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Abstract. Neural architecture search has been shown to hold great
promise towards the automation of deep learning. However, in spite
of its potential, neural architecture search remains quite costly. To
this point, we propose a novel gradient-based framework for efficient
architecture search by sharing information across several tasks. We
start by training many model architectures on several related (training)
tasks. When a new unseen task is presented, the framework performs
architecture inference in order to quickly identify a good candidate
architecture, before any model is trained on the new task. At the core of
our framework lies a performance prediction network that can estimate
the performance of input architectures on a task by utilizing task meta-
features and the previous model training experiments performed on
related tasks. We adopt a continuous parametrization of the model
architecture, which allows for efficient gradient-based optimization.
Given a new task, an effective architecture is quickly identified by
maximizing the estimated performance with respect to the model
architecture parameters with efficient gradient ascent. It is key to point
out that our goal is to achieve reasonable performance at the lowest
cost. We provide experimental results showing the effectiveness of the
framework achieving directly comparable results with state-of-the-art
methods albeit at a much more reduced computational cost.

1 INTRODUCTION

Designing high performing neural networks is a time consuming task
that typically requires substantial human effort. In the past few years,
neural architecture search and algorithmic solutions to model build-
ing have received growing research interest as they can automate the
manual process of model design. Although they offer impressive re-
sults that compete with human-designed models Zoph and Le [2017],
neural architecture search requires large amount of computational re-
sources for each new task. For this reason, recent methods have been
proposed that focus on reducing its cost (see e.g., Liu et al. [2019],
Pham et al. [2018], Bender et al. [2018], Zhang et al. [2019]). This
very fact becomes a major limitation in those setups that impose strict
resource constraints for model design. For example, in cloud machine
learning services, the client uploads a new data set and an effective
model should ideally be auto-designed in minutes (or seconds). In
such settings architecture search has to be very efficient, which is the
main motivation for this work.

At the same time, applying independently automated model build-
ing methods to each new task requires a lot of models to be trained
as well as learning how to generate high performing models from
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Figure 1. The proposed framework. (a) Offline phase. Several architectures
are trained and their performances are stored in a database. The performances
along with meta-features about the task are used to train a network which
estimates the performance. (b) Online phase. Given a new task and its meta-
features, the system applies gradient ascent on the output of the prediction
network.

scratch. Such an approach requires a formidable amount of compu-
tational resources and is far from being scalable. On the other hand,
human experts can design state-of-the-art models using prior knowl-
edge about how existing architectures perform across different data
sets. Similar to human experts, we aim to cross learn from several
task data sets and leverage prior knowledge.

In this work, we present a framework that amortizes the cost of
architecture search across several tasks and remains effective thanks
to the knowledge transfer between tasks. We propose to learn a per-
formance prediction network that estimates the performance of a
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candidate architecture on a certain task. Given a candidate model
architecture and meta-features about the task, the prediction network
provides an estimate of the performance of the input architecture on
the task data set via a differentiable mapping. At the same time we
adopt a continuous parametrization of the model architecture, which
allows for efficient gradient-based optimization of the estimated per-
formance. Adding to the state-of-the-art, we learn crucially important
task data set features directly from the task samples while training the
performance prediction network.

The framework consists of an offline training phase and an online
inference phase (see Fig. 1 for a conceptual illustration). In the of-
fline phase several architectures are trained on several task data sets
and their performances are stored in a database. Adding to the state-
of-the-art however, the offline phase is designed to be scalable, i.e.,
when new data sets are added, the offline training involves only these.
Assuming that we have trained several model architectures on several
related training tasks, when a new unseen task is presented in the
online phase, the framework performs fast architecture optimization
in order to quickly identify a good candidate architecture, before any
actual model training is performed. For the online phase we rely on a
combination of i) a very cheap performance prediction of a candidate
architecture instead of actual model training and ii) continuous relax-
ation and thus gradient-based architecture optimization. Note that the
user of our framework only sees the cost of the online phase, which is
very fast thanks to the gradient ascent.

In summary, the paper contributions are the following:

• Efficient single-shot architecture search on a new task using
gradient-based architecture optimization. Different from existing
gradient-based methods Liu et al. [2019], Shin et al. [2018], Cai
et al. [2019], Xie et al. [2019], our method optimizes directly for the
architecture parameters without any intermediate model training or
intermediate model weight updates.

• Ability to learn the task meta-features directly from the raw
task data samples together with the performance prediction net-
work weights. This is different from previous work that uses pre-
computed task meta-features Feurer et al. [2015a] or implicitly
learns task embeddings from their corresponding task ids Wong
et al. [2018], Fusi et al. [2018].

• Task-aware performance predictor that predicts the performance of
a candidate architecture on a certain task. Unlike previous perfor-
mance predictors Liu et al. [2018], Istrate et al. [2019], Deng et al.
[2017], our predictor takes into account not only the candidate
architecture, but also meta-features about the task derived directly
from the task data samples themselves.

We provide experimental results illustrating that our methodology
achieves results that are quite close to expensive online methods such
as Reinforcement Learning Zoph and Le [2017]. In addition, our
comparison with state-of-the-art efficient methods based on transfer
learning between tasks Wong et al. [2018] demonstrates that our
results compare favorably with these while at a significantly lower
cost.

2 PROBLEM FORMULATION
We are interested in task-aware efficient neural architecture search.
Given a new (unseen) task data set, we would like to identify quickly
an effective model architecture before any model is trained. We want to
learn across datasets in order to amortize the cost of neural architecture
search. In particular, we want to collectively learn from all the model
training experiments and leverage this wealth of information. Instead

Model architecture

Child model
performance

Task data set

samples

Figure 2. The architecture of the performance predictor, which consists of
φ(·) and ρ(·).

of performing architecture search independently for each new data set,
we would like to transfer the knowledge obtained from past training
experiments on related tasks. In summary, the proposed framework
should have the following properties:

• High scalability in terms of computing resources.
• Ability to scale across task data sets and learn collectively from

them.
• Ability to propose a good architecture for a new related task without

training any model.

In the next section we propose a general framework that has these
desired properties.

3 PROPOSED FRAMEWORK
We want to automatically discover the model architecture that achieves
the best quality for a given data set. Essentially we are looking for
learning a mapping from an input data set to a high performing model
architecture. We propose to formalize the architecture search problem
as a structured output prediction problem Gygli et al. [2017]. The
key intuition is that learning to criticize candidate architectures is
easier than learning to directly predict the optimal architecture. In
particular, the proposed framework lies on an auxiliary model that
predicts the performance of a candidate architecture on a certain task.
In our context, the performance predictor acts as a meta-model that
helps in tuning the architecture of a child model. We use small neural
networks as performance predictors because they readily provide a
differentiability mapping from their inputs to output and also because
they are able to learn complex feature interactions (that typically
cannot be matched by other approaches). We consider child model
families parametrized by u, assuming for now that u is a vector of
continuous variables.

In its simplest form, a performance prediction network takes as
input: (i) descriptive meta-features z derived from a certain task data
set and (ii) the child model architecture parameters u, and predicts how
well the architecture u performs on the task data set described by z.
The network is shown conceptually in Fig. 2. The performance metric
v can take various forms (e.g., accuracy, AUC) but the framework
is agnostic to it. In this work, we use the validation accuracy as
performance metric.

When training the prediction network, our hope is that it learns
which type of child model architectures work well on certain types of
data. This tries to mimic the human expert during manual architecture
design. Human experts rely on intuition and prior knowledge when
developing new candidate architectures. Here, our hope is that such
an ‘intuition’ is encoded in the weights of the performance prediction

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



network and that it is generally applicable and transferable across
data sets. In the following sections, we provide more details about
the proposed framework. We discuss the meta-features of a task in
Section 3.1. The framework has two phases: an offline training phase
and an online inference phase that are detailed below in Sections 3.2
and 3.3 respectively. Section 3.4 discusses the child model architecture
parameters u.

3.1 The meta-features of a task

The meta-features z of a task describe its characteristics and they
are typically derived from the task data set itself Vanschoren [2018].
The meta-features may include things such as: number of samples,
number of classes and their distribution, label entropy and so on.
Although such pre-computed task meta-features could be combined
with the proposed framework, they are typically rather expensive to
compute for each new task. Hence, they are out-of-scope, since our
framework has very tight run-time requirements. For this reason, we
do not consider them further in this work and we instead introduce
below a method to learn the meta-features directly from the task data
samples. We learn the meta-features jointly with the weights of the
performance prediction network.

In order to learn the meta-features directly from the task data
set D, the data set (or a large fraction of it) is given as input to
the performance predictor, and a task embedding is learned directly
from the raw samples of the task. Note that we use both the features
and the labels of the task data set samples towards learning the task
embedding. This task embedding plays the role of the meta-features
and is learned jointly together with the rest of the weights of the
performance prediction network.

The task embedding should be invariant to the order of the samples
in the task data set. According to Zaheer et al. [2017], such a function
can be decomposed in the form ρ(

�
x∈D

φ(x)) for suitable transfor-
mations φ and ρ. The latter transformations are typically implemented
by a few layers (e.g., fully connected, non-linearities etc.). The main
idea is to transform each sample from the task data set using φ(·) and
then aggregate the transformed samples such that the task embedding
becomes permutation invariant before it is fed into ρ(·). This process
is shown conceptually in Fig. 2, where the performance prediction
network essentially consists of φ(·) and ρ(·) that are jointly learned,
i.e.,

v(u, z) := ρ

�
u,
�

x∈D

φ(x)

�
, (1)

where z =
�

x∈D
φ(x). We assume here that the data samples of

different tasks are expressed in a common feature space that can be
ingested by φ(·).

3.2 Offline training phase

Assume we have K tasks with corresponding data sets denoted as:

Dk =
�
(x

(k)
i , y

(k)
i )

�Nk−1

i=0
, k = 0, . . . ,K − 1, (2)

where Nk is the number of data samples in the k-th task. (x(k)
i , y

(k)
i )

is the i-th sample and its corresponding label in the k-th task data set.
For each task data set, we generate m child model architectures,

train them and collect the model performances on the validation set in
a database of model training experiments; see Fig. 1(a). This database

Algorithm 1 Offline training phase
Inputs:
Task datasets Dk, see Eq. (2)
Prediction network training set T , see Eq. (3)
kInnerIters, kOuterIters

repeat
Sample randomly a task k.
for i = 1 to kOuterIters do

Pick a mini-batch from T with samples only from task k.
for j = 1 to kInnerIters do

Pick a large batch from the task dataset Dk.
Perform one step of Stochastic Gradient Descent on the
weights of the prediction network.

end for
end for

until Convergence

is used to generate the training set for the performance prediction
network, which consists of M triplets of the form:

T = {(zi, ui, v
∗
i )}M−1

i=0 , (3)

where the value v∗i holds the child model performance obtained when
training with the model architecture ui on the task data set with meta-
features zi. In this work, the model performance metric used is the
validation accuracy. As more tasks are ingested in the database and
more models get trained, the network improves its predictions, as
we have also verified experimentally. Once the child model training
experiments have been collected in the database, we can start training
the performance prediction network. Algorithm 1 shows the main
steps of this offline training phase.

3.3 Online inference phase
After training the performance prediction network v(u, z;w), the
model weights w are kept fixed. At inference time, given a new task
dataset, we first extract its meta-features z. At this point we can
employ the network in two ways. First, if we have a candidate ar-
chitecture u we can evaluate it by simply doing a forward pass on
the network and get the estimated child model performance. Alterna-
tively, we can compute the gradient of v(u, z) with respect to u and
perform efficient gradient-based optimization to get a good candidate
architecture û that maximizes the estimated child model performance.

In practice, we noticed that the gradient ascent is sensitive to initial-
ization. Hence, we run the process several times with different initial
guesses and at the end pick the one that resulted in the maximum
estimated performance. In order to pick the initial guesses we find the
closest training tasks in the task embedding space and we collect the
top architectures found in the database for these tasks.

