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Abstract. Image-to-image translation aims to learn the mapping
between two visual domains. At the beginning of designing the
existing image-to-image translation method, it was not considered
whether the generated image is realistic or not. In this work, we
present a novel approach to address the problem of generating fi-
delity in the area of image-to-image translation. In particular, hu-
mans judge whether an image is realistic or not with unique human
vision’s feeling rather than paying attention to the real-world seman-
tics. Inspired by this, we propose an effective network loss to capture
the pixel-level representations and human vision system information
for verisimilar image-to-image translation. To enforce both structural
and translation-model consistency during adaptation, we propose a
novel Just-Noticeable-Difference loss based on a visual recognition
task. The Just-Noticeable-Difference loss not only guides the over-
all representation to be discriminative, but also enforces our cycle
loss before and after mapping between domains. Qualitative results
show that our model can generate realistic images on a wide range of
tasks without paired training data. For quantitative comparisons, we
measure realism with user study and diversity with a perceptual dis-
tance metric. We apply the proposed model to domain adaptation and
show competitive performance when compared to the state-of-the-art
on many datasets.

1 Introduction
Image-to-image translation aims to learn the mapping between two
visual domains. The visual domain has presented a more significant
challenge from the conversion of non-photo-realistic synthetic data
to real images. Although we want to train a large number for mod-
els with synthetic data, such as data collected from graphics game
engines, these models cannot be generalized to real-world images.
The feature level image-to-image methods, such as maximum mean
difference, correlation distance, or confrontation discriminator accu-
racy, solve this problem by aligning features extracted from the net-
work between source (e.g., synthetic) and target (e.g, real) domains
without any marked target samples. But these methods cause that a
higher level of deep representation alignment may not simulate low-
level appearance changes which are critical to the final vision task.

The pixel-level image-to-image model, such as CycleGAN [27],
UNIT [17] and DRIT [16], performs a similar distribution alignment,
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Figure 1. Given any two unordered image collections X and Y , our algo-
rithm learns to automatically “translate” an image from one into the other and
vice versa.

and the source data is converted to the “style” of the target domain,
not in the feature space but the original pixel space. This kind of
methods produces visually appealing results that preserve local con-
tent in natural scenes, but do not take into account the design of final
task, which leads that some of the generated images may not look so
realistic.

In general, the aforementioned two kinds of methods have two
disadvantages: one is that aligning the marginal distribution does not
enforce the properties of each object. For example, the target feature
of a white cloud can be mapped to the source feature of the black
cloud. Another is that, in the process of the image to image with
GAN technology, the feeling of generative images for human vision
is not considered. For example, people feel that generative images
are unreal and fake.

To address the above two disadvantages, we consider why we hu-
mans can distinguish an image as real or virtual. Is this related to
our vision system?

The human visual system presents a characteristic that, because
of its potential physiological and psychological mechanism, it can
only perceive changes in pixels higher than a certain visibility thresh-
old. Just-Noticeable-Difference models refer to the smallest visibil-
ity threshold of the human visual system [6]. Now Just-Noticeable-
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Figure 2. The flow chart of our network during training

Difference models have been widely used in processing perceptual
image processing [11]. Why not using this model in image-to-image
technology to make the images more realistic?

In this paper, we propose a novel image-to-image translation ap-
proach inspired by the human visual system called JND-GAN to ad-
dress the problem of the generated images may not look so realistic.
We design an effective network loss inspired by the human vision
system to combine the pixel-level representations with human vi-
sion system information for verisimilar image-to-image translation.
We enforce consistency of both structure and model during adapta-
tion using the cycle-consistency loss based on UNIT [17] and Just-
Noticeable-Difference loss based on a visual recognition task. The
Just-Noticeable-Difference loss both guide the overall representa-
tion to be discriminative and enforce Just-Noticeable-Difference con-
sistency before and after mapping between domains. Our approach
offers a universal domain adversarial learning model, which com-
bines image-to-image approaches with the strong representational
performance of human vision system model. Figure 1 shows our
approach of the two testing states. We evaluate our model through
extensive qualitative and quantitative evaluation. We measure real-
ism with Fréchet Inception Distance and diversity with the number
of statistically-different bins, Jensen-Shannon divergence, and a per-
ceptual distance metric. We also apply our approach to domain adap-
tation and show competitive performance when compared to others
on several datasets.

In short, our main contributions are summarized as follows. We
propose just noticeable difference based image-to-image translation
approach. Inspired by the human visual systems, we incorporate the
Just Noticeable Difference models into GANs to generate more re-
alistic images. Moreover, extensive qualitative and quantitative ex-
periments on benchmark datasets show that our model compares fa-
vorably against existing image-to-image models and achieve better
results than other state-of-the-art ones.

2 Proposed Method
We consider the problem as unsupervised adaptation, where we are
provided source data XS , and target data XT , but no source and
target labels.

We make a shared-latent space assumption. There exists a shared
latent code z in a shared-latent space, such that we can recover both
images from this code, and we can compute this code from each of
the two images.

