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Abstract. Query-driven reasoning techniques with Datalog rules,
like Magic Sets (MS), are ideal for implementing query answering on
Knowledge Graphs (KGs). For some queries, executing a rewriting
procedure like MS is the best choice, but for others a non-rewriting
procedure like Query-subquery (QSQ) can be faster. Choosing be-
forehand which procedure should be used is not trivial and mistakes
can be costly. To address this problem, we describe a first-of-its-
kind method that builds a Machine Learning (ML) model to predict
whether a query should be answered with MS or with QSQ. Experi-
ments on several well-known KGs show that our method can return
accurate predictions, and this leads to a significant reduction of the
response time of query answering.

1 Introduction

Knowledge bases in the form of Knowledge Graphs (KGs) have be-
come a crucial asset for enhancing tasks like web search or data inte-
gration, and providing efficient query answering is a key problem in
many of such tasks.

Recently, the rule-based language Datalog [1] has emerged as a
good choice for implementing query answering due to its expressiv-
ity [18, 21], and the availability of engines that can reason over large
KGs in a scalable manner [32, 28, 5, 37, 6, 9, 2, 33]. One key service
offered by datalog engines consists of allowing the user to query the
set P∞(I) of all derivations that can be produced with a given rule-
set P and KG I . Currently, the most popular strategy for supporting
this operation consists of first fully materializing P∞(I), and then
constructing appropriate index structures to facilitate query answer-
ing. While this approach can offer good response times, it is not ideal
in several cases. First, it is inefficient if the input contains many non-
sensical derivations, which occurs frequently in the Web of data [4].
Moreover, precomputing P∞(I) can be unnecessarily expensive if
the user is only interested in a subset of it, or if the rules are sup-
posed to infer knowledge that should not be reused, like inconsisten-
cies. Finally, computing P∞(I) can be too slow if the input and/or
rules change frequently, or if the input has a short time validity (e.g.,
see stream reasoning [25]). Note that this last case can be handled
efficiently by procedures for incremental reasoning [15, 14, 26, 19],
but these still require an initial full computation of P∞(I).

A well-known alternative approach to materialization is to perform
reasoning as part of the query answering procedure. In this case, we
can employ techniques like Magic Sets (MS) [3] or Query-subquery
(QSQ) [1, 34] to compute only the derivations that are relevant for
answering the input query, avoiding, whenever possible, the compu-
tation of the entire P∞(I).
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These techniques do not suffer from the limitations outlined above
but the runtime of MS or QSQ can be either instantaneous or even
higher than computing P∞(I) from scratch [3]. We empirically ob-
served that if the query requires little or no reasoning, then a low-
latency implementation of a non-rewriting procedure like QSQ is
usually much faster than a rewriting procedure like MS. However,
MS becomes a better choice for more expensive queries because it
allows the usage of state-of-the-art materialization engines that are
more suitable for such queries. We could take advantage of these dif-
ferences if we would have a technique that can select beforehand the
best algorithm for each query. Unfortunately, as far as we know, no
such technique exists.

To fill this gap, we propose to use a Machine Learning (ML)
model, and in particular a binary classifier, to perform dynamic al-
gorithm selection, i.e., decide whether the query should be answered
with QSQ or MS. The problem of performing algorithm selection
is well-known in the literature [31] and machine learning has been
shown to be effective in selecting the best algorithms for search prob-
lems [22] or the satisfiability problem (SAT) [38], but not yet for
datalog query-driven reasoning. Some additional related work can
be found in the field of databases where machine learning is used
for various purposes (e.g., for cardinality estimation [20], join or-
dering [24], parameter tuning [35], or indexing [23]). Our setting is,
however, different especially because of the support of recursion.

Algorithm selection for datalog query-driven reasoning is chal-
lenging for various reasons. First, we need to define some meaning-
ful numerical features that capture the difficulty of reasoning so that
the classifier can return accurate predictions. Second, the predictions
should not only be accurate but also fast to compute to avoid a neg-
ative repercussion on the response time. Finally, we must obtain a
large amount of training data (i.e., queries) to train the classifier.

To address the first challenge, we map each query to five quantifi-
able features like the estimated cardinality, the number of rules exe-
cutions, etc., which are then used by the binary classifier to choose
the best algorithm. To quickly compute values for these features (sec-
ond challenge), we introduce a lightweight resolution-based proce-
dure to estimate their values. Finally, we address the last challenge
with an automatic procedure which, given I and P , analyses the de-
pendencies between atoms in the program and returns many example
queries of different types.

We evaluated our technique using different classifiers (Support
Vector Machines (SVM) [10], Naive Bayes classifiers [7], etc.), arti-
ficial and real-world KGs, and rulesets which were either extracted
from OWL ontologies [12] or mined using association rule mining
algorithms [11]. Our results are encouraging as they show that our
technique can make quick and accurate predictions, and this results
in a significant reduction of the response time of query answering
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when compared to the case when only one algorithm is used.
An extended version of this paper with a more detailed evaluation,

and additional experimental data is available in the Github repository
at https://github.com/unmeshvrije/ecai2020.

2 Preliminaries
We start our discussion by introducing some background notions to
specify the task of query answering with datalog rules and with a
short description of the MS and QSQ algorithms.
Datalog. Let P,V, C be disjoints sets of predicates, variables,
and constants symbols respectively. Each predicate p ∈ P
has arity ar(p) ≥ 0. A term t is a member of C ∪ V and
an atom is an expression p(t) where p ∈ P and t is a
list of terms of length ar(p). If t does not contain variables,
then p(t) is a fact. Rules are expressions of the form: r :
e1(u1) ∧ . . . ∧ em(um) ∧ q1(s1) ∧ . . . ∧ qn(sn) → h(t)
where e1(u1), . . . , em(um), q1(s1), . . . qn(sn), h(t) are atoms,
e1, . . . , em are extensional predicates (i.e., they never appear in the
right-side of rules), and q1, . . . , qn are intensional ones. We denote
the conjunction e1(u1) ∧ . . . ∧ em(um) as edb(r), the conjunction
q1(s1)∧ . . .∧qn(sn) as idb(r), and edb(r)∧ idb(r) as body(r). We
write head(r) to refer to the atom at the right-side of r. When the or-
der is irrelevant, we view edb(r), idb(r), body(r) as sets of atoms.
We assume rule safety, i.e., every variable in head(r) must appear
in body(r). A database (program) is a finite set of facts (rules). A
Datalog query (or query henceforth) Q = (G,P ) is a pair where G
is an atom called goal atom, and P is a program.

In order to define the rule execution, let σ be a substitution, i.e., a
partial mapping from variables to terms. We use σ as postfix operator
to replace variables with the corresponding mapping in atoms, tuples
or sets of them. For instance, if σ = {X 7→ a, Y 7→ b} where
a, b ∈ C, then p(X,Y )σ = p(a, b).

Let I denote the input set of facts, r(I) = {head(r)σ |
body(r)σ ⊆ I} represent the application of rule r on I , and
P (I) =

⋃
r∈P r(I) be its extension to the program. Further, we

set P 0(I) = I and define P i+1 = P (P i(I))∪P i(I) for i ≥ 0. The
materialization of I with P is the union P∞(I) =

⋃
i≥0 P

i(I).
Adornments and sequences. An adornment is a finite string from
the alphabet {b,f}. An adorned atom pα(t) is an atom where the
adornment α is of length ar(p). A character c in α complies with t if
t is a constant and c=b or if t is a variable and c=f. An adornment α
complies with t if each c in α complies with its correspondent term
in t. We denote with adorn(p(t)) the atom pα(t) where α complies
with t. Finally, a rule r is adorned if q1(s1), . . . , qn(sn), h(t) are
adorned with α1, . . . , αn, α and each character c in αi equals to f
iff 1) its corresponding term t is a variable that does not occur in
s1, . . . , si−1 and 2) any possible occurrences of t in t correspond to
f in α2. We introduce two auxiliary functions: adorn(r, α) returns
the adorned version of rule r where the adornment of head(r) is α,
while bnd(t, α) returns the sublist of t that maps to b in α.

A sequence s = 〈a1, . . . , an〉 is a tuple of len(s) = n generic
elements. The postfix operator [i] returns the ith element, i.e., s[i] =
ai while append(s, s1, . . . , sj) returns a sequence where s1, . . . , sj
are appended to s. We also view s as a set and write a ∈ s to refer to
an element a in s.
Magic Sets. Given the database I and query Q = (G,P ), our goal
is to compute the set of facts ans(I,Q) = {Gσ | Gσ ∈ P∞(I)}.
Query-driven reasoning procedures speed up the computation of ans

2 Usually, extensional predicates are not adorned.

Algorithm 1: MS(Q)
1 PM := ∅, A := {adorn(G)}, B := ∅
2 while A 6= B do
3 Q′ := pα(t) from A \B
4 B := B ∪ {Q′}
5 R := {adorn(r, α) | r ∈ P ∧ head(r)θ = p(t)θ}
6 while R 6= ∅ do
7 Remove rule r from R
8 Let pα(t) := head(r); u := bnd(t, α);
9 S := edb(r) ∧mgcαp (u)

10 PM := PM ∪ {S ∧ idb(r)→ head(r)}
11 foreach i ∈ {1, . . . , |idb(r)|} do
12 Let qαi

i (si) be the ith atom in idb(r)

13 PM := PM ∪ {S → mgc
αi
qi (bnd(si, αi))}

14 S := S ∧ qαi
i (si)

15 A := A ∪ {qαi
i (si)}

16 return (G,PM )

by avoiding, whenever possible, the entire computation of P∞(I).
We consider Magic Sets (MS) [3], one of the most popular tech-
niques of this kind. Given Q in input, MS rewrites Q creating a new
program from P . The new program contains special “magic” predi-
cates, called mgc∗∗ below, to derive only facts relevant to answers of
G. This procedure, outlined as MS in Algorithm 1, is described with
the following example.

Example 1. Let us consider the query Q = (G,P ) where G =
q(a, Y ) and P contains the rules

p(X,Y ) ∧ p(Z, Y )→ q(X,Z) (1)

s(Y,X)→ p(X,Y ) (2)

Line 1 adds qbf (a, Y ) toA. In lines 3 and 4, the algorithm setsQ′ :=
qbf (a, Y ) and adds Q′ to B. Then, it puts all adorned rules that can
produce answers for Q′ in R. In our case, it is r : pbf (X,Y ) ∧
pfb(Z, Y ) → qbf (X,Z). Lines 8-10 will add to PM the rewritten
version of r

mgcbfq (X) ∧ pbf (X,Y ) ∧ pfb(Z, Y )→ qbf (X,Z) (3)

Note that here the atom mgcbfq (X) obliges rule (3) to derive q-
facts only if X can be mapped to constants in mgcbfq −facts. Thus, if
we add mgcbfq (a) to I , then rule (3) will only derive answers for Q.
The for loop in line 11 will process the idb atoms of r left-to-right to
restrict the derivation of p−facts in a similar way. It adds to PM the
following rules

mgcbfq (X)→ mgcbfp (X) (4)

mgcbfq (X) ∧ pbf (X,Y )→ mgcfbp (Y ) (5)

Rules (4-5) are used to populate the magic predicates for p so that
only p-facts that are relevant for Q are derived. The loop also adds
the intensional body atoms of r to A so that further rules can be
rewritten. Then, the algorithm returns to line 3 and selects Q′ =
pbf (X,Y ). Lines 7 and 8 select the adorned version of rule (2) and
lines 9 and 10 adds

s(Y,X) ∧mgcbfp (X)→ pbf (X,Y ) (6)

to PM . Since s is an extensional predicate, the loop in line 11 does
not start. Processing the remaining atom in A adds to PM the rule

s(Y,X) ∧mgcfbp (Y )→ pfb(X,Y ) (7)
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At this point, PM contains rules (3-7) and the answers for G can be
computed by materializing P∞M (I ∪{mgcbfq (a)}), which is likely to
be faster than computing P∞(I).

QSQ. Query-subquery (QSQ) [1] is another query-driven algorithm
defined as a set-based variant of standard SLD resolution [36] with
an additional admissibility test and lemma resolution to ensure ter-
mination [34]. QSQ restricts the reasoning process precisely in the
same way as done by MS, namely with adorned rules and with spe-
cial relations to restrict the number of derivations. The difference is
that QSQ does not create a new program but proceeds instead in a
top-down fashion with the original program. In Example 1, for in-
stance, QSQ will first consider rule (1), and then use sideways infor-
mation passing to propagate the constants in G to the body atoms of
rule (1). Then it will start evaluating the two body atoms one-by-one.
The evaluation of the first body atom will start with the evaluation
of the subquery p(a, Y ) which will trigger a recursive process until
all its answers are computed. Then, the algorithm will move to the
second body atom of rule (1), and execute a new subquery until all
subqueries are computed.

3 Approach Rationale and Overview

Adding the magic predicates in the way outlined in Algorithm 1 is
useful to restrict the reasoner to derive only relevant facts for Q.
However, doing so might introduce other inefficiencies, which we
categorize either as algorithmic or implementation-wise.

Algorithmic inefficiencies. MS rewrites the program without con-
sidering the input database, thus all possible rewritings must be in-
cluded. In Example 1, for instance, the rewritten rule (7) is included
in PM even if it might be excluded, e.g., if rule (5) does not pro-
duce any derivation (e.g., when no pbf -fact joins with mgcbfq -facts).
This inclusion is due to the fact that MS must produce a ruleset that
is suitable for any input. While rewriting the rules is in practice a
relatively fast procedure (in the order of milliseconds in our experi-
ments), computing all possible rewritings might become a source of
overhead if the query is selective and/or requires no reasoning. More-
over, evaluating a rule has often a bootstrap cost that is unconditional
to the number of produced derivations. Therefore, unnecessary rules,
like the ones that will not produce any derivation due to empty magic
predicates in their bodies, should be avoided.

Implementation-wise differences. MS rewritings are elegant since
they restrict the derivations in a declarative way. However, delegat-
ing the rule execution to a materialization engine can introduce addi-
tional overhead.

In contrast to MS, QSQ’s top-down strategy can be implemented
internally as a “pay-as-you-go” method where the adorned rules and
the temporary relations are introduced only if needed. In Example 1,
for instance, QSQ can avoid to adorn rule (2) with the head adorn-
ment fb if there are no s-facts that join with mgcbfp -facts (rule (6)),
and thus would also avoid to create all temporary data structures nec-
essary to store additional subqueries. This avoidance results in less
overhead but the downside is that if we apply QSQ, then we cannot
rely on advanced techniques used in state-of-the-art materialization
engines for speeding up the rule execution (e.g., parallelism in RD-
Fox [28], or compression in VLog [32]). Therefore, this approach
should be used only if the query requires little or no reasoning.

Approach Overview. In order to take the best of both approaches,
our proposal is to train a binary classifier to decide whether the query
should be answered with MS or with QSQ, using previous query ex-
ecutions as training evidence. After the training is completed, query

answering is implemented as follows: First, the input query is trans-
lated into a numerical feature vector that can serve as input for the
classifier. Then, we use the classifier to identify what technique is
likely to be faster, and finally execute the query with it.

In order to implement our approach, we must address the chal-
lenge of translating the input query into a vector of numerical fea-
tures that somehow estimates the expected cost of executing the
query. Moreover, we also need a procedure to extract a large number
of sample queries to construct suitable amount of training evidence
for the classifier. We describe these two procedures in Sections 4
and 5 respectively.

4 Feature Estimation

The performance of the classifier depends on the quality of the fea-
tures: If they are not good indicators of the difficulty of reasoning,
then the classifier would not be able to make an accurate prediction.
After profiling the runtime of MS and QSQ on multiple example
queries, we identified five quantifiable features that can give an in-
dication of the difficulty of reasoning. These are:
• f1: number of substitutions. This feature estimates the number of
substitutions computed to infer P∞M (I). Substitutions are computed
by performing a series of natural joins over the relations that store
the body facts. Since joins can be time-consuming, a high value of
this feature can predict a longer response time.
• f2: number of relevant facts. This feature estimates the number
of facts with non-magic predicates in P∞M (I). Since each derived
fact requires additional computation and storage, a high value of f2
indicates longer runtimes.
• f3: number of subqueries. This feature corresponds to the number
of subqueries that are produced during the computation of P∞M (I).
Note that with MS the subqueries are the facts with magic predicates,
while QSQ uses ad-hoc relations. Since subqueries can potentially
trigger further reasoning, a high value of f3 can also indicate longer
runtimes.
• f4: number of rules applications and f5: number of unique rules.
These two features correspond to the number of rules applications
(f4) and rules (f5) that are triggered by the reasoning process. For
instance, the computation of P∞M (I) could trigger the application of
r1 twice and of r2 once. In this case, f4 = 3 and f5 = 2. These
two features are included because more rules applications introduce
additional computation, while the fact that a query triggers the exe-
cution of different rules indicates that it is potentially less selective,
and hence take longer to be executed.

The classifier trained with features f1, . . . , f5 returned a good ac-
curacy (see Section 6 for the empirical evaluation). To further study
whether other features could give equal or better results, we have ex-
perimented with other two types of features, called f6 and f7 below.
• f6: boundedness. We added as extra features a vector of boolean
features which are activated i.e., equal to true) if the query con-
tains constants in specific locations. For example, if q(t) = p(X, a),
where X is a variable and a a constant, then the corresponding vec-
tor is 〈0, 1〉. The rationale is that constants can potentially reduce the
number of answers and hence improve the runtime of reasoning.
• f7: involved intensional predicates. Instead of counting the number
of subqueries as with f3, we constructed a boolean vector of features
where each feature maps to an intensional predicate and it is activated
if there is a subquery with the corresponding predicate. For instance,
the feature that maps to the predicate p1 is activated if there is a
subquery with predicate p1. The motivation for adding them is that
the subset of facts with certain predicates in P∞(I) can be small
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Algorithm 2: Feature estimation functions for query Q on
database I . maxd is a global constant (default is 5).

1 function est(Q, I)
2 f1, f2, f3, rules := estQuery(Q, I, 0)
3 f4 := len(rules) f5 := |{r | r ∈ rules}|
4 return 〈f1, f2, f3, f4, f5〉
5 function estQuery(Q := (G,P ), I, d)
6 if d ≥ maxd then return 〈1, 1, 0, 〈〉〉
7 f1 := f2 := |{θ | Gθ ∈ I}|
8 f3 := 1 rules := 〈〉
9 foreach r ∈ P do

10 r is of the form B1 ∧ . . . ∧Bn → H
11 if ∃θ | Hθ = Qθ then
12 g1, g2, g3, r4 := estRule(θ, r, I, P, d+ 1)
13 f1 := f1 + g1 f2 := f2 + g2 f3 := f3 + g3
14 rules := append(rules, r, r4)
15 return 〈f1, f2, f3, rules〉
16 function estRule(θ, r, I, P, d)
17 tmp := 1 f1, f2, f3 := 0 rules := 〈〉
18 foreach B ∈ body(r) do
19 q1, q2, q3, q4 := estQuery((Bθ, P ), I, d)
20 tmp := tmp ∗ q2
21 f1 := f1 + q1 f2 := f2 + q2 f3 := f3 + q3
22 rules := append(rules, q4)
23 return 〈f1 + tmp, f2, f3, rules〉

(large) and hence reasoning over them can be quick (slow).
Eventually, features f6 and f7 were discarded since they returned

lower accuracies in all but one case, and we retained only f1, . . . , f5.

Estimating the features. An exact calculation of f1, . . . , f5 can be
time consuming, and this may cancel the advantage of using a faster
query-driven reasoning algorithm. To avoid this problem, we intro-
duce a procedure, represented by function est in Algorithm 2, to pro-
vide a quick estimation of f1, . . . , f5 (note that this procedure does
not describe the computation of f6, f7 since these were discarded
features). This function proceeds in a top-down fashion that mimics
the functioning of QSQ without producing any derivation.

The procedure works as follows: Function est first invokes the
subroutine estQuery, which compute the estimations for an input
query. Function estQuery selects all rules that can produce some an-
swers forQ (line 12) and, for each of them, invokes function estRule
which returns the list of estimates that characterize execution of rule
r. These estimates are added together (line 13), while r and the rule
applications invoked during the call of estRule (r4) are appended to
the list of rule applications (line 14).

Function estRule traverses each body atom of rule r (line 18) and
invokes estQuery for each of them. Variable tmp stores the product
of the number of facts that instantiate the body atoms of r (line 20),
which is a number that approximates the maximum number of possi-
ble derivations. The number of substitutions (f1) returned by estRule
is computed as the sum of tmp and all values of f1 which are re-
turned by estQuery on each body atom (line 19).

