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Abstract. A long-standing obstacle accompanying the growing
popularity of convolutional neural networks (CNNs) is the lack of in-
terpretability, which is essential to explain the decision-making pro-
cess and diagnose the model’s behavior. In this paper, we present a
mathematical decomposition to translate the output of CNN for text
classification into an ngram-level score matrix and a word-level score
matrix, revealing how various parts of input sentences contribute to
the final prediction quantitatively. By exploiting the derived ngram-
level score matrix, we perform extensive experiments to demonstrate
how n-gram features are learned via the convolutional layer. We re-
fine previous intuitions about the behavior of filters and perform a
deep investigation into their underlying properties. By leveraging
the resulting word-level score matrix, we propose two visualization
methods in either a global view or a local view to show how the
model highlights the relative importance of inputs to arrive at a par-
ticular result. Moreover, we show how to perform adversarial attacks
with word-level importance scores, and we achieve higher success
rate than the baseline. Consequently, by interpreting the model in the
form of score matrices, we are able to zoom in on the black boxes of
CNN-based text classification models and present a comprehensive
analysis of their behaviors.

1 Introduction
In the era of artificial intelligence, neural networks have enjoyed
tremendous success and been applied in a variety of realistic appli-
cations. Convolutional Neural Network (CNN), a specialized type of
neural networks originated from computer vision, has been a near-
ubiquitous component of a large bulk of model architectures and
has demonstrated impressive performance on image classification
tasks [14]. Motivated by the recent progress in deep learning, CNN
and its variants have also brought practical benefits in the task of text
classification [4, 12, 38]. The distributed representations of words
such as word2vec [23] or Glove [28] embed the discrete input of
texts into continuous values, and subsequently the convolution op-
eration is performed over the two-dimensional data to extract local
features for the text classification task.

Despite widespread adoption, the huge number of parameters and
the complex computation inside the black box of CNN make it
opaque and incomprehensible. To afford transparency, model inter-
pretability [21, 32] has been seen as a remedy. It helps elucidate the
model’s behavior and explain predictions in a human readable way,
conveying useful information on human trust, error analysis or model
improvement [29]. There has been a remarkable series of work on the
interpretability of CNN for image data [7, 35, 36, 37], where a widely
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accepted opinion is that CNN learns visual features in a hierarchical
way, from pixels to objects. However, the operating mechanism by
which CNN works for text classification remains an under-explored
area. The continuous image pixels are easy to be visualized, analyzed
and explained directly, while the discrete texts are involved with syn-
tactic structures and high-level semantics. While common intuitions
suggest that CNN extracts important n-gram features from the input
sentence to capture the key semantics and make a prediction [12, 39],
this explanation seems to be too superficial without a rigorous proof.
We wonder whether we can explain CNN’s actions for text classifi-
cation in a mathematical but easy-to-understand way.

In this paper, we perform a formal mathematical deduction on
TextCNN [12], a popular, well-established architecture widely used
as a building block for subsequent CNN-based text classification
models, and we decompose the output of the model into an ngram-
level score matrix and a word-level score matrix. The interpretable
representation in the form of score matrices displays how various
parts of inputs contribute to the final prediction quantitatively. Apart
from that, the score matrices can also be used as useful tools to diag-
nose the model’s inner behavior. Although we choose the architec-
ture of TextCNN as the example here to perform the mathematical
deduction for its generality and representativeness, our interpretation
methodology can be instantiated on other CNN-based text classifica-
tion models easily.

The contribution of our work can be summarized as follows:
(1) We perform mathematical analysis on the forward propagation

process inside the model, and translate the model’s output into an
ngram-level score matrix and a word-level score matrix. The sum of
each matrix on rows is equivalent to the output.

(2) We conduct experiments with the ngram-level score matrix to
obtain an understanding of how exactly TextCNN learns n-gram fea-
tures via the convolutional layer. We find that most n-gram features
surviving the 1-max pooling do not contain useful information actu-
ally, while the discriminate n-gram features seem to latch on superfi-
cial patterns and irrelevant correlations rather than high-level seman-
tics. What is more, the filter are heterogeneous in terms of the ability
to capture discriminate features.

(3) We analyze TextCNN with the word-level score matrix in an
end-to-end way. We introduce two visualization methods to show
how the model attends to different input words to make a particular
decision in heatmaps. Besides, we show how to perform adversarial
attacks effectively using word-level importance scores.

2 Related Work
Text classification has been a fundamental task in Natural Language
Processing (NLP). With the growing popularity of deep learning,
there is a surge of interest in solving this task with neural networks.
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One promising solution is CNN. Originally applied in the field of
NLP in [5] to output a host of linguistic predictions, the CNN model
is further improved in [12] with one convolutional layer consisting
of multiple channels on word vectors. This architecture is widely
referred to as TextCNN in the literature, and it builds the founda-
tion for the development of almost all CNN-based text classification
models, such as the dynamic CNN [11] equipped with a dynamic k-
max pooling mechanism to deal with variable-length sentences, the
character-level CNN [38] which learns features at the character level,
the very deep CNN [6] with up to 29 convolutional layers on charac-
ters, the deep pyramid CNN [10] which has 15 weight layers but low
computational complexity, the densely connected CNN [34] using
dense connections and multi-scale feature attention to extract multi-
scale features, or the adaptive CNN [4] whose filters are adaptively
generated conditioned on inputs. For a comparison between different
CNN-based models for text classification, see [15].

Even though deep learning models have been widely deployed in
real-world applications, the nested opaqueness leads to a wide mis-
trust on their predictions. The inability to explain their behaviors has
gained increasing attention nowadays [21]. Researchers turn to in-
terpretability to shed light on the inner workings of these black-box
models. A wide variety of explanatory methods have been proposed
for neural networks. Some recent work exploit the forward and back-
ward passes to identify the relevance between input features and fi-
nal decisions in any non-linear structure. Sensitivity analysis [3, 33]
computes the norm over partial derivatives with the back-propagation
algorithm [31] and identifies input sensitivities locally. Layer-wise
relevance propagation (LRP) [2] redistributes the unit-level relevance
between any two adjacent layers iteratively, until the model’s output
is decomposed into signed scores for each input unit. The leave-one-
out method [19, 27] measures the word-level importance scores by
observing the change in loss when erasing a particular word from
the original input. In contrast to our work which can also capture
the interactions between input units (e.g., the ngram-level analysis
consisting of multiple input words, which we will describe in detail
later), these methods are usually limited to unit-level analysis.

Our work is closely related to model-specific methods, which aim
to expose the inner details of a specific kind of neural networks. For
example, LSTM [8] is a basic building block for a large number of
model architectures, and the interpretation of LSTM has attracted
great interest. LSTM is distilled into rule-based classifiers to identify
important patterns of words in [25]. And in [24], contextual decom-
position is introduced to extract interactions between various parts of
the input sentence in LSTM.

Another line of work on model-specific methods focus on the ex-
planation of CNN-based model architectures. Despite notable ad-
vancements have been achieved in computer vision [7, 35, 36, 37],
previous work on interpretable CNN-based text classification models
are relatively rare. In [17], various explanatory methods along with
human-grounded evaluations are considered on CNNs for text clas-
sification. The most similar prior work to ours is [9], where a deep
investigation is performed into how CNN processes text, but with
significant differences: [9] investigates the pooled vector directly in
TextCNN and capitalizes on the properties of n-grams, while we
show the mathematical deduction on the model architecture and an-
alyze the instance-wise explanations in both word-level and ngram-
level. What is more, based on the derived score matrices, we conduct
comprehensive experiments in terms of filter behaviors, visualization
methods and adversarial potentials to emphasize the last mile of in-
terpretability in TextCNN. Our work can be seen as a complement to
existing work.
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Figure 1. The model architecture of TextCNN.

3 Model Interpretations
In this section, we perform the decomposition based on algebraic
transformations to translate the output of TextCNN into an ngram-
level score matrix and a word-level score matrix. Before we present
the analysis, we introduce a set of formal definitions and notations to
describe the forward propagation process in TextCNN.

3.1 Formal Description
Given a set of documents D = {(d, y)} and m-dimensional word
embeddings, each word in the document d ∈ D is encoded as an
m-dimensional vector and the input can be embedded as x ∈ Rl×m

where l is the length of d after padding.
The input x will be fed into the convolutional layer to extract

n-gram features via multiple kinds of filters. More specifically, the
computation through the convolution operation for n-grams can be
described as follows:

ui = f(xi:i+n−1)

= Wf � xi:i+n−1 + bf

umax = max{u1, u2, · · · , ul−n+1}
v = ReLU(umax) (1)

where Wf ∈ Rn×m and bf ∈ R1 represent the weight and bias
of the filter f , 1 ≤ i ≤ l − n + 1, � represents the dot product,
the max operation represents the 1-max pooling, v represents the
univariate n-gram feature after pooling and the non-linear transfor-
mation ReLU [26].

Assuming we have k different filters in total. The output v for each
filter will be concatenated together to obtain a feature vector of size
k. For convenience, we refer to the penultimate layer as h ∈ Rk.
A fully connected layer will be applied over h to generate the final
output o:

o = Wy × h + by (2)

where Wy ∈ Rc×k and by ∈ Rc represent the weight and bias sepa-
rately, and o ∈ Rc. The notation c denotes the number of all possible
document classes in the dataset. We have illustrated the model archi-
tecture of TextCNN in Figure 1.

3.2 Ngram-level Score Matrix
We begin this section by defining what is an ngram-level score ma-
trix. The ngram-level score matrix A is a k× cmatrix where k repre-
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sents the number of n-gram features in the penultimate layer h, and
c is the number of predefined classes.

Each hidden unit v ∈ h corresponds to the value of an n-gram fea-
ture in the original input x, and Equation (2) can be further expressed
in details as below:

o = Wy × h + by

=

w1,1 · · · w1,k

...
. . .

...
wc,1 · · · wc,k


v1...
vk

+

b1...
bc


=
(
o1 o2 · · · oc

)T (3)

The contribution of a particular n-gram feature vp ∈ h to the pre-
diction of the qth class can be calculated as follows:

A[p][q] = wq,p × vp + bq/k (4)

where the bias term bq is averaged over all hidden units in h to in-
dicate their separate contributions. As we can see, the sum of scores
along the qth column in A equals to the qth unit in the output layer o
according to Equation (3) and (4):

k∑
p=1

A[p][q] =

k∑
p=1

(wq,p ∗ vp + bq/k)

=

k∑
p=1

(wq,p × vp) + bq

= oq (5)

In this way, given an arbitrary input x, the output of TextCNN can
be interpreted as the sum of ngram-level importance scores, where
each score captures the importance of an individual n-gram feature
for the prediction of a particular class. Inspired by the idea of un-
pooling [35] which records the location of the maximum value in the
pooling region, we can retrieve the n-gram in the original input x for
each v ∈ h, and consequently make the ngram-level score matrix in
a human readable way.

3.3 Word-level Score Matrix

The definition of word-level score matrix, denoted as B for conve-
nience, is similar to the definition of A. B is a l × c matrix where
l is the length of the original input x. While the matrix A captures
the importance score with respect to each n-gram surviving the 1-
max pooling, B captures the importance score for each word in the
input x. In fact, the key insight behind the computation of B is the
segmentation and re-organization of each n-gram feature v ∈ h.

Suppose we have a filter f to extract the n-gram feature from the
input x. According to the first step of Equation (1), even though the
computation between f and xi:i+n−1 will result in a singleton local
feature ui, each word in xi:i+n−1 participates in the dot product

separately:

ui = Wf � xi:i+n−1 + bf

=
(
w1 · · · wn

)T � (xi · · · xi+n−1

)T
+ bf

=

n∑
j=1

wj � xi+j−1 + bf

=

n∑
j=1

(wj � xi+j−1 + bf/n)

=

n∑
j=1

ui,j (6)

where ui,j is the word-level information contributed by the (i+ j −
1)th word in x to the ith n-gram feature ui.

Note that after 1-max pooling, most word-level information cap-
tured by the filter f will be discarded, which actually does not con-
tribute to the final prediction. Besides, according to Equation (1), if
the value of umax is less than zero, the information will be totally dis-
carded by ReLU activation, and we update the value of ui,j ∈ umax

to zero. Otherwise, ui,j will keep its original value unchanged. In
either case, the univariate n-gram feature v can be represented as fol-
lows:

v =

n∑
j=1

ui,j s.t. v ≥ 0 (7)

where we use the index i to record the position of umax in the input
x.

We now discuss how to obtain the word-level score matrix via v.
Using Equation (7), we denote vp ∈ h as

∑n
j=1(ui,j)p, and Equa-

tion (3) can be written as follows:

o = Wc × h + bc

=

w1,1 · · · w1,k

...
. . .

...
wc,1 · · · wc,k



∑n

j=1(ui,j)1
...∑n

j=1(ui,j)k

+

b1...
bc


=
(
o1 o2 · · · oc

)T (8)

Note that a diversity of n (e.g., n = 3, 4, 5) will be pre-defined to
capture local features in multiple semantic levels in realistic settings.
We omit the different representations of n here for simplicity. The
contribution of the jth word in vp to the prediction of the qth class
can be calculated as follows:

idx = ip + j − 1

B[idx][q]p = wq,p × (ui,j)p + bq/(k × n) (9)

where ip ∈ [1, l − n+ 1] records the index of the extracted n-gram
vp in the input x, and thus idx is the index of the targeted word
in x. The deduction of position representations has been presented
in Equation (6). B[idx][q]p is a component which quantitatively de-
scribes how the idxth word in x contributes to the prediction of cq
through the pth filter particularly, since other filters will also possibly
capture the idxth word in the univariate n-gram feature v.

We sum up all the components along k filters to compute
B[idx][q]:

B[idx][q] =
k∑

p=1

B[idx][q]p (10)
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Note that the idxth word is not necessarily captured by each uni-
variate n-gram feature v. Denoting the set of n words captured by vp
as Ep, we set B[idx][q]p = 0 if xidx 6∈ Ep. On the other hand, not
all words in x will be captured within a certain n-gram feature v. We
initialize each cell in B with zero, meaning that if there is a particular
word discarded by all filters, it contributes nothing to the final pre-
diction. Similar to the ngram-level score matrix A, the sum of scores
along the qth column in B equals to the qth unit in the output layer o.
According to Equation (8), (9) and (10), the proof is as follows:

l∑
idx=1

B[idx][q] =
l∑

idx=1

k∑
p=1

B[idx][q]p

=

k∑
p=1

l∑
idx=1

B[idx][q]p

=

k∑
(

p=1

∑
idx∈Ep

B[idx][q]p +
∑

idx6∈Ep

0)

=

k∑
p=1

n∑
j=1

B[idx][q]p

=

k∑
p=1

n∑
j=1

(wq,p × (ui,j)p + bq/(k × n))

=

k∑
p=1

(wq,p ×
n∑

j=1

(ui,j)p) + bq

= oq (11)

The word-level score matrix B is sensitive to word positions. That
is, if two identical words occur in different positions in the input
x, their contributions to the output will be different. This prop-
erty demonstrates that TextCNN will learn positional information of
words during training.

The algebraic operations to generate both score matrices are fully
deterministic, so the output of TextCNN for a certain input x should
be exactly equal to the results obtained from Equation (5) or Equa-
tion (11). In this way, each score in A or B can be interpreted as the
contribution of an individual unit to the final prediction. Besides, due
to the fact that the model’s output is decomposed into a linear accu-
mulation of separate scores, the relative importance between differ-
ent units in the same matrix can be compared linearly. Examples of
score matrices have been displayed in Figure 2.

4 Experiments
In this section, we perform extensive experiments to analyze the
black-box of TextCNN in details leveraging the derived ngram-level
and word-level score matrices.

4.1 Preliminaries
We conduct our experiments on two well-established text classifica-
tion datasets: (a) AG’s News [38], a topic classification dataset in-
cluding 4 different news categories with 30k training samples and
7k test samples for each class. (b) IMDB [22], a binary sentiment
analysis dataset on movie reviews containing 25k training samples
and 25k test samples evenly split for each polarity. All the results are
reported on the test set.