Note also that in order to be able to perform gradient-based infer-
ence we need to relax the model architecture parameters u to live in a
continuous space. Section 3.4 below discusses this parametrization in
details. The main steps of the online phase are shown in Algorithm 2.
This online process is also illustrated conceptually in Fig. 1(b). Note
in passing that the user of the proposed framework only sees the cost
of the online phase, which is that of gradient ascent, which is very
efficient (please see supporting experiments in Section 5 below).

3.4 Architecture parametrization
We discuss in this section the parametrization of the child model archi-
tectures. Previous work Liu et al. [2019], Shin et al. [2018], Cai et al.
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Algorithm 2 Online inference phase
Inputs:

New task dataset DK = {(x(K)
i , y

(K)
i )}NK−1

i=0

Trained performance prediction network v(u, z;w)
kNumStartingPoints, kMaxIters

Compute the meta-features z =
�

x∈DK
φ(x)

Form an empty set S = {} of solutions
for i = 1 to kNumStartingPoints do

Pick an initial guess u(0)
i , t = 0

repeat
u
(t+1)
i = u

(t)
i + η ∂

∂u
v(u

(t)
i , z;w)

t := t+ 1
until Convergence (or t > kMaxIters)
S := S ∪ {(v̂i, ûi)} where ûi is the found solution and v̂i its
corresponding value.

end for
Output: argmax(v,u)∈S v(u).

[2019], Xie et al. [2019] has shown that relaxing the parametrization
from discrete to continuous space allows for efficient gradient-based
optimization schemes while still providing competitive model perfor-
mances. Our approach goes along the lines of this previous work. The
main idea is that in order to make the architecture space continuous
we move away from the categorical nature of design choices to a
parametrized softmax over all possible choices. We provide below a
few examples where this is applied.

Continuous parametrization for one layer Assume that we have
implemented a basis set consisting of p base layers oi(x) correspond-
ing to different sizes and different activation functions. We associate
a weight αi with each base layer and we define a new parametrized
layer as follows

o(x) =

p�

i=1

exp(αi)�p

j=1
exp(αj)

oi(x). (4)

The values αi allow the final parametrized layer o(x) to ‘morph’ from
one size to another and/or from one activation function to another. We
use zero padding whenever needed to resolve the dimension mismatch
among different layer sizes.

Continuous parametrization for a child network Leveraging on
the continuous parametrization for one layer introduced above, we
can put several parametrized layers together. We attach a superscript
to the layer parameters to denote the layer where they belong to i.e.,
α
(j)
i is the parameter that multiplies the output of the i-th base layer

in the j-th parametrized layer of the final network.
We also add the ability for each layer to be enabled or disabled

independently from the other layers. For this, we add extra parameters
βj that control the presence or absence of each layer. This is shown
conceptually in Fig. 3.

Putting everything together, we consider child models that are
standard Feedforward Neural Networks (FFNNs) composed of an
embedding module followed by several parametrized layers and a
final softmax classification layer. The reason for using an embedding
module is that it speeds up the training time for the child models and
improves their quality especially when the training set is small. The
embedding module is soft-selected by an input set of pre-trained em-
bedding modules2 using the same softmax trick analogous to Eq. (4)

2 The pre-trained modules are available via the Tensorflow Hub service
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Figure 3. Continuous parametrization of the child models. Each layer is a
parametrized combination of base layers. Each layer can also be enabled or
disabled independently of the other layers.

where we denote by γ the corresponding parameters of the softmax.
After this relaxation, architecture search reduces to learning the contin-
uous variables u := {{α}, {β}, {γ}}. We refer to u as the encoding
of the model architecture. Finally, we would like to emphasize that
this parametrization is just one example among many possible options.
Any parametrization should work with the proposed framework as
long as it is continuous.

4 RELATED WORK
Automated model building is an important challenging research prob-
lem and several related methods have been proposed in the past few
years. In general, previous works can be broadly categorized into the
following classes:

• Bayesian optimization methods Snoek et al. [2012], Mendoza et al.
[2016], Hutter et al. [2011], Fusi et al. [2018], Feurer et al. [2015b]
build a probabilistic model of the performance of the network as a
function of its hyperparameters and then decide which candidate
point in the search space to evaluate next.