Note that est does not use blocking mechanisms, like tabling,
to ensure termination. It relies instead on the counter d that is in-
creased at every call of estRule, and recursive calls are blocked after
d ≥ maxd (line 6). After experimenting with different values, we
observed that maxd := 5 is a good compromise between runtime
and accuracy. Finally, est returns a tuple with the approximations of
the five features: f1, f2, f3 are returned by estQuery, while f4 and
f5 are computed from the multiset of triggered rules (line 3).

Algorithm 3: Functions for creating goal atoms for database I
and program P . maxd and maxs are global constants (defaults
are 5 and 50 respectively.

1 function dfs(s, path,G)
2 if len(path) > maxd then return {path}
3 B := ∅
4 foreach as,q ∈ A(G) do
5 newpath := append(path, as,q)
6 B := B ∪ dfs(q, newpath,G)
7 return B

8 function goals(I, P)
9 Let G be the dependency multigraph of P

10 O := {} A := ∅
11 foreach p ∈ P do A := A ∪ dfs(p, [],G)
12 foreach path ∈ A s.t. len(path) > 0 do
13 〈h, b〉 := lbl(last(path))
14 Σ := sample of maxs facts from {bσ | bσ ∈ I}
15 foreach f ∈ Σ do
16 f ′ := f i := len(path)
17 while i > 0 do
18 〈h, b〉 := lbl(path[i])
19 if ∃σ s.t. bσ = f ′ then
20 f ′ := hσ
21 O := O ∪ {f ′}
22 else break
23 i := i− 1
24 return O

5 Goal Atoms Generation

In this section, we describe a method for obtaining example goal
atoms for a given program P and database I that we can use as train-
ing evidence. Our method constructs a directed labelled multigraph
that represents the dependencies between the predicates, and then
creates example goal atoms by traversing it with samples from I .
We use this method because if we would simply create random goal
atoms then there will be a high probability that they will produce no
answer. In contrast, the multigraph can guide the selection of atoms
that trigger some reasoning.

We construct the graph as follows. Let G be the directed labelled
multigraph where vertices map one-to-one to predicates in P and
arcs represent the dependencies between the head and the body pred-
icates in the rule. Throughout, we denote with A(G) the set of arcs in
G, vp the vertex that maps to the predicate p, and aq,p the arc from
vq to vp. The multigraph contains all dependencies between the head
and the body atoms that share some variables, i.e., aq,p ∈ A(G) iff
q(t) = head(r), p(s) ∈ body(r), and vars(t) ∩ vars(s) 6= ∅.

We label each arc with the pair of atoms that define the depen-
dency. Let aq,p ∈ A(G) be the arc that represents the dependency
in rule r between the head atom q(t) and body atom p(s). In this
case, we assign to aq,p the label lbl(aq,p) := 〈q(t), p(s)〉. Note that
if the body of the rule contains multiple body atoms with the same
predicate, then there will be multiple arcs unless the labels are equal.

Dataset # Triples # Terms # Rules ( # Derived facts)
L LE AMIE

LUBM1K 133M 33M 170 (293M) 182 (444M)
DBpedia 112M 18M 9396(146M)
Claros 19M 6M 2689 (108M) 2749 (482M)
Freebase 14M 6M 1449 (26M)
YAGO 1M 800K 127 (44M)

Table 1. Statistics about the used databases and rule sets.
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Procedure goals in Algorithm 3 shows how we can traverses G
to compute examples of goal atoms. The algorithm considers each
predicate (line 11) and computes all paths by performing a depth
first search (function dfs, lines 1–7) up to a maximum depth (maxd).
Then, for each path, it considers the label of the last arc in the path
(line 13) and retrieves from I up to maxs facts that instantiate the
body atom in the label (line 14). For each fact, it traverses the arcs
in the path (lines 17–22), propagating the substitutions for the body
atom to the head of the rule (if such substitutions exist, line 19).
Example goal atoms are obtained by passing the substitutions to the
head atoms of the labels (line 20).

All generated goal atoms are returned inO. IfO contains multiple
equal atoms (modulo variable renaming), then only one is retained.

Example 2. Consider the program P that consists of rules (1)
and (2) of Example 1 and the database I = {s(u, a), s(v, b)}.
The directed multigraph of P will contain three arcs: a1 with la-
bel 〈q(X,Z), p(X,Y )〉, a2 with label 〈q(X,Z), p(Z, Y )〉 from rule
(1), and a3 with label 〈p(X,Y ), s(Y,X)〉 from rule (2). Let us now
assume that at some point path := 〈a2, a3〉 in Algorithm 3 (line 12).
This path has the length 2. Thus, it enters in the loop at line 13, we
access the label of the last arc (a3) of this path which is h = p(X,Y )
and b = s(Y,X).

In line 14, we find all the facts that match the body atom s(Y,X).
Thus, Σ = {s(u, a), s(v, b)}. In line 15, we start traversing all facts.
Then at line 17, we start traversing the path backwards.