Similar to UNIT [17], our network is built upon variational autoen-
coders (VAEs) [13] and Cycle generative adversarial network (Cycle-
GAN) [27]. As illustrated in Figure 2, there are two domain image
encoders E1 and E2, two domain image generators G1 and G2, and
two domain adversarial discriminators D1 and D2 in our network.
Take domain x1 ∈ XS and x2 ∈ XT as an example, the encoder
E1 maps images onto a domain-invariant shared space. The gen-
erator G2 generates images conditioned on encoded x1 image and
JND information between x2 and encoded x1 image. The discrim-
inator D2 aims to discriminate between real images and translated
images in the domain XT . Compared to UNIT [17], we use the JND
model to increase the self-constraint for domains to make our gener-
ated image realistic. Besides,in the following, we first introduce just-
noticeable-difference model as one of loss functions of GANs. Then
we described our proposed JND-GAN on the basis by the theory of
UNIT [17] and introduced the just-noticeable-difference model. Our
network architecture is shown in Figure 3.

2.1 Just-Noticeable-Difference Model
The just noticeable difference (JND) in an image, which reveals the
visibility limitation of the human visual system (HVS). The con-
cept of Just-Noticeable-Difference (JND) [24] is widely used in the
fields of physiology, psychology of perception, consumer behavior
and marketing practice. JND generally refers to a relative thresh-
old in perception by humans. When a change in stimulus value (i.e.
change of perceived characteristic) reaches the threshold, the change
becomes recognized. When the stimulus value change is below the
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(a) The architecture of the encoder

(b) The architecture of the generator

(c) The architecture of the discriminator

Figure 3. The architecture of our generative adversarial networks.

threshold, the change is not being recognized. According to the do-
main for the visibility threshold to be computed, the existing JND
models are usually classified into two kinds, namely, the pixel do-
main and subband domain JND estimation models. Due to the fast
calculation, we choose the pixel domain JND computation. Pixel do-
main JND computation contains the luminance adaptation modules
and contrast masking modules. Given an input image x, the value of
the JND model by the work of Wu et al. [24] is as follow:

fJND(x) = fLA(x)+fCM (x)−$×min{fLA(x), fCM (x)} (1)

where $ is the gain reduction parameter determined by the over-
lapping between fLA(x) and fCM (x), and here we set $ = 0.3;
fLA(x) is the visibility threshold of the luminance adaptation and
fCM (x) is the contrast masking.

2.2 Network Formulation
VAE-GAN Loss. The encoder-generator pair {E1, G1} constitutes
a V AE for the XS domain, termed V AE1. Given an input image
x1 ∈ XS , the V AE1 first maps x1 to a code in a latent space z via
the encoder E1 and then decodes a random-perturbed version of the
code to reconstruct the input image via the generatorG1. We assume
the components in the latent space z are conditionally independent
and Gaussian with unit variance. The reconstructed image is x̃1→1

1 =

G1(z1 ∼ q1(z1|x1)). For {E2, G2} constituting a V AE2 for XT ,
this process is similar as {E1, G1}, x̃2→2

2 = G2(z2 ∼ q2(z2|x2)).
The prior distribution is a zero mean Gaussian pλ(z) = N(z|0, I),
where I is an identity matrix and λ is a random vector. Therefore,
the VAE-GAN loss function can be written as:

LGAN
VAE(E1, G1) =

α1KL(q(z1|x1)||pλ(z))− α2Ez1∼q1(z1|x1)[log pG1(x1|z1)]
(2)

LGAN
VAE(E2, G2) =

α1KL(q(z2|x2)||pλ(z))− α2Ez2∼q2(z2|x2)[log pG2(x2|z2)]
(3)

where the hyper-parameters α1 and α2 control the weights of the
objective terms and the KL divergence terms penalize deviation of
the distribution of the latent code from the prior distribution.

Adversarial Loss. ForGAN1 = {D1, G1} , for real images sam-
pled from the first domain, D1 should output true, while for images
generated by G1, it should output false. G1 can generate two types
of images:

• images from the reconstruction stream x̃1→1
1 = G1(z1 ∼

q1(z1|x1));
• images from the translation stream x̃2→1

2 = G1(z2 ∼ q2(z2|x2)).

For GAN2 = {D2, G2} , this process is similar as GAN1 =
{D1, G1}. G2 can generate two types of images:

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



• images from the reconstruction stream x̃2→2
2 = G2(z2 ∼

q2(z2|x2));
• images from the translation stream x̃1→2

1 = G2(z1 ∼ q1(z1|x1)).

Therefore, the adversarial loss function can be written as:

LGAN (E2, G1, D1) =

α3(Ex1∼px1
[logD1(x1)] + Ez2∼q2(z2|x2)[log(1−D1(G1(z2))])

(4)

LGAN (E1, G2, D2) =

α3(Ex2∼px2
[logD2(x2)] + Ez1∼q1(z1|x1)[log(1−D2(G2(z1))])

(5)
where the hyper-parameter α3 controls the impact of the adversarial
loss function.