In terms of training details, we use the pre-trained 100-
dimensional Glove embeddings to encode input documents. If not

Positive Negative
What 0 0

a 0.262 -0.176
good 1.020 -1.581
movie 0.121 -0.106
sum 1.403 -1.863

Positive Negative
a good 0.471 -0.615
a good 0.471 -0.615

good movie 0.461 -0.633
sum 1.403 -1.863

(a) The word-level score matrix.

Positive Negative
What 0 0

a 0.262 -0.176
good 1.020 -1.581
movie 0.121 -0.106
sum 1.403 -1.863

Positive Negative
a good 0.393 -0.634
a good 0.549 -0.596

good movie 0.461 -0.633
sum 1.403 -1.863

Positive Negative
the output layer o 1.403 -1.863

(b) The ngram-level score matrix where n = 2 and k = 3.

Positive Negative
What 0 0

a 0.262 -0.176
good 1.020 -1.581
movie 0.121 -0.106
sum 1.403 -1.863

Positive Negative
a good 0.471 -0.615
a good 0.471 -0.615

good movie 0.461 -0.633
sum 1.403 -1.863

Positive Negative
the output layer o 1.403 -1.863

(c) The output layer.

Figure 2. Examples of score matrices derived from “What a good movie”.
“Positive” and “Negative” are the class names of binary sentiment analysis.

It is possible that “a good” appears twice in (b), because two filters can
capture this n-gram at the same time.

specified otherwise, we set three filter region sizes: 3, 4 and 5, with 50
feature maps for each one. The learning rate is set to 0.01 and 0.005
for AG’s News and IMDB respectively, and the mini-batch size is set
to 128. The parameters are updated with the Adam optimizer [13].

4.2 Experiments I: Ngram-level Analysis
Previous studies [12, 39] provide an intuitive explanation for the
function of different filters in TextCNN that a filter is responsible
for capturing the most important n-gram feature in each feature map.
In fact, this explanation is not strictly accurate. In this set of experi-
ments, we offer a deep investigation and ameliorate previous expla-
nations on the behavior of filters by answering the following three
questions:

• RQ1: How many n-gram features are set to zero by the ReLU
function?

• RQ2: How many n-gram features have negligible effects on the
final decision?

• RQ3: How many filters are involved in the extraction of discrimi-
native n-gram features?

We use the ngram-level score matrix A to interpret the model’s
behavior and calculate the test accuracy here.

To answer RQ1, we train a set of models on both datasets, varying
the number of filters from 30 to 600 which are evenly distributed on
each region size. If the scalar umax extracted from a feature map is a
minus, it will be set to zero by ReLU and thus contribute nothing to
the output. We report the original test accuracy as well as the average
ratio of scalars discarded by ReLU (@Ratio1) in Table 1. It can be
observed that a large number of n-gram features do not survive the
ReLU activation actually, for example, as much as 84.34% n-gram
features are discarded when k = 600. Strictly speaking, these unin-
formative features can still exert a nearly negligible influence on the
output with the bias bq/(k × n), according to Equation (9).

To answer RQ2, we need to measure whether an n-gram feature vp
is informative for classification. We define the discrimination of vp
as its impact on the final decision with no prior knowledge about the
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Table 1. The relationship between test accuracy, filters and n-gram features. By @Ratio1, the numerator is the number of umax discarded by ReLU, and the
denominator is the number of all umax; By @Ratio2, the numerator is the number of vp removed by V ar(vp), and the denominator is the number of all vp;

By @Ratio3, the numerator is the number of filters capable of capturing discriminative features, and the denominator is the number of all filters.

k 30 75 150 225 300 450 600

AG’s
News

RQ1
Test Accuracy 90.03% 90.91% 90.25% 90.53% 89.88% 88.95% 89.74%

@Ratio1 29.00% 54.36% 66.82% 71.96% 80.08% 81.46% 84.34%

RQ2
Test Accuracy 90.29% 90.09% 89.64% 90.11% 89.50% 90.50% 89.61%

@Ratio2 74.41% 89.01% 94.76% 96.34% 97.37% 98.94% 98.48%
RQ3 @Ratio3 100.00% 77.33% 68.66% 51.11% 49.00% 46.00% 40.16%

IMDB

RQ1
Test Accuracy 85.88% 86.06% 84.90% 85.49% 85.90% 86.69% 84.68%

@Ratio1 6.88% 21.77% 24.46% 22.92% 46.40% 27.45% 60.09%

RQ2
Test Accuracy 86.05% 86.04% 84.67% 84.61% 83.01% 82.76% 84.54%

@Ratio2 18.69% 52.39% 60.06% 80.69% 90.01% 90.88% 95.80%
RQ3 @Ratio3 96.67% 74.67% 78.00% 52.44% 27.67% 35.11% 13.67%

News: Schwarzenegger signs bill banning paperless voting systems. The Associated Press By Rachel Konrad. 