• Methods based on Reinforcement Learning (RL) Zoph and Le
[2017] evaluate candidate child model architectures on-the-fly, by
training and evaluating on a validation set. Using the validation
accuracy as the reward signal, these methods use RL to optimize
the child model architecture. Recent methods have been focusing
on cost reduction using transfer learning Wong et al. [2018] or
by introducing weight sharing among candidate architectures (see
e.g., Pham et al. [2018], Bender et al. [2018]) or by combining RL
together with performance prediction Liu et al. [2018].

• Evolutionary methods such as Real et al. [2017] form a population
of model architectures. The population is evolved over time by
picking individuals and mutating them (e.g., inserting a new layer).
The quality of the population improves over time as the individuals
with poor performance are removed.

• Morphing methods Gordon et al. [2018], Cortes et al. [2017] start
with an initial model architecture and they iteratively refine the
architecture during training until a certain objective is hit (e.g.,
model size or flops per inference).

• Performance prediction methods Istrate et al. [2019], Deng et al.
[2017], Baker et al. [2017], Liu et al. [2018], Luo et al. [2018].
Given a candidate model architecture, these methods forecast its
performance without training. In order to train the performance

(https://www.tensorflow.org/hub).
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DATA SET TRAIN EXAMPLES VAL. EXAMPLES TEST EXAMPLES CLASSES

AIRLINE 11712 1464 1464 3
CORPORATE MESSAGING 2494 312 312 4
EMOTION 32000 4000 4000 13
DISASTERS 8688 1086 1086 2
GLOBAL WARMING 3380 422 423 2
POLITICAL BIAS 4000 500 500 2
POLITICAL MESSAGE 4000 500 500 9
PROGRESSIVE OPINION 927 116 116 3
PROGRESSIVE STANCE 927 116 116 4
US ECONOMY 3961 495 496 2

Table 1. Statistics for the NLP classification data sets. Number of examples in the training set, validation set and test set and number of classes. All data sets are
publicly available from crowdflower.com.

predictor, a database of previous trainings of various model archi-
tectures is typically built.

The proposed framework also belongs to the last category of per-
formance prediction methods. However, our prediction network is
task-aware and takes as input not only the architecture but also meta-
features about the task, with the extra ability of learning them directly
from the raw task samples (see Sec. 3.1 for more details). Hence,
the proposed framework in its current form is novel (to the best of
our knowledge). However, it shares connections and similarities with
existing works that we outline below.

The previously proposed SMAC method Hutter et al. [2011] for
general algorithm configuration also uses a history of past config-
uration experiments as well as descriptive features for the problem
instances. However, this method uses an expensive Bayesian optimiza-
tion process as opposed to the efficient gradient-based architecture
search that this framework proposes. The other main difference is
that the meta-features in SMAC are pre-computed as opposed to the
proposed method that learns the meta-features directly from the data
samples (while training the performance prediction network).

Also, relatively few works exist which learns across different data
sets if we limit the literature to neural architecture search. We discuss
below a few of them. The state-of-the-art method in Wong et al.
[2018] proposes a multi-task training of RL-based architecture search
methods. For each task, it learns a task embedding which is provided
as extra input to the controller at each time step. In contrast to our
work where the task embedding is explicitly learned from the data
samples of the task, the task embedding in Wong et al. [2018] is
implicitly learned from the task id. Also, this method still requires
some child model trainings on the test task as opposed to our method
that requires no child model trainings. We provide comparisons with
this method in Section 5 below.

The TAPAS system proposed in Istrate et al. [2019] also uses a
history of past configuration experiments stored in a database of
experiments. The paper proposes a performance predictor that takes
into account the difficulty of the dataset as well as a candidate network
architecture. However, this method uses only pre-computed meta-
features and its architecture parametrization is not differentiable.

5 EXPERIMENTS

We implemented the framework in TensorFlow Abadi et al. [2016].
Following the same experimental setup as in Wong et al. [2018] we
use publicly available NLP data sets for the experimental validation,
whose main characteristics are shown in Table 1. We start by explain-
ing the experimental setup in details below.

5.1 Setup
Child models and search space. The child models have been

implemented using the parametrization discussed in Section 3.4.
The sizes of the base layers in a single parametrized layer are
{8, 16, 32, 64, 128, 256} and each one of them is combined with
two distinct activation functions (relu and tanh). Hence a single
parametrized layer is composed of twelve base layers and each child
model has seven such parametrized layers. In addition, each child
model has seven embedding modules. Hence, the resulting architec-
ture search space consists of 7 + 7 · 12 + 2 · 7 = 105 dimensions,
which is rather high-dimensional.

Performance prediction network. The network was trained on
the child model training experiments stored in the database, which
was populated with about 1500 random child model architectures
per task. We used a small network consisting of two fully connected
layers of size 50 each for the task meta-features tower (aka φ(·) in
Fig. 2) and two fully connected layers of sizes 50 and 10 for the tower
that produces the final prediction (aka ρ(·) in Fig. 2). One thing we
found beneficial is to introduce gating weights on the dimensions of
the architecture vector u. Before u is fed to the first layer of the per-
formance prediction network, each component ui is multiplied with a
gating weight 1/(1 + exp(−wi)), where wi is also learned together
with the rest of the network parameters. This helps the network focus
on the most influential parameters of the architecture space.

The network used standard L2 loss for regression and was trained
using Stochastic Gradient Descent with momentum Qian [1999] (us-
ing 0.5 as default parameter). The learning rate was set to 10−4. We
set kOuterIters to 1 and kInnerIters to 2 in Algorithm 1.
When training the network we normalized the child performances
ṽi := (vi − µk)/σk using the mean µk and standard deviation σk of
the population of child performances for a certain task k. Each task
has its own level of difficulty and we noticed that this normalization
step factors out the difficulty of the task and improves the performance
of the prediction network.

5.2 Predicting the model architecture performance
We have performed several leave-one-out experiments, where each
task in our set is considered to be a test task and the rest of the
tasks being used as training tasks. Then for each such leave-one-out
experiment, we train a performance prediction network and study
its predictive performance. In particular, given the predicted perfor-
mances and their corresponding actual performances, we quantify the
predictive performance in terms of the Spearman’s rank correlation
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SPEARMAN’S RANK CORRELATION PEARSON CORRELATION
TASK NAME WITHOUT WITH WITHOUT WITH

AIRLINE 0.6925 ± 0.0137 0.7454 ± 0.0237 0.8703 ± 0.0078 0.9037 ± 0.0108
EMOTION 0.6785 ± 0.0172 0.7126 ± 0.0189 0.7996 ± 0.0094 0.8230 ± 0.0077
GLOBAL WARMING 0.6357 ± 0.0177 0.6633 ± 0.0204 0.7420 ± 0.0097 0.7539 ± 0.0100
CORP MESSAGING 0.5980 ± 0.0144 0.6316 ± 0.0157 0.6235 ± 0.0121 0.6299 ± 0.0101
DISASTERS 0.6209 ± 0.0131 0.6613 ± 0.0272 0.8145 ± 0.0152 0.8443 ± 0.0168
POLITICAL MESSAGE 0.3144 ± 0.0140 0.3403 ± 0.0178 0.7369 ± 0.0231 0.7820 ± 0.0211
POLITICAL BIAS 0.3421 ± 0.0140 0.3643 ± 0.0100 0.3198 ± 0.0106 0.3338 ± 0.0105
PROGRESSIVE OPINION 0.6183 ± 0.0202 0.6626 ± 0.0239 0.5511 ± 0.0133 0.5588 ± 0.0119
PROGRESSIVE STANCE 0.5713 ± 0.0123 0.5969 ± 0.0122 0.5295 ± 0.0098 0.5276 ± 0.0137
US ECONOMY 0.1731 ± 0.0193 0.1817 ± 0.0091 0.6809 ± 0.0170 0.7181 ± 0.0238

Table 2. The effect of the meta-features: correlations between the actual performances and the predicted performances provided by the performance prediction
network; breakdown by task. The correlation is measured by the Spearman’s rank correlation (left) and the Pearson correlation (right). The higher the better. The
meta-features help the performance prediction network to make better predictions.

TASK NAME FIRST10 NAS CHILD MODELS PROPOSED

AIRLINE 0.7904 ± 0.0366 0.83197 751 0.8260 ± 0.0043
GLOBAL WARMING 0.7806 ± 0.0249 0.79196 1927 0.8066 ± 0.0159
DISASTERS 0.8193 ± 0.0105 0.83425 1283 0.8242 ± 0.0082
POLITICAL BIAS 0.7770 ± 0.0151 0.778 1989 0.7728 ± 0.0161
PROGRESSIVE OPINION 0.6750 ± 0.0428 0.73276 1505 0.7250 ± 0.0191
PROGRESSIVE STANCE 0.4181 ± 0.0645 0.57759 1635 0.5162 ± 0.0222
US ECONOMY 0.7494 ± 0.0112 0.76411 1966 0.7509 ± 0.0140
CORPORATE MESSAGING 0.8006 ± 0.0492 0.85897 968 0.8519 ± 0.0262
EMOTION 0.2998 ± 0.0278 0.35425 1779 0.3480 ± 0.0238
POLITICAL MESSAGE 0.4230 ± 0.0075 0.414 1974 0.4264 ± 0.0070

Table 3. Comparison with NAS. The table shows the test accuracy achieved by the top model according to the validation accuracy that NAS found. The number
of child models that NAS trained in order to achieve this test accuracy is also reported. For the sake of completeness, we report the statistics of the test accuracy
obtained by the first 10 models that NAS produced. Notice that the proposed method (without any child model training on the test task) achieves test accuracy
which is close to that of NAS in the majority of cases.

coefficient. In order to get more accurate results we repeat this process
ten times (i.e., train the prediction network ten times) and we report
the statistics of the obtained performances. The left column in Table 2
shows the obtained Spearman’s rank correlations for each task. For
the sake of completeness we also report the Pearson correlation values.
Notice that in most cases, the Spearman’s rank correlations are higher
than 0.6, which seems rather satisfactory for a method that does not
use any child model trainings on the test task.

We have also studied experimentally the effect of the meta-features
and report the predictive performances with and without meta-features
in Table 2 as well. The results in the table suggest that the meta-
features are helpful, as expected. The meta-features provide task-
specific important information to the prediction network that helps
towards estimating more accurately the relative performance of vari-
ous architectures across various tasks.

5.3 Architecture search

In this section we look into the performance of the child model archi-
tectures suggested by our method and we report their test accuracy.
When we apply our algorithm we pick the initial guesses using the
top five architectures from the two closest training tasks in the task
embedding space. Hence we set kNumStartingPoints to 10 and
kMaxIters to 1000 in Algorithm 2. Each experiment is repeated
ten times (including training the prediction network from scratch ten
times) in order to get more accurate statistics on the performances.

We perform architecture search in the continuous space; we leave the
discretization of the found architectures for future work.

Comparison with NAS. We compare against the NAS method for
neural architecture search using Reinforcement Learning Zoph and
Le [2017]. In order to have a fair comparison, we applied NAS on
the same child models as our method. Hence, both methods have the
same search space and the same child model training and evaluation
process. Table 3 shows for each test task, the test accuracy of the child
model that NAS found as having the best validation accuracy on the
test task. We report also the number of trained child models that were
needed for achieving this accuracy. For the sake of completeness, the
table also includes the performances of the first 10 models that NAS
produced. Notice that the performance of the proposed method is
not too far from that of NAS. This is very promising given that the
proposed method requires no child model training in its online phase
and is very efficient.

Comparison with T-NAML. Next we compare with the state-of-
the-art method T-NAML Wong et al. [2018] that also uses transfer
learning and cross learns from several tasks. Following a similar ex-
perimental methodology to Wong et al. [2018] we split the tasks into
five training tasks: GLOBAL WARMING, CORPORATE MESSAGING,
POLITICAL MESSAGE, POLITICAL BIAS, PROGRESSIVE STANCE

and five test tasks: AIRLINE, EMOTION, DISASTERS, PROGRESSIVE

OPINION, US ECONOMY. The controller of T-NAML and the perfor-
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TASK NAME FIRST10 OF T-NAML PROPOSED

AIRLINE 0.8168 ± 0.0183 0.8275 ± 0.0035
EMOTION 0.3315 ± 0.0236 0.3558 ± 0.0104
DISASTERS 0.8253 ± 0.0137 0.8367 ± 0.0040
PROGRESSIVE OPINION 0.7224 ± 0.0288 0.7276 ± 0.0155
US ECONOMY 0.7558 ± 0.0101 0.7484 ± 0.0104

Table 4. Comparison with the first ten models of T-NAML in terms of test accuracy on the five test tasks. Notice that the proposed method (without any child
model training on the test task) achieves higher test accuracy in most cases.

mance prediction network of our method is trained on the same set of
training tasks. In order to have a fair comparison, each method uses
1000 child models per training task. Once the controller of T-NAML
has been pre-trained on the five training tasks, it is applied on each test
task by training child models on the test task and fine-tuning its pa-
rameters. In order to keep the resource consumption manageable, we
focus our comparison on the first ten models that T-NAML produces.

Table 4 shows the test accuracy results. Notice that the proposed
method compares favourably with the first ten models that T-NAML
produces in most cases. This might be due to the fact that in T-NAML
the task embedding for the test task is randomly initialized (which is
also known as the cold start problem). On the contrary, our method
computes the task embedding directly from the task data samples
which seems to generalize better. At the same time the proposed
method is ten times more efficient since it does not train any child
models on the test task.

TASK NAME TRAINING TIME (SECS)

AIRLINE 1170
GLOBAL WARMING 696
DISASTERS 830
POLITICAL BIAS 695
PROGRESSIVE OPINION 442
PROGRESSIVE STANCE 445
US ECONOMY 760
CORPORATE MESSAGING 658
EMOTION 2409
POLITICAL MESSAGE 669

Table 5. Median of the time (in secs) required to train a single child model
per task. On the contrary our method requires about one minute in its online
phase to suggest a good architecture.

Discussion. Table 5 helps us to better understand and quantify the
computational advantage of the proposed method. The table reports
statistics about the timings required to train one single child model;
breakdown by task. The statistics have been obtained from 2000 child
model trainings for each task. The baseline methods we are comparing
against, typically need multiples of such child model trainings. On the
other hand, 1000 steps of gradient ascent used by our method require
typically about 6 secs. Repeating the gradient ascent with 10 different
initial guesses shows that the proposed method requires only about
one minute in its online phase to suggest a good architecture.

5.4 Visualization of the task meta-features
We also looked into the learned task representations in the meta-
feature space. In particular, for each task we computed the corre-
sponding task embedding for different random batch realizations (of

the task samples) and visualized them with t-SNE Van der Maaten
and Hinton [2008]. Fig. 4 show the two-dimensional visualizations
obtained with t-SNE with 10 random batches per task and perplexity
set to 70. Interestingly, different batch realizations from the same task
result in close-by task embeddings in the meta-feature space, which
confirms the stability of the method in this respect.

Figure 4. Visualization of the learned meta-features using t-SNE. For each
task we show the (two-dimensional projections of the) meta-features computed
from 10 random batches of the task samples. Different random batch realiza-
tions from the same task result in close-by task embeddings in the meta-feature
space.

6 CONCLUSIONS AND FUTURE WORK

We presented a framework for efficient architecture inference that
cross learns from several tasks. This is feasible thanks to a prediction
network that estimates the performance of a candidate architecture
on a certain task based on learned meta-features derived from the
raw data samples of the task. Given a new task, the proposed method
uses efficient gradient ascent to infer a candidate architecture for it
and experimental results confirm that the performance of the found
architecture is directly comparable to that of more expensive baselines.
In our future work, we plan to study the effect of pruning/discretizing
the found architecture and apply the method to other data modalities
beyond text (e.g., images). Finally, we are going to look into different
strategies for populating the database of experiments.
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