
String constraint solving: past, present and future
Roberto Amadini1, Graeme Gange2, Peter Schachte3, Harald Søndergaard3 and Peter J. Stuckey2

Abstract. String constraint solving is an important emerging field,
given the ubiquity of strings over different fields such as formal anal-
ysis, automated testing, database query processing, and cybersecu-
rity. This paper highlights the current state-of-the-art for string con-
straint solving, and identifies future challenges in this field.

1 Introduction
String constraint solving (or briefly, string solving) is a branch of
the constraint solving field where constraints over string variables
are allowed. Typical examples involve constraints on string length,
(dis-)equality, concatenation, and regular expression matching.

The growing interest in string solving has emerged in application
domains where string processing plays a central role such as test-case
generation, software analysis and verification, model checking, web
security, and database query processing [14, 15, 10, 7, 4].

In particular, the widespread interest in cybersecurity has given
new impulse to research in string solving. Strings are often the silent
carriers of software vulnerabilities; for example, they are used in var-
ious forms of injection attacks. In 2019, the first workshop on String
Constraints and Applications has been organised [12].

Here we briefly review the literature on string constraint solving.
We summarize the state-of-the art in this field and conclude by giving
some of the possible future challenges.

2 State of the art
We formalise the general concept of string constraint solving by in-
stantiating the definition of constraint satisfaction problem (CSP).
A CSP is a triple (X ,D, C) where: X = {x1, . . . , xn} are the
variables; D = {D(x1), . . . , D(xn)} the domains, where for i =
1, . . . , n each D(xi) is a set of values that xi can take; C are the
constraints defined over the variables of X .

Given a finite alphabet Σ, a string constraint satisfaction problem
is a CSP containing k > 0 string variables {w1, . . . , wk} ⊆ X
such that D(wi) ⊆ Σ∗ for i = 1, . . . , k and at least one constraint
of C involves a string variable. The goal of string solving is to find
a solution (or prove the unsatisfiability) of a given string CSP, i.e.,
an assignment ξ ∈ D(x1) × . . . × D(xn) of domain values to the
corresponding variables that satisfies all of the constraints of C—in
particular, ξ assigns a string of Σ∗ to each string variable w.

Several variants of string CSPs can be defined. For example, we
can get an optimisation problem by adding an objective function. An
important classification for string CSPs concerns the boundedness of
string variables: we talk about bounded-length, or simply bounded,
string solving when there is an upper bound λ > 0 on the string

1 University of Bologna, Bologna, Italy
2 Monash University, Caulfield East Vic. 3145, Australia
3 The University of Melbourne, Melbourne Vic. 3010, Australia

length of each variable. When not explicit, deciding the value of λ
may be non-trivial: a too small λ may exclude feasible solutions,
while a too big λ may significantly slow down the solving process.

All the approaches we are aware for string constraint solving can
be grouped in the following three categories:

• Automaton-based approaches: These approaches rely on au-
tomata to handle string variables and constraints (e.g., [30, 22,
19]). They can handle unbounded-length strings and represent in-
finite sets of strings precisely. However, automata typically have
performance issues due to state explosion and the integration with
other domains (integers in particular).

• Word-based approaches: These approaches solve systems of word
equations, possibly enriched with other constraints (e.g., string
length or regular membership constraints). They mainly rely sat-
isfiability modulo theory (SMT) solvers to tackle such constraints
[23, 13, 9, 2, 29, 18, 1, 11]. SMT string solvers handle unbounded
strings and can rely on several already defined theories, but unfor-
tunately most of them are incomplete and suffer from the perfor-
mance issues of the underlying DPLL(T) paradigm [16].

• Unfolding-based approaches: These approaches basically unfold
each string variable x into k > 0 contiguous variables represent-
ing (sets of) characters of x. For example, x can be mapped into
k integer variables [28] or to bit-vectors [20, 27]. The approach,
well-suited for constraint programming (CP) solvers, cannot deal
with unbounded-length strings and may be inefficient if the length
bound λ is large. To overcome the latter issue, a recently intro-
duced CP approach, which can be seen as a “lazy” unfolding, de-
vised the dashed string abstraction [6].

Several solvers have been proposed for string constraint solving. To
the best of our knowledge, at present the most effective and “general
purpose” (i.e., solvers not tailored to solve a specific string CSP) are
CVC4 [23], G-STRINGS [6], and Z3 [13].

CVC4 and Z3 are SMT solvers supporting the theory of word-
equations with additional constraints (e.g., string length or regular
expressions). Z3 comes in two flavors: a version using the theory of
sequences and one using the string solver Z3STR3 [9].

