertheless, owing to the strong sentiment
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polarity of word ideal, the attention mechanism may identify it as the
descriptor of aspect weight, which is in fact not the case.

Here, we adapt the temporal attention mechanism to address this
issue. We maintain an attention accumulation vector u;, which is the
sum of attention distributions over all previous decoder time steps:

t—1
T Z Qg (13)

t/=1

Intuitively, u; is a unnormalized distribution over the context words
that represents the degree of attention that those words have received
from the attention mechanism so far.
The accumulation vector u; is used to change Equation 4:
eap(2et)
Qi = 7

Z?:l e:vp( etj )

Ut

14)

Obviously, if u¢; is large, which means that i-th word has gained a
lot of attention, a; will be small at time-step ¢. Therefore, this mod-
ification should make it easy for the attention mechanism to avoid
repeatedly attending to the same locations (i.e. certain words with
strong sentiment polarity) when modeling semantic relatedness be-
tween context words and aspect. Note that u; is a one vector, be-
cause at the first time step, we don’t need to modify the attention
distribution.

3.3 Loss Function

The loss function is the cross entropy loss of sentiment polarity:

L=-— Z yelogpe (15)
t=1

where y; is the ground truth of sentiment polarity of aspect a:, and
Py is probability distribution of sentiment polarity of a:, computed
by Equation 7.

4 Experiments
4.1 Datasets

To evaluate our proposed model, we conduct experiments on five
datasets: one (Twitter) is originally built by Dong et al. [4] containing
twitter posts, while the other four (Lap14, Restl4, Restl5, Rest16)
are respectively from SemEval 2014 task 4 [17], SemEval 2015 task
12 [16] and SemEval 2016 task 5 [15], consisting of data from two
categories, i.e. laptop and restaurant. Each sample contains a list of
aspects and corresponding sentiment polarities, which are labeled
with {positive, negative, neutral}. It is worth noting that some orig-
inal datasets contain the fourth sentiment polarity - conflict, which
means that a sample expresses both positive and negative towards an
aspect. Here, following the previous work [21], [24], we remove sam-
ples (which are difficult to model) with conflict polarity or without
explicit aspects. The statistics of datasets are given in Table 1.

4.2 Experimental Details

We implement our experiments base on BERT’s code® and use un-
cased pretrained model to initialize our WordPiece embeddings (di-
mensions is 768) and encoder’s parameters. The hyperparameters

8 https://github.com/huggingface/transformers

Table 1. The statistics of datasets. #Pos, #Neg and #Neu denotes the
number of samples with Positive, Negative and Neutral sentiment polarity,
respectively. #1, #2/3, #4/5, #6 denotes the number of samples with one, two
or three, four or five and more than six aspects, respectively.

Dataset #Pos #Neg #Neu #1 #2/3  #4/5 #6
Twitter Train 1561 1560 3127 6248 0 0 0
Test 173 173 346 692 0 0 0
Lapl4 Train 994 870 464 956 485 49 9
Test 341 128 169 269 133 15 1
Rest14 Train 2164 807 637 1063 803 133 19
Test 728 196 196 302 269 40 4
Rest15 Train 912 256 36 601 226 23 0
Test 326 182 34 305 95 6 1
Rest16 Train 1240 439 69 904 323 29 1
Test 469 117 30 314 104 12 1

(e.g. word pieces vocabulary size, hidden size of encoder and learn-
ing rate) and optimizer of our model are the same as that of BERT.
In addition, the hidden size of the decoder is 768, and the number of
LSTM layers is 3. We use dropout [19] to prevent our networks from
overfitting. For the maximum length of input sentence after Word-
Piece tokenization, we set it to 256. That is, the input sentence longer
than this setting will be truncated, and the zero padding is used if the
input sentence shorter than this setting. Following the previous work,
the accuracy and macro-F1 scores are adopted as the evaluation met-
rics.

4.3 Baselines
We compare our proposed model with the following baselines:

e SVM [8] is a basic baseline model, which has won SemEval 2014
task 4 with conventional feature extraction methods.

o LSTM [20] uses the last hidden vector of LSTM to predict senti-
ment polarity.

e MemNet [21] selects more abstractive evidences from the exter-
nal memory and applies the output of the last attention layer for
prediction.

e AOA [7] employs the idea of attention-over-attention to solve
aspect-level sentiment classification.

e TAN [13] first models the sentence and aspect respectively, then
concatenates the context representation and aspect representation
for predicting the sentiment polarity of aspect.

e TNet-LF [10] puts forward Context-Preserving Transformation to
preserve and strengthen the informative part of contexts.

e ASGCN-DT [24] builds Graph Convolutional Network over the
dependency tree of sentence to exploit syntactical information
and word dependencies. Note that ASGCN-DG is the variant of
ASGCN-DT replacing dependency tree with dependency graph.

Besides, we design two BERT based baselines:

o BERT-SEP packs a sentence and an aspect together into a single
sequence. Here, we separate them with a special symbol SEP and
use the final hidden state corresponding to the classification sym-
bol CLS (i.e. hcrs) for prediction.

e BERT-ATT adds the attention mechanism over final hidden state
sequence (i.e. h) where an aspect is treated as query, and uses the
output of attention operation for classification.

It is noteworthy that these two baselines have the same experimental
setting as our model for fair comparison.
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Table 2. Comparison with baselines. The best two results with each dataset are in bold. The results of baselines with t are retrieved from the corresponding
papers, I denotes some results are retrieved from Zhang et al. , and the results with # are retrieved from Dong et al. . Accuracy and macro-F1 scores are the
average value over 2 runs with random initialization.

Model Twitter Lap14 Rest14 Restl5 Rest16
Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

svMm’ 63.40 6330  70.49%  N/A  80.16%  N/A N/A N/A N/A N/A
LSTM'? 69.56  67.70 69.28 63.09 78.13 67.47 7137 55.17 86.80  63.88
MemNet'* 71.48 69.90 72.37 65.17 80.95 69.64 7131 58.28 85.44 65.99
AOATH 7230 7020 7450  67.52 81.20 7042  78.17 57.02 87.50 66.21
IANT# 7250 7081 72.10  67.38 78.60  70.09 7854  52.65 84.74 5521
TNet-LF'* 7468 7336  76.01 71.47 80.79 70.84  78.47 59.47 89.07  70.43
ASGCN-DT? 71.53 69.68 74.14 69.24 80.86 7219 7934  60.78 88.69  66.64
ASGCN-DG' 72.15 7040  75.55 71.05 80.77 72.02  79.89 61.89 88.99  67.48
BERT-SEP 7254 7140  76.89  72.11 8232  70.19 80.62  60.41 88.93 70.42
BERT-ATT 74.71 7372 7695  72.54 80.98 71.17 81.01 62.65 88.47 70.31
SPM 7456 7339  78.68 7349 8269 7286 81.18 6414  89.36  73.32

4.4 Results

For simplicity, we denote the proposed sequence prediction model
as SPM. Table 2 shows the performance of our model and baseline
models on five test sets. We can observe that SPM consistently out-
performs all compared models’ on all datasets except Twitter. The
results illustrate the superiority of SPM and the significance of rela-
tionship between the sentiment polarity of aspects. For Twitter, SPM
only achieves comparable results compared with baseline TNet-LF.
This is because each sample in Twitter dataset only has an aspect
(see Table 1), restricting the efficacy. Meanwhile, we can find that
BERT-SEP and BERT-ATT are strong performers and substantially
surpass than all other baseline models on Twitter, Lap14 and Rest15
datasets. A possible reason is that BERT can build the powerful rep-
resentation for the sentence and is more efficient to model the se-
mantic relationship between sentence and aspect in the aspect-level
sentiment classification. In addition, LSTM method gets bad perfor-
mance because it can not take full advantage of the contextual se-
mantic information of sentence. Thus, it is obvious that the model-
ing capabilities of LSTM and BERT are quite different. This is why
we choose BERT as the encoder in this work. For BERT-SEP and
BERT-ATT baselines, the performance is not easy to distinguish. For
instance, although BERT-ATT is better than BERT-SEP on Twitter,
Lap14 and Restl5 dataset, BERT-SEP performs more competitive
than BERT-ATT on Rest16 dataset. Thus, we assume the multi-layer
and multi-head attention in BERT can strongly construct the con-
textual representations on datasets. Additionally, SPM performs bet-
ter than BERT-SEP and BERT-ATT on all datasets except Twitter.
For example, SPM achieves an improvement of 3.73 points and 1.49
points over BERT-SEP and BERT-ATT in term of F1 score on Rest15
dataset respectively. This demonstrates that the improvements of our
model not only are from the help of BERT, but also benefit from
the temporal attention mechanism and the sentiment polarity fusion
module.

4.5 Ablation Study

To demonstrate the effectiveness of temporal attention mechanism
and sentiment polarity fusion module, four variants of SPM are
evaluated: (1) SPM(w/o TS): SPM without both temporal attention

9 All baseline models formulate the aspect-level sentiment classification as
predicting the sentiment polarity of a provided (sentence, aspect) pair.

Table 3. Ablation study of SPM. Accuracy and macro-F1 scores are the
average value over 2 runs with random initialization.

Variants
Dataset w/o TS w/oS w/oT wlo 1 SPM
Lapl4 Accuracy 76.17 77.89  78.21 76.80  78.68
Fl1 70.96 72.56  72.81 71.57 7349
Rest14 Accuracy 81.03 81.11 81.38 80.66  82.69
Fl1 71.70 7190 7270  70.50  72.86
Rest15 Accuracy 79.70 80.07 8099  79.88  81.18
F1 62.16 63.87 63.75 62.51 64.14
Rest16 Accuracy 88.07 88.21 89.10  88.27  89.36
F1 71.13 72.63 72.83 72.19  73.32

mechanism and sentiment polarity fusion module, i.e. SPM uses
Equation 2 and 4 instead of Equation 12 and 14. (2) SPM(w/o S):
SPM without sentiment polarity fusion process where SPM updates
the state of the decoder with Equation 2. (3) SPM(w/o T): SPM with-
out temporal attention mechanism where SPM utilizes Equation 4
to compute the attention distribution. (4) SPM(w/o I): SPM com-
pletely removes the sentiment polarity information where the input
in Equation 2 is changed from [eq,; ey, ,] to [eq,]. Four variants
are compared with SPM on all datasets except Twitter. The results
are shown in Table 3. According to the experimental results, we
can come to the following conclusions. First, removal of sentiment
polarity fusion module (i.e. SPM(w/o S)) leads to a slight perfor-
mance degradation on four datasets. Thus, we conclude that the use
of sentiment polarity information of all previous aspects provides a
benefit to performance. Moreover, after we get rid of the sentiment
polarity information, SPM(w/o I) could not keep as competitive as
SPM(w/o S) on all metrics except accuracy on Rest16 dataset. This
verifies the significance of the sentiment polarity information. Sec-
ond, when we remove the temporal attention mechanism, SPM(w/o
T) is slightly inferior to SPM on four datasets. One underlying rea-
son is that SPM(w/o T) is prone to overly focus on the context words
with strong sentiment polarity when predicting the sentiment polar-
ity of different aspects. Thus it could be concluded that the temporal
attention mechanism contributes to SPM since it prevents SPM from
repeatedly attending to the same context words. Finally, when we
clear up both components at the same time, compared with SPM(w/o
S) and SPM(w/o T), SPM(w/o TS) is much less powerful on four
datasets. These results again strongly demonstrate the usefulness of
temporal attention mechanism and sentiment polarity fusion mod-
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Table 4. Case study. The color depth indicates the importance degree of weight, the darker the more important. The marker 4/ indicates correct prediction.
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- but the service was dreadful ! food positive,/

BERT-ATT - food but -i- ! service  negative,/
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Figure 3. Macro-F1 score (the value of one run with random initialization)
versus the number of aspects within sentence.

ule. Besides, the performance gap between SPM(w/o S) and SPM
is larger than that between SPM(w/o T) and SPM on all metrics ex-
cept F1 score on Restl5 dataset. This phenomenon reveals the level
of benefit brought by the sentiment polarity fusion module is greater
than that brought by the temporal attention mechanism. Therefore,
according to these experimental results, we could prove the contribu-
tions of both components in the aspect-level sentiment classification.

4.6 Effects of Multiple Aspects

In this paper, we leverage the relationship between the sentiment po-
larity of aspects to accomplish the aspect-level sentiment classifica-
tion. Therefore, the number of aspects may affect the model perfor-
mance. Now, we discuss this impact. Here, we select SPM(w/o I)
(does not include sentiment polarity information) and SPM as our
research objects. We divide the test samples in Lap14 and Restl14
datasets into three groups (##1, ##2/3 and ##4/5) (see Table 1) based
on the number of aspects within sentence and compute F1 score dif-
ferences between these groups. It can be seen in Figure 3 that when
the number of aspects within sentence increases, F1 score decreases.
It indicates that the more aspects the sentence contains, the more
difficult it is to predict the sentiment polarities correctly. This is in
line with the assumption that the more aspects, the more difficult it is
to model the semantic relatedness between sentence and aspect accu-
rately. However, as shown in Figure 3, the magnitude of both models’
performance decline is significantly different. For example, when the
test set on Lap14 dataset changes from group ##2/3 to group ##4/5,
SPM(w/o I) drops from 71.63 to 66.95, while SPM decreases from
72.88 to 69.13. This shows that the sentiment polarity information
could slow down the performance decline to some extent when there
is more than one aspect in a sentence.

4.7 Case Study

To have an intuitive understanding of SPM, we present the case study
with two testing examples. Here, we visualize the attention scores
offered by BERT-ATT and SPM in Table 4, along with their predic-
tions. In the first example, we can find that BERT-ATT and SPM
give more attention to the context words great and food when the
current aspect is food. This is as we would expect, since the word
great contributes to prediction. Although BERT-ATT and SPM pay
more attention on the word dreadful when faced with another aspect
service, the weight change of word great is significantly different.
It can be observed from Table 4 that BERT-ATT basically maintains
the weight of great due to the strong sentiment polarity of the word
itself, while SPM greatly reduces that of great. Obviously, the latter
is more acceptable and desirable. This shows the effects of tempo-
ral attention mechanism which can avoid repeatedly attending to the
context words with strong sentiment polarity. Furthermore, SPM can
automatically capture the conjunction which reflects the relationship
between the sentiment polarity of aspects through training. For exam-
ple, when the aspect is service, clearly, the conjunction but gets more
attention, and reveals the relationship opposite between the sentiment
polarity of aspect food and service, which may help judge the senti-
ment polarity of service. This shows the effectiveness of considering
the previous sentiment polarity, which allows SPM to classify polar-
ity using the relationship between the sentiment polarity of aspects.
Additionally, it is worth noting that SPM is more capable of identi-
fying the descriptor of aspect than BERT-ATT. For example, when
predicting the polarity of food, SPM assigns a greater weight to word
great than to word food, while BERT-ATT does the opposite. And, in
the second example, although BERT-ATT predicts the correct polar-
ity label towards aspect works, BERT-ATT actually pays attention to
word happy. This is totally inconsistent with the fact. We can draw
similar conclusions from the second example. Due to limited space,
we do not analyze it in detail.

5 Conclusion

In this paper, we propose a sequence prediction model (SPM) based
on sequence-to-sequence framework for aspect-level sentiment clas-
sification. The main idea of SPM is to leverage the relationship be-
tween the sentiment polarity of aspects. To use earlier sentiment po-
larity information, SPM integrates a sentiment polarity fusion mod-
ule. Moreover, SPM adopts the temporal attention mechanism, which
discourages repeated attention to the context words with strong sen-
timent polarity when predicting the sentiment polarity of different
aspects. Experimental results on five benchmarking datasets demon-
strate that SPM obtains superior performance over baseline models.
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