Let f ′ = s(u, a). In line 19, we get substitution σ ({X 7→ a, Y 7→
u}) that can be applied to the atom s(Y,X) in order to get a fact
f ′. Then, line 20 makes f ′ = p(X,Y )σ i.e., f ′ = p(a, u). This
is added to the set of goal atoms. In the next iteration of the while
loop, we extract the label of the next arc (a2) in line 18 leading to
h = q(X,Z) and b = p(Z, Y ). Now σ = {Z 7→ a, Y 7→ u} (in
line 19). In line 20, f ′ = q(X,Z)σ i.e., f ′ = q(X, a) which is then
added to the set of goal atoms. The algorithm continues similarly for
the paths obtained from other predicates.

6 Empirical Evaluation

Experimental Setup. To test our approach, we used the implemen-
tations of MS and QSQ provided by the system VLog [32]. We chose
VLog for its state-of-the-art runtimes with these algorithms.

As inputs, we used the artificial benchmark tool LUBM [13] to
generate an artificial KG with 1K universities (LUBM1K), and four
subsets of real-world KGs: DBpedia [8], Freebase3, YAGO2 [17],
and Claros [28]. The first three KGs contain encyclopedic-like facts
primarily extracted from Wikipedia and other sources while Claros is
an ontology in the domain of cultural heritage. The content of these
datasets can be represented using 〈s, p, o〉 RDF triples [16]; hence
each dataset can be seen as a set of Datalog facts with one ternary
predicate. LUBM1K, DBpedia, and Claros have been used previ-
ously [32] and are publicly available. The samples of YAGO and
Freebase are in our data repository.

As rulesets, we considered the ones obtained by translating the
underlying ontologies in the KG, and the ones produced by applying
mining tools. The first types of rulesets encode the knowledge pro-
vided in the ontologies, while the seconds capture some refined cor-
relations in the KG. For LUBM1K, Claros, and DBpedia, we used
incomplete translations of the corresponding OWL ontologies that
cover the expressivity of OWL2 RL [12]. These rulesets were ini-
tially provided by [27] and were also used in [32]. We considered

3 https://developers.google.com/freebase/data

Dataset # Goal Atoms Runtimes (seconds)
(Ruleset) QSQ MS Q F R
LUBM1K (L) 2919 350 (27) 0.4 81 996
LUBM1K (LE) 3019 367 (36) 0.5 74 1283
DBpedia (L) 14071 1256 (14) 2.06 3680 4192
Claros (L) 1081 126 (70) 0.31 203 2026
Claros (LE) 1324 151 (71) 1.03 259 2871
Freebase (AMIE) 9923 77 (0) 0.4 330 1637
YAGO (AMIE) 1018 378 (74) 0.08 228 2462

Table 2. Statistics about the generated training data.

the translations “L” for all three KGs while for LUBM1K and Claros
we also considered the translations “LE”. The “LE” rulesets contain
more rules, have rules with more body atoms (thus more joins) and
produce more derivations than the “L” rulesets.

For YAGO and Freebase, we used the rulesets mined by
AMIE [11], a state-of-the-art mining tool. AMIE mines rules
from KGs based on the number of facts that support them. For
example, AMIE mined livesIn(Y,C) ∧ marriedTo(X,Y ) →
livesIn(X,C) because many entities that are married live in the
same location as their partners. Table 1 reports details for each input.

We used the implementations of the statistical models provided
by the library scikit-learn4. Tests were run on a Macbook Pro with
2.2GHz i7 CPU and 16GB RAM.
Training Data Generation. To obtain training data, we used Algo-
rithm 3 to generate training goal atoms. Then, for each goal atom,
we executed the corresponding 〈G,P 〉 query both with QSQ and
MS. Since the number of atoms was large, we set a timeout: If the
query timed out with both methods, we labeled it with MS since it is
the method that can handle expensive atoms more efficiently due to
its usage of materialization engines. Otherwise, we selected the al-
gorithm with the lowest runtime. After experimenting with different
timeouts, we selected 10s as a good compromise between training
speed and accuracy.

Details about the training data are in Table 2. The second and third
columns report the number of atoms assigned to QSQ and MS re-
spectively. The number of atoms assigned to MS due to timeout is
reported between parentheses. The fourth column (Q) is the runtime
of Algorithm 3 while the fifth column (F) is the sum of the runtimes
of executing Algorithm 2 to compute the features for the queries. The
last column (R) reports the cumulative runtime of executing both
QSQ and MS on each training query to compute the correct label.
The sum Q+F+R is the total runtime for creating the training set for
the given KG and ruleset. In the worst case, creating the training data
took about 2h6m (DBPedia).
Training. We considered four binary classifiers: A Support Vector
Machine (SVM) [10], Naı̈ve Bayes [7, chapter 8], Decision Trees [7,
chapter 14] and Logistic Regression (LR) with 0.5 as threshold [7,
chapter 3]. These models are among the most common ones used for
classification. After the training data was generated, training these
models was rather fast: It took 3 milliseconds (YAGO) and 7 seconds
(DBpedia) in the best and worst cases respectively.
Predictions. We tested the performance of our method both with
SPARQL BGP queries [30] and with atomic queries over the inten-
sional predicates in the program. Each SPARQL query is executed
by 1) adding an extra rule which has the triple patterns as body and
a fresh predicate with the projected variables as head, and 2) use the
head atom as goal atom. This is a well-known conversion strategy to

4 http://scikit-learn.org/stable/index.html
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Dataset # Goal Atoms # Atom in Subsets
(Ruleset) QSQ MS B M G
LU (L) 895 105 (0) 576 407 17
LU (LE) 797 143 (6) 513 403 24
DBp (L) 878 169 (6) 464 425 158
Cl (L) 709 36 (7) 344 356 45
Cl (LE) 612 74 (5) 328 314 44
Fr (A) 420 119 (0) 180 180 179
YA (A) 154 146 (142) 152 137 11

(a) Statistics about the generated test data.
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(b) Accuracy with different classifiers.
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(c) Comparison QSQ/MS.
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(d) SVM Accuracy on atom subsets.

Dataset Runtimes other methods Our runtimes
(Ruleset) Only QSQ Only MS Ideal Total = Feat. + Pred. + Reasoning
LU (L) 31.4h 13.2h 10.3h 11.5h 49s 10ms 11.5h
LU (LE) 65.0h 39.0h 36.0h 37.4h 55s 22ms 37.4h
DBp (L) 131.1h 82.2h 19.5h 33.6h 262s 100ms 33.5h
Cl (L) 184.3h 379.6h 67.4h 75.8h 137s 60ms 75.8h
Cl (LE) 184.1h 357.3h 63.6h 83.3h 126s 68ms 83.3h
Fr (A) 28.0h 10.2h 9.5h 9.6h 42s 53ms 9.6h
YA (A) 162.2h 236.4h 26.5h 31.1h 34s 34ms 31.1h

(e) Cumulative runtimes of our method vs. other approaches on the test goal atoms.

Figure 1. Statistics, accuracies, and runtimes test atoms.

execute SPARQL BGP queries with Datalog [29].
As SPARQL queries, we considered the 14 official queries pro-

vided by LUBM and manually created 10 additional SPARQL
queries for DBpedia. For DBpedia, we created the queries manually
because we wanted to ensure they trigger reasoning and that are ideal
for both approaches (the queries are available in the repository).

LUBM1K (LE) DBpedia (L)
Q. Runtime (sec.) Runtime (sec.)

QSQ MS Ours Pred QSQ MS Ours Pred
1 0.8 0.7 0.83 N TO 90.3 90.6 Y
2 4.1 4.1 4.20 Y TO 55.2 55.3 Y
3 2.6 10.2 2.61 Y 0.9 0.4 0.5 Y
4 TO 33.3 33.35 Y 33.3 3.8 4.0 Y
5 TO 32.8 32.82 Y 43.1 12.9 13.0 Y
6 TO 28.5 28.52 Y 0.4 1.3 1.4 N
7 TO 27.7 27.75 Y 33.4 457.5 33.5 Y
8 TO 28.8 28.82 Y 5.4 28.3 5.5 Y
9 TO 27.9 27.96 Y 11.2 36.3 11.4 Y
10 TO 29.6 29.64 Y 94.5 293.6 94.6 Y
11 6.4 28.6 6.48 Y
12 TO 29.2 TO N
13 TO 35.4 TO N
14 10.3 2.5 2.53 Y

Table 3. Performance of our approach with SPARQL queries. “QSQ”
(“MS”) is the runtime with QSQ (MS), TO: Timeout (10 minutes).

Table 3 reports the accuracy and runtimes of our method. From the
table, we observe that we are able to pick the faster algorithm most of
the times, and this results in a significant saving against the less ideal
alternative. In four cases (marked with ‘N’ in the table), the model
makes the wrong choice. In one case, the two algorithms return the
same runtime (LUBM Query 2) and our approach is slightly slower
due to the overhead of making the prediction. In general, however, we

observe that the overhead necessary to extract the features and mak-
ing the prediction is small. In several cases, our algorithm avoided to
pick the slower algorithm which hit the timeout of ten minutes.

The results with SPARQL queries are representative for a possi-
ble practical use case, but may not cover all types of queries. To in-
crease the coverage of our tests, we artificially created goal atoms.
We pre-materialized each dataset I with program P and randomly
picked facts from P 1(I), P 2(I), etc. Then, we replaced some con-
stants with variables, ensuring that the resulting goal atoms were not
considered during training. We partitioned the atoms into three sub-
sets: “G” contains all goal atoms with only variables; “B” contains
all atoms with only constants while “M” contains mixed atoms. We
further split two sets X in X1, . . . , X4 where X ∈ {B,M} such
that queries fromX1 have all answers in P 1(I),X2 in P 2(I),X3 in
P 3(I), and X4 in P≥4(I). The rationale was to separate atoms with
answers that require more or less inference steps. Details with the
number of goal atoms labeled with each method, and cardinalities of
the various subsets are reported in Table 1a.

Figure 1b depicts the prediction accuracy obtained with the four
models. SVM emerges as the best choice as it returns an accuracy that
is close or greater than 80% for all but one dataset. To gain more in-
sights, Figure 1c shows the accuracy of SVM either only with atoms
labeled with QSQ or MS. We observe that SVM is generally accurate
in predicting both types of atoms. While some fluctuations in the ac-
curacy should be expected due to the stochastic nature of the process,
with LUBM1K (LE) and DBpedia (L) the difference is more promi-
nent. With LUBM1K (LE), we observed that the runtime difference
between choosing QSQ and MS is not high. Therefore, similar atoms
can be classified with different labels. With DBpedia (L), we noticed
that the difference between the values of the features of QSQ and MS
atoms is much smaller than with the other inputs and this makes the
prediction more challenging.
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(a) Feature Ablation Study.
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(b) Feature Inclusion Study.
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(c) Accuracy also with f6, f7.

Dataset |f7|
(Ruleset)
LUBM1K (L) 73
LUBM1K (LE) 76
DBpedia (L) 2137
Claros (L) 527
Claros (LE) 532
Freebase (AMIE) 644
YAGO (AMIE) 35

(d) Extra features with f7.

Figure 2. Feature ablation and inclusion study and accuracy with extra features.

The accuracy of SVM with different subsets of goal atoms is
shown in Figure 1d. The accuracy is often above 80% and it never
decreases below 70% with the exception of DBpedia (G). This indi-
cates that the model is accurate also if the answers require multiple
inference steps and/or with atoms that have more or less constants.

Table 1e reports the cumulative runtimes necessary to execute all
the atomic test queries with various configurations. The second col-
umn reports the runtime if we only use QSQ. Analogously, the third
column reports the runtime if we only use MS. The fourth column
reports the (unrealistic) best runtime we could achieve if we always
pick the best algorithm. This last runtime represents the best possible
scenario and it is useful for evaluating the margin for improvement.
The fifth column reports the total runtime produced by our method
(SVM). This runtime is the sum of the time taken for generating the
features (sixth column), making the prediction (seventh column), and
of reasoning, i.e., executing either QSQ or MS (eighth column). Note
that the first two runtimes are much smaller than the reasoning run-
time, and essentially all the runtime is spent in reasoning.

From Table 1e, we observe that our approach is better than us-
ing a fixed strategy (either MS or QSQ). The improvement is par-
ticular significant with YAGO (ours is 31.1h vs. 162.2h of QSQ)
and with DBPedia (ours is 33.5h vs. 82.2h of MS). Moreover, we
observe that the runtime of our method is closed to the ideal one
with LUBM1K and Freebase, which indicates that we are close to
the maximum gain that we can obtain. It is important to note, how-
ever, that with LUBM1K and Freebase a fixed strategy of always
choosing MS would perform well. The reason is that with these in-
puts the runtime difference between QSQ and MS is relatively small
and in these cases choosing the wrong algorithm does not impact the
performance. With the other inputs, choosing the wrong algorithm
might lead to much longer runtimes (up to a few hours in the case of
YAGO). It is in such cases that our technique is most effective.

Finally, Figure 2a reports the results on a feature ablation study,
which is a procedure that is commonly applied to understand to what
extent the features contribute for improving the accuracy. The first
column reports the average accuracy obtained on all inputs when we
use all five features, while the remaining five columns report the ac-
curacy if we remove one feature (e.g., the second column reports the
accuracy if we exclude f1). As we can see from the figure, all five
features contribute to increase the accuracy and the best value is ob-
tained when we include them all. Figure 2b reports the results of a
similar experiment where we measured instead the accuracy if we use
only one feature at the time. For instance, the second column reports
the accuracy if we use only f1. From this experiment, we see that
there is no feature that can return an accuracy more than 50%. From

the results shown in these two figures, we conclude that combining
all five features is crucial to obtain a high prediction accuracy.

Figure 2c reports the accuracy if we also include the set of features
f6 and f7. We observe that these additional features decrease the ac-
curacy on all datasets except DBpedia where most of the goal atoms
with the same predicate are labeled with the same algorithm and the
binary features in f7 can capture this more effectively. In addition to
producing a lower accuracy, features f6 and f7 also increase signif-
icantly the size of the model (Table 2d reports the number of extra
binary features if we include f7). For these two reasons, we decided
to exclude them and use only features f1, . . . , f5.

7 Conclusion

In order to exploit KGs to the fullest, it is important to implement
efficient query answering procedures. Existing datalog query-driven
procedures are ideal for this task, but there are cases when one tech-
nique is better than another and detecting this beforehand is not easy.

To improve the efficiency of query answering, this paper proposes
a method to perform an automatic algorithm selection for query-
driven procedures. More in particular, our method uses a ML binary
classifier to choose (or help the user in choosing) whether the query
at hand should be answered with QSQ (non-rewriting procedure) or
MS (rewriting procedure). Using a ML classifier for this task is not
straightforward, and we had to address the challenges of defining a
way to (quickly) translate each query into numerical features and to
obtain queries for training the model.

So far, algorithm selection has been successfully applied in other
fields, like SAT solvers, but never for datalog query-driven reasoning.
Our experiments show that this is an effective type of optimization
as the predictions resulted in significant reductions of the response
times; up to 80% in the best case.

Our work builds from the intuition that the insights extracted
from past evidence can improve significantly the efficiency of query-
driven reasoning. It is interesting, as a direction for future research, to
study whether our approach can be extended to other reasoning tech-
niques as well (e.g., incremental materialization procedures). More-
over, it is also interesting to further research how statistical methods
can be integrated more deeply into the reasoning process (e.g., to op-
timize the join ordering or the selection of subqueries), or how they
can provide more fine-grained estimations of the runtime or of the
potential number of answers.
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