G-STRINGS is a CP solver integrating string solving capabilities
into the GECODE solver [17]. It is based on a concept of “dashed
strings”—simplified regular expressions able to express the concate-
nation of finite sets (blocks) of strings. G-STRINGS maintains a do-
main for each string variable (in the form of a dashed string) and
defines a constraint propagator for each string constraint [5, 6]. The
propagators generally rely on a block refinement principle based on
the “sweep” algorithm for scheduling problems [3].

Among the string constraints supported by all of the above solvers
we mention (dis-)equality, concatenation, length, substring, find and
replace, channelling between integers and strings, and regular ex-
pressions operations. In addition, G-STRINGS can handle lexico-

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



graphic ordering [5] and character counting.

3 Future challenges
We identify four main challenges for string constraint solving:

• Extend string solving. Support for string solving is fairly recent,
and therefore there are several string constraints that no solver is
able to handle. Among them, we mention complex (extended) reg-
ular expressions such as back-references, lookaheads/lookbehinds
or greedy matching. Complex (extended) regular expressions oc-
cur very frequently in JavaScript—the de facto language for web
programming [25]. Such operations have to be addressed properly
to significantly improve the analysis of web programming.

• Improve string solving. Improving the efficiency of string solvers
is of course very welcome. This means to devise new solving al-
gorithms and search heuristics. At present, SMT solvers tend to
fail with long-length strings, while CP solvers may struggle to
prove unsatisfiability. In particular, an interesting—and far from
trivial—challenge for CP string solvers concerns the study of
string solving and clause learning, a powerful technique that dra-
matically improved the performance of modern solvers [26].

• Combine string solving. Constraint solvers have disparate nature
and often display uneven performance across different (types of)
problem instances. Over the last years, plenty of evaluations have
shown that a portfolio of different solvers can significantly outper-
form a single, arbitrarily efficient solver. A promising future chal-
lenge is therefore the definition of portfolios of string solvers [21],
possibly running simultaneously and collaboratively (e.g., through
information exchange between solvers). A preliminary study on
the dynamic symbolic execution of JavaScript has shown promis-
ing results [4].

• Utilize string solving. The utilization and proliferation of solvers
and related tools is the final goal for string constraint solving. This
is clearly subordinated to the implementation of the above steps.
Software verification, testing, model checking and cybersecurity
seem to be a suitable fertile ground for the dissemination of string
solving. Some approaches already integrate string solving capa-
bilities into their dynamic symbolic execution frameworks [24, 4].
However, string solving may also be useful in other fields such as
bioinformatics [8].

ACKNOWLEDGEMENTS
This work is supported by the Australian Research Council (ARC)
through Linkage Project Grant LP140100437 and Discovery Early
Career Researcher Award DE160100568.

REFERENCES
[1] P. A. Abdulla, M. F. Atig, Y. Chen, B. P. Diep, L. Holı́k, A. Rezine, and

P. Rümmer. Flatten and conquer: A framework for efficient analysis of
string constraints. In PLDI 2017, pages 602–617, 2017.

[2] P. A. Abdulla, M. F. Atig, Y.-F. Chen, L. Holı́k, A. Rezine, P. Rümmer,
and J. Stenman. Norn: An SMT solver for string constraints. In
D. Kroening and C. Păsăreanu, editors, 27th CAV, Part I, volume 9206
of LNCS, pages 462–469. Springer, 2015.

[3] A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve com-
plex scheduling and placement problems. Mathematical and Computer
Modelling, 17(7):57–73, 1993.

[4] R. Amadini, M. Andrlon, G. Gange, P. Schachte, H. Søndergaard, and
P. J. Stuckey. Constraint programming for dynamic symbolic execution
of JavaScript. In 16th CPAIOR, volume 11494 of LNCS, pages 1–19.
Springer, 2019.

[5] R. Amadini, G. Gange, and P. J. Stuckey. Propagating Lex, Find and
Replace with dashed strings. In 15th CPAIOR, volume 10848 of LNCS,
pages 18–34. Springer, 2018.

[6] R. Amadini, G. Gange, and P. J. Stuckey. Sweep-based propagation for
string constraint solving. In 32nd AAAI Conf. Artificial Intelligence,
pages 6557–6564. AAAI Press, 2018.

[7] R. Amadini, A. Jordan, G. Gange, F. Gauthier, P. Schachte,
H. Søndergaard, P. J. Stuckey, and C. Zhang. Combining string ab-
stract domains for JavaScript analysis: An evaluation. In TACAS 2017,
pages 41–57. Springer, 2017.