Cycle-consistency Constraint Loss. We enforce the Cycle-
consistency constraint to further regularize the ill-posed unsuper-
vised image-to-image translation problem, due to the shared-latent
space assumption implying the cycle-consistency constraint. We use
a VAE-like objective function to model the cycle-consistency con-
straint, which is given by

LCycle1(E1, G1, E2, G2) =

α4(KL(q1(z1|x1)||pλ(z)) +KL(q2(z2|x11→2)||pλ(z))−
α5Ez2∼q2(z2|x11→2)[log pG1(x1|z2)]

(6)

LCycle2(E2, G2, E1, G1) =

α4(KL(q2(z2|x2)||pλ(z)) +KL(q1(z1|x22→1)||pλ(z))−
α5Ez1∼q1(z1|x22→1)[log pG2(x2|z1)]

(7)

where pG1 and pG2 are two Laplacian distributions, the hyper-
parameters α4 and α5 control the weights of the two different ob-
jective terms, and α4 and α5 are the same in Eq. (6) and (7).

Just-Noticeable-Difference Loss. A JND model fJND is intro-
duced to the learning image-to-image translation task of GANs. For
K-way classification with a cross-entropy loss, this corresponds to

LJND(fJND, E1, G1, E2, G2) =

−Ex1,x2
K∑
k=1

[||fJND(k)(G1(E2(x̃
1→2
1 )))− fJND(k)(x2)||22+

||fJND(k)(G1(E1(x̃
1→1
1 )))− fJND(k)(x1)||22+

||fJND(k)(G2(E1(x̃
2→1
2 )))− fJND(k)(x1)||22+

||fJND(k)(G2(E2(x̃
2→2
2 )))− fJND(k)(x2)||22]

(8)
where || · || is the second-ordered norm.

It should be noted that in the original VAE [13], LJND is used to
update the encoder. Through the investigation, we found that LJND
degrades the quality of the generated images when it is used to update
encoder. Hence, we only use LJND when updating our generator.

Full Objective. We jointly solve the learning problems of the
V AE1, V AE2, GAN1 and GAN2 for the image reconstruction
streams, the image translation streams, the cycle-reconstruction
streams, and JND-target streams:

min
E1,E2,G1

max
G2,D1,D2

LGAN
VAE(E1, G1) + LGAN

VAE(E2, G2)

+LGAN (E2, G1, D1) + LGAN (E1, G2, D2)

+LCycle1(E1, G1, E2, G2) + LCycle2(E2, G2, E1, G1)

+LJND(fJND, E1, G1, E2, G2)
(9)

3 Experimental Results
Implementation Details All experiments were conducted using a
4-core PC with an NVIDIA GTX Titan XP GPU, 32GB of RAM,
and Ubuntu 16. We use the Adam optimizer [14] with a batch size
of 1, for training where the learning rate was set to 0.0001 and mo-
mentums were set to 0.5 and 0.999. Each mini-batch consisted of
one image from the first domain and one image from the second
domain. Our framework has several hyper-parameters. In all exper-
iments, we set the hyper-parameters as follows: α1 = α4 = 0.2,
α2 = α5 = 200, α3 = 20. Note that we set each of the comparison
method and our method to the number of epoch is 3 and the number
of iteration is 10000 in order to better compare the performance and
results of the algorithm.

Datasets We design Ablation experiments and comparison ex-
periments on several datasets including facades dataset [28], ap-
ple2orange dataset [20], cezanne2photo dataset [18], cityscapes
dataset [5], edges2handbags dataset [8], edges2shoes dataset
[8], horse2zebra dataset [27], maps dataset [23], monet2photo
dataset [18], night2day dataset [1], summer2winter dataset [2],
ukiyoe2photo dataset [18], and vangogh2photo dataset [18].

Quantitative Evaluation Criteria We evaluated the performance
of our algorithm both on in terms of its realism and diversity. Here
We use the Learned Perceptual Image Patch Similarity (LPIPS) met-
ric [26] to measure the similarity among images as the quantitative
evaluation on the realism of the generated image. The larger the value
of LPIPS metric, the more realistic [16, 19] the generated image
of this algorithm is. We compute the distance between 1000 pairs
of randomly sampled images translated from 100 real images. Fur-
ther, given a paired data {x, y}, we can evaluate the diversity of our
method’s disentanglement on the five paired dataset, by measuring
the reconstruction errors of y with ŷ = Gy(Ex(x)). The reconstruc-
tion error is ||y − Gy(Ex(x))||1. The smaller the reconstruction er-
ror, the better the diversity of this algorithm. Besides, we employ
the official implementation of Fréchet Inception Distance (FID) [9],
the number of statistically-different bins (NDB) [21] and Jensen-
Shannon divergence (JSD) [21]. For NDB and JSD, we use the K-
means method on training samples to obtain the clusters. Then the
generated samples are assigned to the nearest cluster to compute the
bin proportions. As suggested by the author of [21], there are at least
10 training samples for each cluster. Moreover, we follow the work
of MSGAN [19] for other experiments’ settings.

3.1 Ablation Study
We conduct a series of ablation studies to evaluate the importance of
each component in the proposed method. Our ablation experiment is
to examine the effectiveness of our JND loss and VAE. Figure 4 and
Figure 5 are qualitative results of our ablation experiment. Table 1
and Table 2 are quantitative results of our ablation experiment.

Table 1. The diversity evaluation on our ablation experiment. Using LPIPS
metric [26], the larger value, the higher realism.

LJND VAE Method
Dataset facades apple2orange cezanne2photo cityscapes edges2handbags edges2shoes horse2zebra maps monet2photo night2day summer2winter ukiyoe2photo vangogh2photo

× × Ours w/o LJND,VAE 0.1498 0.3090 0.1785 0.1645 0.2619 0.3700 0.1359 0.2446 0.2265 0.1737 0.1387 0.1731 0.3721
×

√
Ours w/o LJND 0.3015 0.3619 0.3389 0.2781 0.2956 0.3842 0.2671 0.2734 0.3406 0.2121 0.1544 0.2079 0.4049√

× Ours w/o VAE 0.4080 0.4172 0.4052 0.2854 0.4236 0.3943 0.3061 0.3447 0.3782 0.2708 0.2677 0.3959 0.4386√ √
Ours 0.4321 0.4324 0.4331 0.4340 0.4349 0.4352 0.4358 0.4365 0.4369 0.4372 0.4378 0.4383 0.4393

Notation “Ours w/o LJND” means our proposed model without
the JND loss. “Ours w/o VAE” is our proposed model without the
VAE. “Ours w/o LJND and VAE” means our proposed model with-
out the JND loss and VAE. Note that other settings remain unchanged
during the Ablation study.
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Figure 4. The result of our ablation experiment on edge2handbags dataset

Figure 5. The result of our ablation experiment on unpaired datasets

Qualitative Evaluation on Ablation Study For the “handbag→
edge” task shown in Figure 4, it is clear that the result of our method
is more realistic than others. When compared “Ours w/o LJND and
VAE” with “Ours w/o LJND”, we find it that “Ours w/o LJND” can
do edge detection, but the results of “Ours w/o LJND and VAE” are
unsatisfactory. When compared “Ours w/o V AE” with “Ours”, we
find it that the results of “Ours” have a richer edge of these handbags
than “Ours w/o V AE”. These show the VAE is conducive to our
network to achieve image-to-image translation. Therefore, the design
of VAE on our JND-GAN is essential. Compared “Ours w/o LJND
and VAE” with “Ours w/o VAE”, we find it that the results of “Ours
w/o VAE” have richer edges of handbags than “Ours w/o LJND and

Table 2. The diversity evaluation on our ablation experiment. Using recon-
struction error, the smaller value, the better diversity.

LJND VAE Method
Dataset facades cityscapes edges2handbags edges2shoes maps

× × Ours w/o LJND ,VAE 0.17076 0.16335 0.19837 0.14225 0.17347
×

√
Ours w/o LJND 0.22103 0.19167 0.20494 0.15819 0.19685√

× Ours w/o VAE 0.23305 0.19205 0.20896 0.18439 0.20273√ √
Ours 0.13481 0.13487 0.13493 0.13495 0.13498

Figure 6. The comparison results on “label to image” task.

VAE”; Compared “Ours w/o LJND” with “Ours”, it is clear that
the results of “Ours” have less noise on the edge of the handbags
than “Ours w/o LJND”. These show LJND plays a major role in the
problem of whether the final generated image is realistic. Therefore,
it is important that we design LJND as one of the loss functions of
JND-GAN. By Figure 5, we can get a similar conclusion.

Quantitative Evaluation on Ablation Study To further clarify
the contribution of the design of VAE and LJND , we analyze the
following two aspects: comparison of tasks whether using VAE and
comparison of tasks whether using LJND:

Comparison of Tasks Whether Using VAE From Table 1, “Ours
w/o LJND” is 0.1136 higher than “Ours w/o LJND and VAE”.
Also, “Ours” is 0.1486 higher than “Ours w/o VAE”. From two these
points, we find it that “VAE” is helpful to our network to achieve
image-to-image translation. Therefore, it is necessary for the design
of VAE on our JND-GAN. By Table 2, we can get a similar conclu-
sion.

Comparison of Tasks Whether Using LJND From Table 1,
“Ours w/o VAE” is 0.1209 higher than “Ours w/o LJND and VAE”.
Also, “Ours” is 0.1599 higher than “Ours w/o LJND”. From two
these points, we find it that LJND plays a major role to influence our
network to get the final realistic generated image. Therefore, it is cru-
cial that we design LJND as one of the loss functions of JND-GAN.
By Table 2, we can get a similar conclusion.

3.2 Comparison with State-of-the-Art Methods
We design comparison experiments and also perform domain adapta-
tion on the classfication task with MNIST [15] to MNIST-M [7]. We
perform the evaluation on the following algorithms: Pix2Pix [10],
Pix2PixHD [22], CycleGAN [27], DualGAN [25], DiscoGAN [12],
UNIT [17] and DRIT [16].

3.2.1 Qualitative Evaluation

Comparison Results on Paired Datasets As Pix2Pix [10], there are
two tasks on paired datasets, one is to transform the label to image
called “label to image”, and the other is to transform the image to the
label called “image to label”. For the “label to image” task, Figure
6 shows the results of Pix2Pix [10], Pix2PixHD [22], CycleGAN
[27], UNIT [17], DRIT [16] and ours. On the Cityscapes dataset, the
ground in the resulting image of Pix2Pix and CycleGAN is bulging,
which is inconsistent with the ground-truth. The resulting image of
UNIT and DRIT is fuzzy. But the results of our method are very close
to the ground-truth. For the “image to label” task, Figure 7 shows the
results of CycleGAN [27], UNIT [17], DRIT [16] and ours. On the
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Figure 7. The comparison results on “image to label” task.

Figure 8. The comparison results on unpaired datasets.

Cityscapes dataset, the results of our method and CycleGAN [27]
are significantly better than UNIT [17] and DRIT [16]. The results
of our method and CycleGAN [27] are very close to the image of
Ground-Truth. In general, these results means our method is better
than others, and the result of our method is realistic.

Comparison Results on Unpaired Datasets As CycleGAN [27]
and UNIT [17], the task is to transform the style to the image on
unpaired datasets. On apple2orange dataset, as we have seen, in the
images of the third and fourth lines, our method is superior to other
methods. Moreover, on horse2zebra dataset, as we can see, in the
image of the eighth line, our method preserves the effect of the in-
put image grassland, so it is more realistic than the results of other
methods. Furthermore, on summer2winter dataset, as is shown in the
image of the eleventh line, our method is better in term of the for-
est road, and the other methods are wrong as the sky, so it is more
realistic than the results of other methods. In general, these results
mean our method is better than others, and the result of our method
is realistic.

Table 3. Realism evaluation comparison. Using FID [9], the smaller value,
the higher realism.

Dataset
Method Ours DRIT [16] UNIT [17] CycleGAN [27] DiscoGAN [12] DualGAN [25] Pix2PixHD [22] Pix2Pix [10]

facades 94.13 100.17 101.23 108.70 111.23 121.21 139.19 139.19
apple2orange 44.04 50.23 51.19 51.39 51.72 53.96 - -

cezanne2photo 45.29 51.67 52.15 53.38 53.68 54.37 - -
cityscapes 91.53 98.45 99.08 99.56 103.62 104.97 107.21 107.28

edges2handbags 126.13 132.34 133.85 133.93 134.00 134.52 136.33 140.51
edges2shoes 16.90 23.74 24.58 26.93 29.24 29.39 29.93 30.09
horse2zebra 49.96 56.46 57.13 58.23 58.76 58.79 - -

maps 94.14 100.23 101.24 101.69 101.80 103.25 103.58 103.81
monet2photo 28.00 34.67 35.53 35.99 36.30 36.94 - -

night2day 29.43 35.56 36.06 36.10 36.28 38.17 - -
summer2winter 47.73 54.24 55.25 55.30 56.44 56.45 - -
ukiyoe2photo 41.03 47.89 48.53 49.01 49.57 49.60 - -

vangogh2photo 52.13 58.67 59.02 59.31 59.39 59.54 - -

Table 4. Diversity evaluation comparison. Using NDB [21], the smaller
value, the higher realism.

Dataset
Method Ours DRIT [16] UNIT [17] CycleGAN [27] DiscoGAN [12] DualGAN [25] Pix2PixHD [22] Pix2Pix [10]

facades 10.93 13.10 14.82 15.01 20.73 22.24 22.93 31.24
apple2orange 39.92 42.00 42.98 43.66 44.77 46.85 - -

cezanne2photo 38.62 41.20 42.53 46.88 51.30 52.87 - -
cityscapes 10.72 13.50 14.62 14.65 18.08 20.27 107.21 107.28

edges2handbags 15.03 17.56 18.56 19.48 20.12 29.41 22.37 27.12
edges2shoes 14.95 17.23 18.73 25.45 29.30 42.86 43.62 44.16
horse2zebra 42.34 44.78 45.46 45.90 46.36 50.00 - -

maps 18.56 20.78 21.29 22.70 26.58 26.90 27.16 36.30
monet2photo 40.98 43.78 44.76 45.81 48.99 49.36 - -

night2day 40.35 42.89 43.21 44.01 46.80 49.26 - -
summer2winter 23.46 25.60 26.15 26.51 35.25 35.62 - -
ukiyoe2photo 21.27 23.87 24.49 26.42 30.31 36.69 - -

vangogh2photo 24.45 26.76 27.43 28.06 41.03 43.23 - -

Table 5. Diversity evaluation comparison. Using JSD [21], the smaller
value, the higher realism.

Dataset
Method Ours DRIT [16] UNIT [17] CycleGAN [27] DiscoGAN [12] DualGAN [25] Pix2PixHD [22] Pix2Pix [10]

facades 0.0420 0.0710 0.0710 0.0710 0.0980 0.1221 0.0740 0.7510
apple2orange 0.0944 0.1236 0.1241 0.1941 0.2401 0.2621 - -

cezanne2photo 0.0979 0.1270 0.1271 0.1850 0.1910 0.2231 - -
cityscapes 0.0541 0.0833 0.0841 0.1131 0.1221 0.1871 0.1960 0.2130

edges2handbags 0.0967 0.1267 0.1270 0.1790 0.2210 0.2221 0.2450 0.2510
edges2shoes 0.2295 0.2587 0.2590 0.2611 0.2621 0.2760 0.2801 0.2931
horse2zebra 0.0385 0.0678 0.0680 0.1280 0.1581 0.2301 - -

maps 0.0852 0.1145 0.1151 0.1191 0.1251 0.1440 0.1621 0.1731
monet2photo 0.0387 0.0679 0.0680 0.0880 0.1701 0.2470 - -

night2day 0.0873 0.1166 0.1171 0.1460 0.2450 0.2600 - -
summer2winter 0.0363 0.0660 0.0661 0.0950 0.1491 0.1961 - -
ukiyoe2photo 0.1157 0.1456 0.1461 0.1650 0.2100 0.2371 - -

vangogh2photo 0.1395 0.1693 0.1700 0.1951 0.2140 0.2281 - -

Table 6. The realism evaluation comparison. Using LPIPS metric [26], the
larger value, the higher realism.

Dataset
Method Ours DRIT [16] UNIT [17] CycleGAN [27] DiscoGAN [12] DualGAN [25] Pix2PixHD [22] Pix2Pix [10]

facades 0.4321 0.4276 0.4080 0.4134 0.2307 0.2213 0.4116 0.4068
apple2orange 0.4324 0.4234 0.4153 0.4155 0.2309 0.2236 - -

cezanne2photo 0.4331 0.4241 0.4169 0.4218 0.2348 0.2281 - -
cityscapes 0.4340 0.4244 0.4125 0.4246 0.2418 0.2343 0.4127 0.4191

edges2handbags 0.4349 0.4245 0.4129 0.4234 0.2498 0.2419 0.4116 0.4021
edges2shoes 0.4352 0.4254 0.4130 0.4138 0.2531 0.2517 0.4128 0.4029
horse2zebra 0.4358 0.4260 0.4133 0.4247 0.2545 0.2615 - -

maps 0.4365 0.4267 0.4137 0.4126 0.2586 0.2633 0.4043 0.4039
monet2photo 0.4369 0.4272 0.4141 0.4264 0.2626 0.2713 - -

night2day 0.4372 0.4276 0.4145 0.4127 0.2662 0.2809 - -
summer2winter 0.4378 0.4283 0.4149 0.4273 0.2742 0.2887 - -
ukiyoe2photo 0.4383 0.4288 0.4157 0.4276 0.2745 0.2925 - -

vangogh2photo 0.4393 0.4293 0.4165 0.4184 0.2781 0.2998 - -

Table 7. The diversity evaluation comparison. Using reconstruction error,
the smaller value, the better diversity.

Test Dataset
Method Ours DRIT [16] UNIT [17] CycleGAN [27] DiscoGAN [12] DualGAN [25] Pix2PixHD [22] Pix2Pix [10]

facades 0.13481 0.20672 0.21765 0.17791 0.39986 0.38872 0.15655 0.172508
cityscapes 0.13487 0.20674 0.21775 0.17797 0.39988 0.38877 0.15664 0.172524

edges2handbags 0.13493 0.20676 0.21780 0.17802 0.39995 0.38880 0.15667 0.172586
edges2shoes 0.13495 0.20682 0.21785 0.17803 0.40001 0.38885 0.15672 0.172646

maps 0.13498 0.20683 0.21788 0.17812 0.40002 0.38892 0.15672 0.172672

Table 8. Domain adaptation results. The entries “Source-only” and “Target-
only” represent that the training uses either image only from the source and
target domain.

Method Classification Accuracy/%

Source-only 56.6

CycleGAN [27] 74.5
DRIT [16] 86.93

Ours 90.4

DANN [7] 77.4
DSN [4] 83.2

PixelDA [3] 95.9

Target-only 96.5
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3.2.2 Quantitative Evaluation

Realism Evaluation The result of the realism evaluation compari-
son is shown in Table 3, in term of FID. As we can see from Ta-
ble 3, on Cityscapes dataset, the FID of our method is 6.92, 7.55,
8.03, 12.09, 13.44, 15.68, and 15.75 lower than DRIT [16], UNIT
[17], CycleGAN [27], DiscoGAN [12], DualGAN [25], Pix2PixHD
[22], Pix2Pix [10], respectively. This means the generated images
on Cityscapes dataset using our method is more realistic than using
other methods. On Summer2Winter dataset, the FID of our method
is 6.51, 7.52, 7.57, 8.71, and 8.72 lower than DRIT [16], UNIT [17],
CycleGAN [27], DiscoGAN [12], DualGAN [25], respectively. It is
obvious that the generated images Summer2Winter dataset using our
method is more realistic than using other methods. In general, we
find the FID of our method is larger than others. This suggests our
method is better than others, and the result of our method are realis-
tic.

Diversity Evaluation The result of the diversity evaluation com-
parison is shown in Table 4, in term of NDB. As we can see from
Table 4, on Cityscapes dataset, the NDB of our method is 2.78, 3.90,
3.93, 7.36, 9.55, 96.49, and 96.56 lower than DRIT [16], UNIT [17],
CycleGAN [27], DiscoGAN [12], DualGAN [25], Pix2PixHD [22],
Pix2Pix [10], respectively. This means the generated images on
Cityscapes dataset using our method is more diversified than using
other methods. On Summer2Winter dataset, the NDB metric of our
method is 2.14, 2.69, 3.05, 11.79, and 12.16 lower than DRIT [16],
UNIT [17], CycleGAN [27], DiscoGAN [12], DualGAN [25], re-
spectively. It is obvious that the generated images Summer2Winter
dataset using our method is more diversified than using other meth-
ods. In general, we find the NDB of our method is larger than the
others. This suggests our method is better than others, and the result
of our method are diversified.

The result of the diversity evaluation comparison is shown in Table
5, in term of JSD. As we can see from Table 5, on Cityscapes dataset,
the JSD of our method is 0.0292, 0.0300, 0.0590, 0.0680, 0.1330,
0.1419, and 0.1589 lower than DRIT [16], UNIT [17], CycleGAN
[27], DiscoGAN [12], DualGAN [25], Pix2PixHD [22], Pix2Pix
[10], respectively. This means the generated images on Cityscapes
dataset using our method is more diversified than using other meth-
ods. On Summer2Winter dataset, the JSD metric of our method is
0.0297, 0.0298, 0.0587, 0.1128, and 0.1598 lower than DRIT [16],
UNIT [17], CycleGAN [27], DiscoGAN [12], DualGAN [25], re-
spectively. It is obvious that the generated images Summer2Winter
dataset using our method is more diversified than using other meth-
ods. In general, we find the JSD of our method is larger than the
others. This suggests our method is better than others, and the result
of our method are diversified.

The result of the diversity evaluation comparison is shown in Ta-
ble 6, in term of LPIPS. As we can see from Table 6, on Cityscapes
dataset, the LPIPS metric of our method is 0.0096, 0.0215, 0.0094,
0.1922, 0.1997, 0.0213, 0.0149 higher than DRIT [16], UNIT [17],
CycleGAN [27], DiscoGAN [12], DualGAN [25], Pix2PixHD [22],
Pix2Pix [10], respectively. This means the generated images on
Cityscapes dataset using our method is more diversified than using
other methods. On Summer2Winter dataset, the LPIPS metric of our
method is 0.0095, 0.0229, 0.0105, 0.1636, 0.1491 higher than DRIT
[16], UNIT [17], CycleGAN [27], DiscoGAN [12], DualGAN [25],
respectively. It is obvious that the generated images Summer2Winter
dataset using our method is more diversified than using others. In
general, we find the LPIPS metric of our method is larger than the
others. This suggests our method is better than others, and the result

of our method are diversified.
The result of diversity evaluation is shown in Table 7, in term of the

reconstruction error. From Table 7, we find the reconstruction error
of our method is smaller than the others. This shows that our method
is better than other methods, and the result of image reconstruction
using our method is best.

3.2.3 Domain Adaptation

It is demonstrated that the proposed image-to-image translation prob-
lem is beneficial to the adaptation of unsupervised domains. Follow-
ing PixelDA [3], we use MNIST [15] to MNIST-M [7] for classifi-
cation experiments. To evaluate our approach, we first translate the
source image into the target domain. We then treat the generated la-
beled image as training data and train the classifier for each task in
the target domain. For a fair comparison, we use the same architec-
ture classifier as PixelDA [3]. We compare the proposed method with
C [27] and DRIT [16] (based on our previous experiments to gener-
ate the most realistic images in the target domain) and three state-
of-the-art domain adaptive algorithms: PixelDA [3], DANN [7], and
DSN [4]. We report the classification accuracy on MNIST to MNIST-
M, and the results are listed in Table 8. From Table 8, our results
verify that our method can simulate different images in the target do-
main and improve performance in the target task, and is superior to
other tasks.

4 Conclusion and Future Work

We proposed a novel image-to-image translation approach inspired
by the human visual system. Moreover, we design an effective net-
work loss to capture the pixel-level representations and human vi-
sion system information for verisimilar image-to-image translation.
To enforce both structural and our model’s consistency, we design
Just-Noticeable-Difference loss based on a visual recognition task.
The Just-Noticeable-Difference loss both guide the overall represen-
tation to be discriminative and enforce Just-Noticeable-Difference
consistency before and after mapping between domains. We evalu-
ate the proposed model through extensive qualitative and quantita-
tive evaluation. In a wide variety of image-to-image tasks, we show
diverse translation results with randomly sampled from existing im-
ages. We apply the proposed model to domain adaptation and show
competitive performance when compared to the state-of-the-art on
many datasets. In future research, we consider combining this idea
of our method with video-to-video to get realistic generated video.
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Scharwächter, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele, ‘The cityscapes dataset’, in CVPR
Workshop on the Future of Datasets in Vision, volume 1, p. 3, (2015).

[6] Roland Fischer, Frances Griffin, Robert C. Archer, Stephen C. Zins-
meister, and Philip S. Jastram, ‘Weber ratio in gustatory chemorecep-
tion; an indicator of systemic (drug) reactivity’, Nature, 207, 1049,
(1965).

[7] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain,
Hugo Larochelle, François Laviolette, Mario Marchand, and Victor
Lempitsky, Domain-Adversarial Training of Neural Networks, 189–
209, Springer International Publishing, Cham, 2017.

[8] Yunye Gong, Srikrishna Karanam, Ziyan Wu, Kuan-Chuan Peng, Jan
Ernst, and Peter C. Doerschuk, ‘Learning compositional visual con-
cepts with mutual consistency’, in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), (June 2018).

[9] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard
Nessler, and Sepp Hochreiter, ‘Gans trained by a two time-scale up-
date rule converge to a local nash equilibrium’, in Advances in Neu-
ral Information Processing Systems 30, eds., I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
6626–6637, Curran Associates, Inc., (2017).

[10] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros,
‘Image-to-image translation with conditional adversarial networks’, in
The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), (July 2017).

[11] L. J. Karam, N. G. Sadaka, R. Ferzli, and Z. A. Ivanovski, ‘An efficient
selective perceptual-based super-resolution estimator’, IEEE Transac-
tions on Image Processing, 20(12), 3470–3482, (Dec 2011).

[12] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Ji-
won Kim, ‘Learning to discover cross-domain relations with generative
adversarial networks’, CoRR, abs/1703.05192, (2017).

[13] D. P Kingma and M. Welling, ‘Auto-Encoding Variational Bayes’,
ArXiv e-prints, (December 2013).

[14] Diederik P. Kingma and Jimmy Ba, ‘Adam: A method for stochastic
optimization’, CoRR, abs/1412.6980, (2014).

[15] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘Gradient-based learn-
ing applied to document recognition’, Proceedings of the IEEE, 86(11),
2278–2324, (Nov 1998).

[16] Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Maneesh Singh, and
Ming-Hsuan Yang, ‘Diverse image-to-image translation via disentan-
gled representations’, in The European Conference on Computer Vision
(ECCV), (September 2018).

[17] Ming-Yu Liu, Thomas Breuel, and Jan Kautz, ‘Unsupervised image-to-
image translation networks’, in Advances in Neural Information Pro-
cessing Systems, pp. 700–708, (2017).

[18] Xiao Liu, Shengchuan Zhang, Hong Liu, Xin Liu, and Rongrong Ji,
‘Less is more: Unified model for unsupervised multi-domain image-to-
image translation’, arXiv preprint arXiv:1805.10871, (2018).

[19] Qi Mao, Hsin-Ying Lee, Hung-Yu Tseng, Siwei Ma, and Ming-Hsuan
Yang, ‘Mode Seeking Generative Adversarial Networks for Diverse Im-
age Synthesis’, in The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), (2019 , in press).

[20] Francesco Marra, Diego Gragnaniello, Davide Cozzolino, and Luisa
Verdoliva, ‘Detection of gan-generated fake images over social net-
works’, in 2018 IEEE Conference on Multimedia Information Process-
ing and Retrieval (MIPR), pp. 384–389. IEEE, (2018).

[21] Eitan Richardson and Yair Weiss, ‘On gans and gmms’, in Proceedings
of the 32Nd International Conference on Neural Information Process-
ing Systems, NIPS’18, pp. 5852–5863, USA, (2018). Curran Associates
Inc.

[22] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz,
and Bryan Catanzaro, ‘High-resolution image synthesis and semantic
manipulation with conditional gans’, in The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), (June 2018).

[23] Arie Wisianto, Hidayatus Saniya, and Oki Gumilar, ‘Integrating
pipeline data management application and google maps dataset on web
based gis application using open source technology sharp map and open
layers’, in 2010 8th International Pipeline Conference, pp. 209–211.

American Society of Mechanical Engineers, (2010).
[24] J. Wu, L. Li, W. Dong, G. Shi, W. Lin, and C. . J. Kuo, ‘Enhanced just

noticeable difference model for images with pattern complexity’, IEEE
Transactions on Image Processing, 26(6), 2682–2693, (June 2017).

[25] Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong, ‘Dualgan: Unsuper-
vised dual learning for image-to-image translation’, in The IEEE Inter-
national Conference on Computer Vision (ICCV), (Oct 2017).

[26] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and
Oliver Wang, ‘The unreasonable effectiveness of deep features as a
perceptual metric’, in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), (June 2018).

[27] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros, ‘Un-
paired image-to-image translation using cycle-consistent adversarial
networks’, in The IEEE International Conference on Computer Vision
(ICCV), (Oct 2017).

[28] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A
Efros, Oliver Wang, and Eli Shechtman, ‘Toward multimodal image-
to-image translation’, in Advances in Neural Information Processing
Systems, pp. 465–476, (2017).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain


	Introduction
	Proposed Method
	Just-Noticeable-Difference Model
	Network Formulation

	Experimental Results
	Ablation Study
	Comparison with State-of-the-Art Methods
	Qualitative Evaluation
	Quantitative Evaluation
	Domain Adaptation


	Conclusion and Future Work