Microsoft adds to Visual Studio tools line. 2005 Standard Edition targets developers working in small organizations. 

Show lights up Paralympics. The XII Paralympics begins in Athens  after a spectacular opening ceremony.

World 

Sci/Tech 

Sports

Figure 3. Examples of n-gram features satisfying V ar(vp) > ε. Different colors indicate different region sizes, e.g., three 3-grams satisfying the condition
are highlighted in the first example. The predicted class has been indicated on the left.
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Figure 4. The distribution of discriminative n-gram features in h. The
horizontal axis represents the position of filters in h, and the vertical color

bar shows the correspondence between the number of discriminative features
and the particular color. We report the results when k ∈ {30, 75, 150, 225}.

correct label. Generally speaking, a discriminative vp contributes to
a highly unbalanced distribution of prediction probability. Consider
an extreme case. If vp corresponds to a uniform distribution in the
ngram-level score matrix A where A[p][1] = · · · = A[p][c], it can
not make a fair prediction with high confidence, and thus it is far
away from being discriminative.

We introduce the definition of variances (V ar) to measure the dis-
crimination for vp quantitatively as follows:

µ = (A[p][1] + · · ·+ A[p][c])/c

V ar(vp) =

c∑
q=1

(A[p][q]− µ)2/c (12)

And a threshold ε has to be pre-defined to split the features into
two independent sets based on V ar(vp). Note that the features with
V ar(vp) > ε will be referred to as discriminative features through-
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Figure 5. The percentage of discriminative features extracted by different
region sizes.

out the rest of the paper.
We report the results in Table 1 in terms of test accuracy after re-

moving all features satisfying V ar(vp) ≤ ε from A and the average
ratio (@Ratio2) of features removed by V ar(vp). We experimentally
assign ε = 0.1 and 0.005 for AG’s News and IMDB respectively, so
that the features can be removed as much as possible while the test
accuracy obtained from A is maintained. As we can see, the perfor-
mance just yields a slight degradation compared to the original test
accuracy reported in RQ1. Specially, the accuracy even increases
sometimes (e.g., when k = 450 on AG’s News). We attribute this
observation to the fact that although many filters are involved in the
convolution operation to extract n-gram features, most of them have
negligible effects on the prediction. In contrast, several particular n-
gram features are predictive enough. We display several examples in
Figure 3 for better understandings, where the colored lines indicate
the discriminative features captured by filters.

To answer RQ3, we should expect there to be a high order corre-
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(a) Visualization of features in a global view.

(b) Visualization of features in a local view.

Figure 6. Visualize how TextCNN interprets an input x in heatmaps. Best viewed in color.

lation between filters and discriminative n-gram features. We display
the average ratio (@Ratio3) of filters which capture discriminative n-
gram features successfully in Table 1. Note that the test accuracy here
is exactly same to the results in RQ2 since we just report the results
from another perspective. We observe an interesting property from
the results that @Ratio3 keeps decreasing when the number of filters
increases. For example, on the IMDB dataset, 96.67% filters manage
to capture discriminative features when k = 30, while the percentage
is only 13.67% when k = 600. It seems that while most filters are
useless, a small number of them are enough to collect useful infor-
mation for predictions. In fact, according to our observations during
experiments, some filters even take the consecutive “empty” tokens
(used to pad the sentences and make their lengths equal) which have
no semantic meaning for text classification as important n-gram fea-
tures surviving the 1-max pooling, and these are obviously not the
predictive features in each feature map.

To further investigate how each filter contributes to feature extrac-
tion in the convolutional layer, we visualize the distribution of all dis-
criminative n-gram features captured from AG’s News in h, as shown
in Figure 4. As we can see, the number of discriminative features cap-
tured by different filters varies greatly, from zero to thousands. And
most of them are captured by several particular filters. Apart from
this, we also visualize the distribution of discriminative n-gram fea-
tures with respect to different filter region sizes in Figure 5. It seems
that 3-grams capture more discriminative features that 5-grams. A
possible reason is that n-grams with a smaller n will occur more fre-
quently in the corpus, and thus it is more possible to be identified as
predictive features.

From the results, it can be concluded that not all n-gram features
can be regarded as predictive equally for text classification, and the
filters in TextCNN are not homogenous in terms of the ability to ex-
tract features. From RQ1, we can see that a large proportion of n-
gram features are not informative in the fully connected layer, since
they have been set to zero by ReLU. Associated with the test accu-
racy displayed in Table 1, this discovery takes a further step towards
the better understanding of hyperparameter finetuning, that more fil-
ters do not necessarily bring performance gains when their resulting
n-gram features are deactivated by ReLU. From RQ2, a large num-
ber of n-gram features managing to pass ReLU still have negligible

effects on the classification results, for the reason that they fail to
capture discriminate n-grams. What is more, the qualitative analysis
shown in Figure 3 reveals that most captured n-grams do not appear
semantic or significant to human eyes. A possible explanation is that
the model still relies on superficial patterns and irrelevant correla-
tions in the dataset to make predictions, rather than high-level se-
mantics. From RQ3, we empirically show that the heterogeneity of
filters can be reflected in two aspects. On the one hand, some filters
capture no discriminate n-gram features. On the other hand, accord-
ing to Figure 4 and 5, for those filters capable of detecting predictive
features, their abilities are not equivalent with respect to the number
of identified n-grams.

Taking the answers for all three questions into consideration, we
refine previous explanations and provide meaningful evidence about
the behavior of filters.

4.3 Experiments II: Word-level Analysis

Unlike the ngram-level score matrix which can be derived from the
model directly, the word-level score matrix comes from the seg-
mentation and re-organization of n-gram features. It displays how
TextCNN attends to various parts of inputs and offers an end-to-end
explanation. In this section, we attempt to answer the following re-
search questions to understand the behavior of TextCNN in a word
level:

• RQ1: How to visualize the features learned by TextCNN?
• RQ2: How to perform adversarial attacks on TextCNN based on

word-level importance scores?

To answer RQ1, we put forward two different visualization meth-
ods, in either a global view or a local view. With the word-level score
matrix B, we are able to visualize how TextCNN learns various fea-
tures in a result-oriented way. Suppose we have an input x with its
correct label, and a fully trained TextCNN. In the global method,
denoting the calculation of cross entropy as H , we define the Leave-
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Table 2. Results of white-box non-targeted adversarial attacks on TextCNN in attack success rate.

k 30 75 150 225 300 450 600
AG’s
News

Text-fool 61.29% 73.89% 69.82% 75.87% 76.84% 76.82% 73.37%
Our Method 66.47% 75.87% 73.51% 79.64% 77.80% 78.76% 77.71%

IMDB
Text-fool 29.90% 31.46% 38.98% 35.09% 33.19% 28.60% 38.13%

Our Method 60.41% 62.04% 64.96% 60.50% 66.47% 63.99% 65.62%

one-out Score (LS) for each word xi ∈ x as follows:

s =
H(o−B[xi],y)−H(o,y)

H(o,y)

LS(xi) =

{
max{s, λ}, s >= 0
min{s,−λ}, s < 0

(13)

where o ∈ Rc is the output layer and y ∈ Rc is the one-hot vec-
tor encoding the label. The basic idea is that the global contribution
of xi can be measured by the relative change in loss after we re-
move the row of xi in the word-level score matrix B. Figure 6(a)
illustrates several examples setting λ = 5. As we can see, the scores
can be negative, indicating words can have a negative impact on the
decision.

Our method is similar to what is proposed in [19], where the word-
level importance is visualized by the change of log-likelihood when
erasing a word from x, but with two important differences: (1) The
intrinsic properties of x such as length, positions or n-grams will be
changed after word erasure, which may impact the measure of word-
level scores. In contrast, the relative importance of words shown in B
is static, which strengthens the variable-controlling ability in visual-
ization. (2) In some cases, the absolute value of loss change may be
extremely large, causing other values indistinguishable in the contin-
uous color bar. We scale down the loss change by H(o, y) and clip
the extreme values to optimize the visual effect.

In the local method, we zoom in on the word-level importance
scores with respect to the correct label only, rather than take its
overall predictive capability into consideration. More concretely, we
transpose the column of the correct label in B, and visualize the
word-level score vector. Examples are shown in Figure 6(b). Com-
pared to the global view, the local view demonstrates a smoother
color variation. While the relationship between word importance and
the numerical value of LS is monotonically increasing but non-linear
in Equation (13), the value represented in the local view can be di-
rectly translated into its contribution in a linear way.

In a word, both visualization methods manage to translate the out-
put of TextCNN into visible word-level scores, and help us under-
stand how the model makes the prediction.

RQ2 puts forward a new perspective on the relationship between
model’s interpretation and adversarial examples. While it is natural to
perform adversarial attacks to get an insight into the decision-making
process inside the black box [1, 30], we can also reverse the opera-
tion and use the model’s interpretation to assist in the generation of
adversarial examples.

Here we demonstrate how to perform adversarial attacks based on
our interpretation of TextCNN. Firstly we introduce a baseline al-
gorithm, the word-level modification strategy proposed in [20] (or
Text-fool for brevity) designed to perform non-targeted adversarial
attacks on text classification models. It computes gradient magni-
tudes to identify important words (similar to sensitivity analysis, as
mentioned in Section 2), and uses the typo-based perturbations to
transform these words into out-of-the-vocabulary words, e.g., “file”
to “fi1e”. In this way, Text-fool adds imperceptible perturbations on

the original input and affects the model’s prediction by manipulating
sensitive words.

In our method, we use the model-specific word-level importance
scores derived from CNN’s interpretation instead of the model-
agnostic sensitivity analysis widely used in the generation of adver-
sarial texts [16, 18], and we keep the following typo-based perturba-
tions similar to Text-fool. In more details, suppose the correct label
is y, we use the numerical value of B[idx][y] to identify important
words. The intuitive explanation is that larger positive scores indi-
cate more contributions to the prediction of y, and the perturbations
on these words will bring significant changes in loss. The maximum
allowed valid perturbation has been limited to 10 for both methods
in our experiments. The results are reported in Table 2.

It can be clearly seen that our method performs notably better than
the baseline in all the cases. The performance boost is especially re-
markable on the IMDB dataset. This is mainly because sentimen-
tal words have a significant impact on sentiment analysis, and our
method can identify these positive or negative words accurately, as
shown in Figure 6. The higher success rate indicates that our inter-
pretation of CNN has better explanatory ability in comparison with
sensitivity analysis. Besides, the matrix B shows signed numerical
scores for each word proportional to their contributions to the predic-
tion, and thus provide human readable explanations when performing
adversarial attacks.

We posit that the matrix B can also be used in other adversarial
attack algorithms by identifying a subset of ranked words, while the
following perturbation schemes can remain the same. Moreover, we
can generalize the idea of word-level score matrix to other CNN-
based text classification models, meaning a broader range of targeted
models to attack. We leave the experimental evaluation to future
work.

5 Conclusions
In this paper, we present a mathematical deduction to decompose the
output of TextCNN into an ngram-level score matrix and a word-level
score matrix, the value of which can be interpreted as the contribu-
tion of individual input units to the prediction of a particular class. By
exploiting the information conveyed by score matrices, we conduct
extensive experiments on two publicly available text classification
datasets for a deep investigation into the model’s behavior. We de-
scribe the behavior of filters when they extract n-gram features, visu-
alize what the model has learned to make a prediction, and show how
to perform adversarial attacks on the model with word-level impor-
tance scores. Future research directions include generalizing the in-
terpretation methodology of TextCNN to other CNN-based text clas-
sification models, or leveraging the instance-wise explanations in the
form of score matrices to investigate the model in other aspects, such
as revealing confounding factors, optimizing model architectures or
performing error analysis.
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