[8] P. Barahona and L. Krippahl. Constraint programming in structural
bioinformatics. Constraints, 13(1-2):3–20, 2008.

[9] M. Berzish, V. Ganesh, and Y. Zheng. Z3str3: A string solver with
theory-aware heuristics. In 17th FMCAD, pages 55–59. FMCAD, 2017.

[10] P. Bisht, T. L. Hinrichs, N. Skrupsky, and V. N. Venkatakrishnan.
WAPTEC: Whitebox analysis of web applications for parameter tam-
pering exploit construction. In 18th CCS, pages 575–586. ACM, 2011.

[11] T. Chen, M. Hague, A. W. Lin, P. Rümmer, and Z. Wu. Decision proce-
dures for path feasibility of string-manipulating programs with complex
operations. PACMPL, 3(POPL):49:1–49:30, 2019.

[12] L. D’Antoni, A. W. Lin, and P. Rümmer. Meeting on string constraints
and applications, 2019. https://mosca19.github.io/.

[13] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In 14th
TACAS, volume 4963 of LNCS, pages 337–340. Springer, 2008.

[14] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input generation for
database applications. In ISSTA 2007, pages 151–162. ACM, 2007.

[15] G. Gange, J. A. Navas, P. J. Stuckey, H. Søndergaard, and P. Schachte.
Unbounded model-checking with interpolation for regular language
constraints. In 19th TACAS, volume 7795 of LNCS, pages 277–291.
Springer, 2013.

[16] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. O. a, and C. Tinelli.
DPLL(T): Fast decision procedures. In 16th CAV, volume 3114 of
LNCS, pages 175–188. Springer, 2004.

[17] Gecode Team. Gecode: Generic constraint development environment,
2016. Available at http://www.gecode.org.

[18] L. Holı́k, P. Janku, A. W. Lin, P. Rümmer, and T. Vojnar. String
constraints with concatenation and transducers solved efficiently.
PACMPL, 2(POPL):4:1–4:32, 2018.

[19] P. Hooimeijer and W. Weimer. StrSolve: Solving string constraints
lazily. Automated Software Engineering, 19(4):531–559, 2012.

[20] A. Kieżun, V. Ganesh, S. Artzi, P. J. Guo, P. Hooimeijer, and M. D.
Ernst. HAMPI: A solver for word equations over strings, regular ex-
pressions, and context-free grammars. ACM Trans. Software Engineer-
ing and Methodology, 21(4):article 25, 2012.

[21] L. Kotthoff. Algorithm selection for combinatorial search problems: A
survey. In Data Mining and Constraint Programming, volume 10101
of LNAI, pages 149–190. Springer, 2016.

[22] G. Li and I. Ghosh. PASS: String solving with parameterized array and
interval automaton. In 9th Int. Haifa Verification Conf., volume 8244
of LNCS, pages 15–31. Springer, 2013.

[23] T. Liang, A. Reynolds, C. Tinelli, C. Barrett, and M. Deters. A
DPLL(T) theory solver for a theory of strings and regular expressions.
In 26th CAV, volume 8559 of LNCS, pages 646–662. Springer, 2014.

[24] B. Loring, D. Mitchell, and J. Kinder. ExpoSE: Practical symbolic ex-
ecution of standalone JavaScript. In 24th Int. Symp. Model Checking of
Software (SPIN’17), pages 196–199. ACM, 2017.

[25] B. Loring, D. Mitchell, and J. Kinder. Sound regular expression seman-
tics for dynamic symbolic execution of JavaScript. In 40th PLDI, pages
425–438. ACM, 2019.

[26] O. Ohrimenko, P. J. Stuckey, and M. Codish. Propagation via lazy
clause generation. Constraints, 14(3):357–391, 2009.

[27] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song.
A symbolic execution framework for JavaScript. In Proc. 2010 IEEE
Symp. Security and Privacy, pages 513–528. IEEE Comp. Soc., 2010.

[28] J. D. Scott, P. Flener, J. Pearson, and C. Schulte. Design and implemen-
tation of bounded-length sequence variables. In 14th CPAIOR, volume
10335 of LNCS, pages 51–67. Springer, 2017.

[29] M. Trinh, D. Chu, and J. Jaffar. Model counting for recursively-defined
strings. In 29th CAV, volume 10427 of LNCS, pages 399–418. Springer,
2017.

[30] F. Yu, M. Alkhalaf, and T. Bultan. Stranger: An automata-based string
analysis tool for PHP. In 16th TACAS, volume 6015 of LNCS, pages
154–157. Springer, 2010.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain


