
Multi-Label Learning with Deep Forest
Liang Yang and Xi-Zhu Wu and Yuan Jiang and Zhi-Hua Zhou 1

Abstract. In multi-label learning, each instance is associated with
multiple labels, and the crucial task is how to leverage label corre-
lations in building models. The deep forest is a recent deep learning
framework based on decision tree ensembles, which has a cascade
structure that can do representation learning like deep neural models
and does not rely on backpropagation. Though deep forests have been
found useful in classification tasks, the potential of applying it into
multi-label learning has not been studied. We consider that the layer-
by-layer processing structure of the deep forest is appropriate for
solving multi-label problems. Therefore we design the Multi-Label
Deep Forest (MLDF) method, including two mechanisms: measure-
aware feature reuse and measure-aware layer growth. The measure-
aware feature reuse mechanism enables MLDF to reuse better rep-
resentation in the previous layer. The measure-aware layer growth
mechanism ensures MLDF gradually increase the model complex-
ity guided by performance measure. MLDF handles two challenging
problems at the same time: one is restricting the model complexity
to ease the overfitting issue; another is optimizing the performance
measure on user’s demand since there are many different measures
in the multi-label evaluation. Experiments demonstrate that our pro-
posal not only beats the compared methods over six measures on
benchmark datasets but also enjoys label correlation discovery and
other desired properties in multi-label learning.

1 INTRODUCTION

In multi-label learning, each instance is associated with multiple la-
bels simultaneously, and the task is to predict a set of relevant labels
for unseen instances. Multi-label learning has been widely applied
in diverse problems like text categorization [31], scene classification
[30], functional genomics [26], video categorization [17], chemicals
classification [4], etc, and multi-label learning tasks are omnipresent
in real-world problems [22].

By transforming the multi-label learning problem to independent
binary classification problems for each label, Binary Relevance [21]
is a widely-used straightforward method. Though it is intended to
make full use of high-performance traditional single-label classifiers,
it will lead to high computational cost when label space is enormous.
Besides, such a method neglects the fact that information on one la-
bel may help learn other related labels, which would limit the predic-
tion performance. Investigating correlations among labels has been
demonstrated to be crucial to improve the performance of multi-label
learning. As a result, more and more multi-label learning methods
aimed to explore and exploit the label correlations are proposed [22].
There emerges considerable attention to explore and exploit label
correlations in multi-label learning methods [22, 24, 28].

1 National Key Laboratory for Novel Software Technology, Nanjing Univer-
sity, China, email: {yangl, wuxz, jiangy, zhouzh}@lamda.nju.edu.cn

Different from traditional multi-label methods, deep neural net-
work models usually make an effort to learn a new feature space and
employ a multi-label classifier on the top. Among the first to utilize
network architectures, BP-MLL [26] not only treats each output node
as a binary classification task but also exploits label correlations re-
lied on the architecture itself. Later, a comparably simple neural net-
work approach builds upon BP-MLL was proposed by replacing the
pairwise ranking loss with entropy loss [13]. It achieves a good result
in the large-scale text classification. However, deep neural models
usually require a massive amount of training data, and thus they are
not usually suitable for small-scale datasets.

By realizing that the essence of deep learning lies in layer-by-layer
processing, in-model feature transformation, and sufficient model
complexity, Zhou and Feng proposed deep forest [34]. The deep for-
est is a deep ensemble model built on decision trees and does not
use backpropagation in the training process. A deep forest ensemble
with a cascade structure can do representation learning like deep neu-
ral models. Compared to DNN, the deep forest is much easier to train
since it has fewer hyperparameters. It has achieved excellent perfor-
mance on a broad range of tasks, such as large-scale financial fraud
detection [29], and it has been found that forest models can achieve
some important properties that were believed to be owned only by
neural networks, such as the auto-encoder ability [7] and hierarchi-
cal distributed representation ability [6]. Though deep forest has been
found useful in classification tasks [34], the potential of applying it
into multi-label learning has not been studied before our work.

The success of deep forest mainly comes from the layer-by-layer
feature transformation in an ensemble way [32]. While on the other
hand, the critical point in multi-label learning is how to take advan-
tage of label correlations. Inspired by these two facts, we propose the
Multi-Label Deep Forest (MLDF) method. Briefly speaking, MLDF
uses different multi-label tree methods as the building blocks in deep
forest, and label correlations can be exploited via layer-by-layer rep-
resentation learning.

Because evaluation in multi-label learning is more complicated
than traditional classification tasks, various performance measures
have been proposed [20]. It is worthy to notice that different users
have different demands, and an algorithm usually performs differ-
ently on different measures [25]. To achieve better performance on
the specific measure, we propose two mechanisms: measure-aware
feature reuse and measure-aware layer growth. Inspired by confi-
dence screening [14], we define the confidence of each multi-label
measure considered in our work. The measure-aware feature reuse
mechanism reuses better presentation in the previous layer for spe-
cific measures when the confidence is higher than the threshold. The
measure-aware layer growth mechanism aims to control the model
complexity by various performance measures. The two measure-
aware mechanisms promote the performance of MLDF.

The main contributions of this paper are summarized as follows:

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



• We first introduce the deep forest to multi-label learning, which
provides another effective approach to deep multi-label learning.

• We propose the measure-aware feature reuse mechanism based
on confidence computing. It can optimize different performance
measures on user’s demand.

• We take the measure-aware layer growth mechanism to enable
MLDF to reduce overfitting when utilizing label correlations by a
large number of layers, which often observed in deep neural multi-
label models.

• Our extensive experiments show that MLDF achieves the best per-
formance on nine benchmark datasets over six multi-label perfor-
mance measures. Furthermore, investigative experiments demon-
strate that our proposal enjoys high flexibility in applying various
base tree models.
The remainder of the paper is organized as follows. Section 2 in-

troduces some preliminaries. Section 3 formally describes our MLDF
method, including two measure-aware mechanisms. Section 4 re-
ports the experimental results on benchmarks and investigative ex-
periments. Finally, we conclude the paper in Section 5.

2 PRELIMINARIES
In this section, we introduce various multi-label performance mea-
sures, followed by tree-based multi-label methods, which will be
used in our proposal.

2.1 Multi-label performance measures
The multi-label classification task is to derive a function H from the
training set {(xi,yi)|1 ≤ i ≤ m,xi ∈ Rd,yi ∈ {0, 1}l}. Suppose
the multi-label learning model first produces a real-valued function
f : X → [0, 1]l, which can be viewed as the confidence of relevance
of the labels. The multi-label classifier h : X → {0, 1}l can be
induced from f by thresholding.

There are lots of performance measures for multi-label learning.
Six widely-used evaluation measures [25] are employed in this pa-
per. Table 1 shows the formulation of these measures, being Y the
true labels, Yi· the i-th row of the label matrix, ‘+’(‘−’) the rele-
vant (irrelevant) note. Hamming loss and macro-AUC are label-based
measures, while one-error, coverage, ranking loss, and average preci-
sion are instance-based measures [27]. The fij means the confidence
score of i-th instance on j-th label, hij means the predicted result of
i-th instance on j-th label, and rankf (xi, j) means the instance xi’s
rank on j-th label. For example, if f(xi) = [0.2, 0.8, 0.4], then we
have h(xi) = [0, 1, 0] with threshold 0.5. Furthermore, we have
Y −i· = {1, 3} and Y +

i· = {2}. Since fi2 = 0.8, then we have
rankf (xi, 2) = 1.

2.2 Tree-based multi-label methods
Tree-based multi-label methods, such as ML-C4.5 [5] and PCT [2],
are adapted from multi-class decision tree methods. They allow mul-
tiple labels in the leaves of the tree, whose formula is modified by
summing the criterion value of each label. The information kept in
each leaf node is the probability that the instance owns each label by
counting the percentage of different classes of training examples at
the leaf node where concerned instance falls. In the testing process
of both methods, the leaf node of a multi-label tree returns a vector
of probabilities that a sample belongs to each class.

The learning ability of a single tree is limited, and the ensemble
of the trees will significantly improve performance. Random Forest

Table 1. Definitions of six multi-label performance measures. ‘↓’ means
the lower the better, ‘↑’ means the higher the better.

Measure Formulation

hamming loss ↓ 1
ml

m∑
i=1

l∑
j=1

I[hij 6= yij ]

one-error ↓ 1
m

m∑
i=1

I
[
arg max f (xi) /∈ Y +

i·
]

coverage ↓ 1
ml

m∑
i=1

I

[
max
j∈Y +

i·

rankf (xi, j)− 1

]

ranking loss ↓ 1
m

m∑
i=1

|Si
rank|

|Y +
i· ||Y −

i· |

average precision ↑ 1
m

m∑
i=1

1

|Y +
i· |

∑
j∈Y +

i·

|Sij
precision|

rankf (xi,j)

macro-AUC ↑ 1
l

l∑
j=1

|Sj
macro|

|Y +
·j ||Y −

·j |

Si
rank = {(u, v) ∈ Y +

i· × Y
−
i· |fu (xi) ≤ fv (xi)}

Sij
precision =

{
k ∈ Y +

i |rankf (xi, k) ≤ rankf (xi, j)
}

Sj
macro =

{
(a, b) ∈ Y +

·j × Y
−
·j |fj (xa) ≥ fj (xb)

}

of Predictive Clustering Trees (RF-PCT) [11] and Random Forest of
ML-C4.5 (RFML-C4.5) [12] are ensembles that use PCT and ML-
C4.5 as base classifiers respectively. The same as random forest,
these forests use bagging and choose different feature sets to obtain
the diversity among the base classifiers. The number of features in
retained subsets can be configured on the square root of the number
of original features. Given a test instance, the forest will produce an
estimate of label distribution by averaging results across all trees.

3 THE PROPOSED METHOD
In this section, we propose a deep forest method for multi-label learn-
ing. Firstly, we introduce the general framework of Multi-Label Deep
Forest (MLDF). Then, we explain two proposed mechanisms in de-
tail: measure-aware feature reuse and measure-aware layer growth.

3.1 The framework
Figure 1 illustrates the framework of MLDF. Different multi-label
forests (the black forests above and the blue forests below) are en-
sembled in each layer of MLDF. From layert, we can obtain the
representation Ht. The part of measure-aware feature reuse will re-
ceive the representation Ht and update it by reusing the representa-
tion Gt−1 learned in the layert−1 under the guidance of the perfor-
mance of different measures. Then the new representation Gt (the
green one) will be concatenated together with the raw input features
(the red one) and goes into the next layer.

In MLDF, each layer is an ensemble of forests. To enhance the per-
formance of the ensemble, we consider different growing methods
of trees to encourage diversity, which is crucial to the success of en-
semble methods [32]. In traditional multi-class problems, extremely-
random trees [8], which takes one split point of each feature ran-
domly, are used in gcForest [33]. For multi-label learning problems,
we can also adopt this kind of method by changing the approach of
splitting nodes when generating trees. In MLDF, we take RF-PCT

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



Forest

Forest

In
pu

t F
ea

tu
re

s

Forest

Forest

Forest

Forest

Forest

Forest

layer1 layer2

. . . 

layerL

Forest

Forest

Forest

Forest

Fi
na

l P
re

di
ct

io
n

~
concatenate

M
ea

su
re

-a
w

ar
e

Fe
at

ur
e 

R
eu

se
  

Multiple
LayersM

ea
su

re
-a

w
ar

e
Fe

at
ur

e 
R

eu
se

  

Ht
<latexit sha1_base64="mDkO87xOMziGK0Mdcp5bO27vC6o=">AAAB83icbVDLSsNAFJ3UV62vqks3g0VwVRItPnYFN11WsA9oYplMJ+3QySTM3Agl9DfcuFDErT/jzr9xkgZR64GBwzn3cs8cPxZcg21/WqWV1bX1jfJmZWt7Z3evun/Q1VGiKOvQSESq7xPNBJesAxwE68eKkdAXrOdPbzK/98CU5pG8g1nMvJCMJQ84JWAk1w0JTPwgbc3vYVit2XU7B14mTkFqqEB7WP1wRxFNQiaBCqL1wLFj8FKigFPB5hU30SwmdErGbGCoJCHTXppnnuMTo4xwECnzJOBc/bmRklDrWeibySyj/utl4n/eIIHgyku5jBNgki4OBYnAEOGsADziilEQM0MIVdxkxXRCFKFgaqrkJVxnuPj+8jLpntWd83rjtlFr2kUdZXSEjtEpctAlaqIWaqMOoihGj+gZvViJ9WS9Wm+L0ZJV7ByiX7DevwBYx5H4</latexit>

Gt
<latexit sha1_base64="W2V1MmL4tye6nvJPuYmRkUVxk5M=">AAAB83icbVDLSsNAFJ3UV62vqks3g0VwVRItPnYFF7qsYB/QxDKZTtqhk0mYuRFK6G+4caGIW3/GnX/jJA2i1gMDh3Pu5Z45fiy4Btv+tEpLyyura+X1ysbm1vZOdXevo6NEUdamkYhUzyeaCS5ZGzgI1osVI6EvWNefXGV+94EpzSN5B9OYeSEZSR5wSsBIrhsSGPtBej27h0G1ZtftHHiROAWpoQKtQfXDHUY0CZkEKojWfceOwUuJAk4Fm1XcRLOY0AkZsb6hkoRMe2meeYaPjDLEQaTMk4Bz9edGSkKtp6FvJrOM+q+Xif95/QSCCy/lMk6ASTo/FCQCQ4SzAvCQK0ZBTA0hVHGTFdMxUYSCqamSl3CZ4ez7y4ukc1J3TuuN20ataRd1lNEBOkTHyEHnqIluUAu1EUUxekTP6MVKrCfr1Xqbj5asYmcf/YL1/gVXQJH3</latexit>

Gt�1
<latexit sha1_base64="fahqb1OG87EJpa+qTXCpoaMoEuA=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgxpJo8bEruNBlBfuANpbJdNIOnTyYmRRKyJ+4caGIW//EnX/jJA2i1gMDh3Pu5Z45bsSZVJb1aZSWlldW18rrlY3Nre0dc3evLcNYENoiIQ9F18WSchbQlmKK024kKPZdTjvu5DrzO1MqJAuDezWLqOPjUcA8RrDS0sA0+z5WY9dLbtKHRJ3Y6cCsWjUrB1okdkGqUKA5MD/6w5DEPg0U4VjKnm1FykmwUIxwmlb6saQRJhM8oj1NA+xT6SR58hQdaWWIvFDoFyiUqz83EuxLOfNdPZnllH+9TPzP68XKu3QSFkSxogGZH/JijlSIshrQkAlKFJ9pgolgOisiYywwUbqsSl7CVYbz7y8vkvZpzT6r1e/q1YZV1FGGAziEY7DhAhpwC01oAYEpPMIzvBiJ8WS8Gm/z0ZJR7OzDLxjvX38Mk6Y=</latexit>

Gt
<latexit sha1_base64="W2V1MmL4tye6nvJPuYmRkUVxk5M=">AAAB83icbVDLSsNAFJ3UV62vqks3g0VwVRItPnYFF7qsYB/QxDKZTtqhk0mYuRFK6G+4caGIW3/GnX/jJA2i1gMDh3Pu5Z45fiy4Btv+tEpLyyura+X1ysbm1vZOdXevo6NEUdamkYhUzyeaCS5ZGzgI1osVI6EvWNefXGV+94EpzSN5B9OYeSEZSR5wSsBIrhsSGPtBej27h0G1ZtftHHiROAWpoQKtQfXDHUY0CZkEKojWfceOwUuJAk4Fm1XcRLOY0AkZsb6hkoRMe2meeYaPjDLEQaTMk4Bz9edGSkKtp6FvJrOM+q+Xif95/QSCCy/lMk6ASTo/FCQCQ4SzAvCQK0ZBTA0hVHGTFdMxUYSCqamSl3CZ4ez7y4ukc1J3TuuN20ataRd1lNEBOkTHyEHnqIluUAu1EUUxekTP6MVKrCfr1Xqbj5asYmcf/YL1/gVXQJH3</latexit>

Figure 1. The framework of Multi-Label Deep Forest (MLDF). Each layer ensembles two different forests (the black above and the blue below).

Algorithm 1 Measure-aware feature reuse

Input: measure M , forests’ output Ht, previous Gt−1.
Output: new representation Gt.
Procedure:

1: Initialize tensor Gt = Ht.
2: if Measure M is label-based then
3: for j = 1 to l do
4: compute confidence αt

j on Ht
··j

5: Update Gt
··j to Gt−1

··j when αt
j < θt.

6: end for
7: end if
8: if Measure M is instance-based then
9: for i = 1 to m do

10: compute confidence αt
i on Ht

·i·
11: Update Gt

·i· to Gt−1
·i· when αt

i < θt.
12: end for
13: end if

[11] as the forest block, and two different methods generating nodes
in trees are used to forests: one considers all possible split points of
each feature, which is RF-PCT (the black one), the other considers
one split point randomly [10], we name this as ERF-PCT (the blue
one). Of course, other multi-label tree methods can also be embedded
in each layer, such as RFML-C4.5.

Assume all the basic forests have been fitted, as shown in Figure
1, the predicting process can be summarized as follows. Firstly, we
pre-process instances to standard matrix X. Secondly, the instances
matrix X passes the first layer. As aforementioned in Section 2.2,
given an instance, the forests will produce an estimation of label dis-
tribution, which can be viewed as the confidence of the instance be-
longing to each label. Therefore, we can get the representation H1.
By adopting measure-aware feature reuse, we can get G1. Then we
concatenate G1 with the raw input features X and put them into the
next layer. The real-valued representation G1 of rich labeling infor-
mation will be considered in the next layer to facilitate MLDF to take
better advantage of label correlations [1]. After multiple layers, we
obtain the final prediction.

3.2 Measure-aware feature reuse

The split criterion of PCT is not directly related to the perfor-
mance measure, and the representation tensor Ht, whose shape is
(#num forests,#num samples,#num labels), in layert during

Table 2. Confidence computing method on six multi-label measures. pi·
or p·j is sorted in descending order. ? represents the instance-based measure

and � represents the label-based measure.

Measure Confidence

�hamming loss 1
m

m∑
i=1

pijI[pij > 0.5] + (1− pij)I[pij ≤ 0.5]

?one-error max
j=1,...,l

pij

?coverage 1− 1
l

l∑
j=0

[
j · pij

l∏
k=j+1

(1− pik)

]
?ranking loss

l∑
j=0

j∏
k=1

pik
l∏

k=j+1

(1− pik)

?average precision
l∑

j=0

j∏
k=1

pik
l∏

k=j+1

(1− pik)

�macro-AUC
m∑
i=0

i∏
k=1

pkj
m∏

k=i+1

(1− pkj)

training is agnostic to the measure we want to optimize. Therefore we
propose the measure-aware feature reuse mechanism to enhance the
representation under the guidance of different measures. The critical
idea of measure-aware feature reuse is to partially reuse the better
representation in the previous layer on the current layer if the con-
fidence on the current layer is lower than a threshold determined in
training. Therefore, the challenge lies in defining the confidence of
specific multi-label measures on demand. Inspired by the confidence
corresponding to accuracy in the multi-class classification problem
[14], we define the confidence in all six multi-label measure.

Comparing the prediction matrix with the true label matrix, ham-
ming loss cares the correctness of single bit, one-error cares the el-
ement closest to 1, and others care the ranking permutation on each
row or column. In general, label-based measure and instance-based
measure are quite different[27], therefore we handle them separately.
Table 2 summarizes the computing method by considering the in-
herent meaning of each measure. Matrix P is the average of Ht

on the first dimension, and the element pij represents Pr[ŷij = 1].
Without loss of generality, we rearrange the elements of each row
(column) of P in descending order when the measure is instance-
based (label-based). Explicitly, for hamming loss, we compute the
max confidence that the bit is positive or negative. For example, the
prediction vector p·j = [0.9, 0.6, 0.4, 0.3], thus the confidence is

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



Algorithm 2 Determine threshold

Input: measure M , forests’ output Ht, ground-truth Y, previous
performance on layert−1.

Output: threshold θt.
Procedure:

1: Initialize confidence set S = ∅.
2: if Measure M is label-based then
3: for j = 1 to l do
4: compute confidence αt

j on Ht
··j .

5: compute measure mt
j on (Ht

··j ,Y·j).
6: S = S ∪ {αt

j} when mt
j is worse than mt−1

j .
7: end for
8: end if
9: if Measure M is instance-based then

10: for i = 1 to m do
11: compute confidence αt

i on Ht
·i·.

12: compute measure mt
i on (Ht

·i·,Yi·).
13: S = S ∪ {αt

i} when mt
i is worse than mt−1

i .
14: end for
15: end if
16: θt = Compute threshold on S.

αj = 1
4
(0.9 + 0.6 + 0.6 + 0.7) = 0.7. For one-error, we consider

the probability that the most confident label is positive. For coverage,
we sum the probability that the number of labels which can include
covering all relevant labels and scale the result to range [0, 1]. For
ranking loss, we compute the probability that the ranking loss is zero,
which means the positive labels are ahead of negative labels. For ex-
ample, if the prediction vector pi· = [0.9, 0.6, 0.4, 0.3], there will
be 5 possible permutations of ground-truth leading to zero ranking
loss: {0000, 1000, 1100, 1110, 1111}. The probability of each case
is simple to obtain, e.g. Pr[1100] = 0.9 · 0.6 · (1− 0.4) · (1− 0.3).
Therefore, we can get confidence by summing the probabilities in
these five cases. The confidence of macro-AUC and average preci-
sion is defined in a similar way.

Algorithm 1 summarizes the process of the measure-aware fea-
ture reuse. Due to the diversity between label-based measures and
instance-based measures [25], we need to deal with them separately.
Explicitly, the label-based measures compute the confidence of Ht

on the third dimension, and the instance-based measures compute it
on the second dimension. After the confidence computing, we reuse
the previous representation Gt−1 when the confidence αt is below
the threshold, and update Gt partially with the better ones.

The whole process of measure-aware feature reuse does not rely
on true labels. We can judge the goodness of representation by a
threshold determined in the training process. As Algorithm 2 shows,
we save the confidence αt into the set S when the evaluated perfor-
mance measure goes worse at layert. Then, the threshold θt is deter-
mined based on the set S , and we use the average of S as the thresh-
old for convenience. Because the meaning of confidence is consistent
with the measure, the threshold θt can be effectively utilized in the
measure-aware feature reuse mechanism.

3.3 Measure-aware layer growth

The measure-aware feature reuse mechanism focuses on representa-
tion learning and can effectively enhance the representation guided
by various measures. At the same time, to decrease overfitting and
control the model complexity, we propose the measure-aware layer
growth mechanism, which is used in the training process of MLDF.

Algorithm 3 Measure-aware layer growth
Input: maximal depth T , measure M , training data {X,Y}.
Output: model set C, threshold set Θ and final layer index L.
Procedure:

1: Initialize parameters:
performance in each layer q[1 : T ],
best performance on train set qbest,
the initial threshold θ1 = 0,
the best performance layer index L = 1,
the model set C = ∅.

2: for t = 1 to T do
3: Train forests in layert and get classifier ht.
4: Predict Ht = ht([X,Gt−1]).
5: θt = Determine Threshold (Algorithm 2) when t > 1.
6: Gt = measure-aware feature reuse (Algorithm 1).
7: Compute performance q[t] on measure M with Gt.
8: if q[t] is better than qbest then
9: Update best performance qbest = q[t].

10: Update the layer index of best performance L = t.
11: else if qbest is not updated in recent 3 layers then
12: break
13: end if
14: Add layert to model set: C = C ∪ layert.
15: end for
16: Keep {layer1, . . . , layerL} in model set C and drop others
{layerL+1, . . . }.

If we use the same data to fit forests and do predict directly, the risk
of overfitting will be increased [15]. MLDF uses the k-fold cross-
validation to alleviate this issue. For each fold, we train the forests
based on the training examples in other folds and predict the cur-
rent fold. The layer’s representation is generated by concatenating
the predictions from each forest.

MLDF is built layer by layer. Algorithm 3 summarizes the proce-
dure of measure-aware layer growth, which is the training process of
MLDF. The inputs are maximal depth of layers T , evaluation mea-
sureM , and the training data {X,Y}. In general, we can choose one
RF-PCT and one ERF-PCT in each layer and randomly select

√
d

number of features as candidates in each forest. All parameters of
training forest in MLDF, such as the number of forests and the depth
of trees, are pre-determined before training. As we hope each layer to
learn different representations, we can set the maximum depth of tree
in forests growing with the layer i, so does the number of trees, which
can be set in advance. In the initialization step, the performance vec-
tor q, which records the performance value on training data in each
layer, should be initialized according to different measures. During
each layer, we first fit the forests (Line 3) and get the representation
Ht (Line 4). Then we should determine the threshold θt (Line 5) and
generate new representation by measure-aware feature reuse (Line
6). Finally we add the layert to model set C (Line 14).

The layer growth is measure-aware. After fitting one layer, we
are required to compute the evaluation measure. When the measure
is not getting better in the recent three layers (Line 11), MLDF is
forced to stop growing. At the same time, the layer index of the
best performance in the training dataset should be recorded, which
is useful for prediction. According to Occam’s razor rule, we pre-
fer a simpler model when the performance is similar. While there
is no apparent improvement in performance, the final model set
C = {layer1, . . . , layerL} should be kept, and layers after layerL
will be dropped.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



Different measures represent different user’s demands. We can set
M as the required measure according to various situations. There-
fore, we can obtain the corresponding model for the specified mea-
sure. In summary, the measure-aware layer growth mechanism can
control the model complexity and help the measure-aware feature
reuse mechanism promote the performance.

4 EXPERIMENTS
In this section, we conduct experiments with MLDF on different
multi-label classification benchmark datasets. Our goal is to validate
that MLDF can achieve the best performance on different measures,
and the two measure-aware mechanisms are necessary. Moreover, we
show the advantages of MLDF through more detailed experiments
from various aspects.

4.1 Dataset and configuration
We choose nine multi-label classification benchmark datasets from
different application domains and with different scales. Table 3
presents the basic statistics of these datasets. All datasets are drawn
from a repository of multi-label datasets2. The datasets vary in size:
from 502 up to 43970 examples, from 68 up to 5000 features, and
from 5 up to 201 labels. They are roughly organized in ascend-
ing order of the number of examples m, with eight of them being
regular-scale, i.e., m < 5000 and eight of them being large-scale,
i.e., m > 5000. For all experiments conducted below, 50% exam-
ples are randomly sampled without replacement to form the training
set, and the rest 50% examples are used to create the test set.

Six evaluation measures, widely used in multi-label learning [25],
are employed in this paper: hamming loss, one-error, coverage, rank-
ing loss, average precision, and macro-AUC. Note that the coverage
is normalized by the number of labels, and thus all the evaluation
measures all vary between [0,1].

Hyper-parameters of MLDF are set as follows. We set the number
of max layers (T ) as 20 and take M with the six measures discussed
above, respectively, which means we will get different models with
different measures though other settings are the same. We take one
RF-PCT and one ERF-PCT in each layer and use the 5-fold cross-
validation to reduce overfitting. In the first layer, we take 40 trees
in each forest, and then take 20 more trees than the previous layer
until the number of trees reaches 100, which can enable MLDF to
learn diverse representations. Similarly, we set the max-depth to 3 in
the first layer, and then take three more than the previous layer when
layer increasing.

Table 3. Descriptions of the datasets in terms of the domain (Domain),
number of examples (m), number of features (d) and number of labels (l).

Dataset Domain m d l

CAL500 music 502 68 174
enron text 1702 1001 53
image images 2000 294 5
scene images 2407 1196 6
yeast biology 2417 103 14
corel16k-s1 images 13766 500 153
corel16k-s2 images 13761 500 164
eurlex-sm text 19348 5000 201
mediamill multimedia 43970 120 101

2 http://mulan.sourceforge.net/datasets-mlc.html

4.2 Performance comparison

We compare MLDF to the following five contenders: a) RF-PCT
[11], b) DBPNN [9, 19], c) MLFE [28], d) RAKEL [23] and e) ECC
[18]. In the above, DBPNN is the representative of DNN methods;
RAKEL, ECC, and RF-PCT are representatives of multi-label en-
semble methods; MLFE is a method that utilizes the structural in-
formation in feature space to enrich the labeling information. Pa-
rameter settings of the compared methods are listed below. In de-
tail, for RF-PCT, we take the amount as 100. For DBPNN, we con-
duct the experiments with Meka [19] and set the base classifier as
the logistic function , other hyper-parameters are the same as recom-
mended in Meka . For MLFE, we keep the same setting as suggested
in [28], where ρ = 1, c1 = 1, c2 = 2, β1, β2 and β3 are chosen
among {1, 2, ..., 10}, {1, 10, 15} and {1, 10} respectively. The en-
semble size of ECC is set to 100 to accommodate a sufficient num-
ber of classifier chains, and the ensemble size of RAKEL is set to 2q
with k = 3 as suggested in the literature. The base learner of ECC
and RAKEL is SVM with a linear kernel. For fairness, all methods
use the 5-fold cross-validation.

We conduct experiments on each algorithm for ten times. The
mean metric value and the standard deviation across ten train-
ing/testing trials are recorded for comparative studies. Table 4 reports
the detailed experimental results of comparing algorithms. MLDF
achieves optimal (lowest) average rank in terms of each evaluation
measure. On the nine benchmark datasets, across all the evalua-
tion measures, MLDF ranks 1st in 98.89% cases and ranks 2nd in
1.11% cases. Compared on these six measures, MLDF ranks 1st
in 100.00%, 97.78%, 97.78%, 100.00%, 97.78%, 100.00% cases
respectively. To summarize, MLDF achieves the best performance
against other well-established contenders across extensive bench-
mark datasets on various evaluation measures, which validates the
effectiveness of MLDF.

hamming loss

one-error

coverage

ranking loss

average 
 precision

macro-AUC

hamming loss

one-error

coverage

ranking loss

average 
 precision

macro-AUC

hamming loss

one-error

coverage

ranking loss

average 
 precision

macro-AUC

hamming loss

one-error

coverage

ranking loss

average 
 precision

macro-AUC

(a) CAL500 (b) yeast

(c) corel16k-s1 (d) corel16k-s2

Figure 2. The performance comparison on CAL500, yeast, corel16k-s1
and corel16k-s2. The light hexagon represents the performance of MLDF,

the darker represents the performance of MLDF without the measure-aware
feature reuse mechanism. The larger the area means the better performance.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



Table 4. Predictive performance (mean ± standard deviation) of each comparing methods on the nine datasets. •(◦) indicates MLDF is significantly
better(worse) than the comparing method on the criterion based on paired t-test at 95% significant level. ↓ (↑) means the smaller (larger) the value is, the

performance will be the better.

Algorithm CAL500 enron image scene yeast corel16k-s1 corel16k-s2 eurlex-sm mediamill

hamming loss ↓
MLDF 0.136±0.001 0.046±0.000 0.148±0.003 0.082±0.002 0.190±0.003 0.018±0.000 0.017±0.000 0.006±0.001 0.027±0.001
RF-PCT 0.137±0.001• 0.049±0.001• 0.156±0.002• 0.096±0.001• 0.196±0.002• 0.019±0.001• 0.018±0.001• 0.008±0.001• 0.028±0.001•
DBPNN 0.169±0.001• 0.075±0.001• 0.264±0.001• 0.260±0.001• 0.220±0.001• 0.029±0.001• 0.026±0.001• 0.007±0.001• 0.031±0.001•
MLFE 0.141±0.002• 0.047±0.001• 0.162±0.006• 0.084±0.002• 0.203±0.002• 0.019±0.001• 0.018±0.001• 0.007±0.001• 0.029±0.001•
ECC 0.182±0.005• 0.056±0.001• 0.218±0.027• 0.096±0.003• 0.207±0.003• 0.030±0.001• 0.018±0.001• 0.010±0.001• 0.035±0.001•
RAKEL 0.138±0.002• 0.058±0.001• 0.173±0.004• 0.096±0.004• 0.202±0.003• 0.020±0.001• 0.019±0.001• 0.007±0.001• 0.031±0.001•
one-error ↓
MLDF 0.122±0.009 0.216±0.009 0.239±0.008 0.188±0.005 0.223±0.010 0.640±0.003 0.639±0.004 0.138±0.001 0.147±0.005
RF-PCT 0.122±0.010• 0.231±0.011• 0.258±0.005• 0.215±0.010• 0.247±0.008• 0.723±0.002• 0.721±0.006• 0.270±0.006• 0.150±0.002•
DBPNN 0.116±0.013◦ 0.490±0.012• 0.505±0.012• 0.690±0.003• 0.247±0.004• 0.740±0.004• 0.697±0.004• 0.460±0.015• 0.200±0.003•
MLFE 0.133±0.010• 0.232±0.003• 0.265±0.008• 0.201±0.005• 0.245±0.010• 0.680±0.005• 0.665±0.004• 0.345±0.010• 0.151±0.002•
ECC 0.137±0.021• 0.293±0.008• 0.408±0.069• 0.247±0.010• 0.244±0.009• 0.706±0.006• 0.712±0.005• 0.346±0.007• 0.150±0.005•
RAKEL 0.286±0.039• 0.412±0.016• 0.312±0.010• 0.247±0.009• 0.251±0.008• 0.886±0.007• 0.897±0.006• 0.447±0.016• 0.181±0.002•
coverage ↓
MLDF 0.741±0.006 0.223±0.003 0.159±0.004 0.064±0.003 0.434±0.004 0.262±0.002 0.274±0.005 0.066±0.001 0.128±0.001
RF-PCT 0.756±0.007• 0.223±0.007• 0.170±0.004• 0.073±0.004• 0.436±0.007• 0.321±0.002• 0.310±0.002• 0.058±0.001◦ 0.133±0.001•
DBPNN 0.784±0.002• 0.292±0.006• 0.187±0.006• 0.084±0.004• 0.458±0.003• 0.370±0.002• 0.372±0.002• 0.552±0.011• 0.575±0.003•
MLFE 0.758±0.008• 0.237±0.007• 0.168±0.006• 0.080±0.008• 0.461±0.008• 0.368±0.002• 0.366±0.001• 0.085±0.002• 0.172±0.001•
ECC 0.806±0.016• 0.349±0.014• 0.229±0.034• 0.084±0.002• 0.464±0.005• 0.446±0.003• 0.436±0.002• 0.386±0.010• 0.467±0.009•
RAKEL 0.971±0.001• 0.523±0.008• 0.209±0.009• 0.104±0.003• 0.558±0.006• 0.667±0.002• 0.666±0.001• 0.543±0.012• 0.560±0.002•
ranking loss ↓
MLDF 0.176±0.002 0.077±0.001 0.129±0.005 0.059±0.004 0.160±0.006 0.143±0.002 0.138±0.002 0.014±0.001 0.034±0.001
RF-PCT 0.178±0.002• 0.079±0.001• 0.142±0.004• 0.070±0.004• 0.164±0.008• 0.165±0.001• 0.142±0.001• 0.029±0.001• 0.035±0.001•
DBPNN 0.185±0.002• 0.126±0.007• 0.278±0.005• 0.277±0.005• 0.187±0.001• 0.154±0.002• 0.148±0.002• 0.396±0.011• 0.230±0.001•
MLFE 0.185±0.003• 0.082±0.008• 0.148±0.007• 0.065±0.004• 0.174±0.006• 0.189±0.002• 0.188±0.001• 0.034±0.002• 0.046±0.001•
ECC 0.204±0.008• 0.133±0.004• 0.224±0.043• 0.085±0.003• 0.186±0.003• 0.233±0.002• 0.229±0.001• 0.263±0.007• 0.179±0.008•
RAKEL 0.444±0.005• 0.241±0.005• 0.196±0.008• 0.107±0.003• 0.245±0.004• 0.414±0.002• 0.418±0.001• 0.388±0.011• 0.222±0.001•
average precision ↑
MLDF 0.512±0.003 0.696±0.004 0.842±0.005 0.891±0.008 0.770±0.005 0.347±0.002 0.342±0.004 0.840±0.002 0.732±0.007
RF-PCT 0.512±0.006• 0.685±0.002• 0.829±0.003• 0.873±0.006• 0.758±0.008• 0.293±0.002• 0.287±0.002• 0.726±0.004• 0.729±0.001•
DBPNN 0.495±0.002• 0.500±0.007• 0.672±0.006• 0.563±0.004• 0.738±0.002• 0.289±0.002• 0.299±0.002• 0.427±0.013• 0.502±0.002•
MLFE 0.488±0.006• 0.688±0.009• 0.817±0.010• 0.882±0.005• 0.759±0.005• 0.319±0.001• 0.317±0.001• 0.853±0.007◦ 0.728±0.001•
ECC 0.482±0.008• 0.651±0.006• 0.739±0.043• 0.853±0.005• 0.752±0.006• 0.282±0.003• 0.276±0.002• 0.572±0.007• 0.597±0.014•
RAKEL 0.353±0.006• 0.539±0.006• 0.788±0.006• 0.843±0.005• 0.720±0.005• 0.103±0.003• 0.092±0.003• 0.440±0.013• 0.521±0.001•
macro-AUC ↑
MLDF 0.568±0.006 0.742±0.014 0.885±0.003 0.956±0.003 0.732±0.010 0.728±0.001 0.737±0.007 0.930±0.002 0.842±0.002
RF-PCT 0.555±0.004• 0.729±0.012• 0.875±0.005• 0.947±0.002• 0.723±0.012• 0.712±0.004• 0.719±0.005• 0.904±0.007• 0.835±0.002•
DBPNN 0.499±0.001• 0.679±0.010• 0.746±0.006• 0.704±0.005• 0.627±0.004• 0.699±0.002• 0.708±0.003• 0.589±0.005• 0.510±0.001•
MLFE 0.547±0.006• 0.656±0.010• 0.841±0.006• 0.944±0.004• 0.705±0.005• 0.651±0.006• 0.662±0.002• 0.853±0.003• 0.799±0.002•
ECC 0.507±0.005• 0.646±0.008• 0.807±0.030• 0.931±0.004• 0.646±0.003• 0.627±0.004• 0.633±0.002• 0.624±0.004• 0.524±0.001•
RAKEL 0.547±0.007• 0.596±0.007• 0.803±0.005• 0.884±0.004• 0.614±0.003• 0.523±0.001• 0.525±0.001• 0.591±0.006• 0.513±0.001•

4.3 Influence of measure-aware feature reuse

The measure-aware feature reuse aims to reuse better representation
in the previous layer according to confidence. When the confidence
αt is lower than threshold θt, we reuse the representation Gt−1 in
layert−1. If we skip the line 5 in Algorithm 3 and keep θt as 0 for all t
in [1, L], it is just that we do not take the measure-aware feature reuse
mechanism in all layers. Figure 2 shows the comparison between us-
ing the mechanism and not using the mechanism on CAL500, yeast,
corel16k-s1, and corel16k-s2. The six radii represent six different
measures, the outermost part of the hexagon represents the perfor-
mance of MLDF, the center represents the performance of RF-PCT,
and the darker hexagon represents the performance of MLDF without
the mechanism. The area of MLDF is larger than that of MLDF with-
out the mechanism; therefore, it indicates that the measure-aware fea-
ture reuse mechanism is necessary on these datasets. Furthermore,
the area of MLDF without the mechanism gets smaller when the size
of datasets increases, which confirms that the measure-aware feature
reuse mechanism does well in larger data.

4.4 Effect of measure-aware layer growth

We conduct experiments on the yeast dataset to show the effect of the
measure-aware layer growth mechanism. Specifically, when MLDF
arrives at its final layer index L, we keep the layer increase for ob-
serving whether the mechanism is sufficient. The number of trees in
RF-PCT is 100, and the 5-fold cross-validation is used.

Figure 3 shows the yeast’s test performance curve of MLDF on six
measures. The red circle means the final layer returned by Algorithm
3. For RF-PCT, we set the same trees as the final layer of MLDF (the
red circle). The triangle indicates the performance of RF-PCT, which
can be viewed as a one-layer MLDF. In Figure 3, the performance of
MLDF becomes better when the model goes more in-depth, and our
algorithm can stop almost at the position with the best performance.
It demonstrates the effectiveness of our stopping mechanism. The
performance of MLDF (the circle) is better than RF-PCT (the trian-
gle), where they have the same amount of trees. Moreover, MLDF
controlled by different measures can converge in different layers. It
indicates that the measure-aware layer growth is sufficient.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



Table 5. Predictive performance (mean ± standard deviation) of each comparing methods on all datasets. (·/ · /·) indicates the times that MLDF based on
RFML-C4.5 is significantly (superior/ equal/ inferior) to the comparing methods on the criterion based on paired t-test at 95% significant level.

dataset hamming loss one-error coverage ranking loss average precision macro-AUC

CAL500 0.137±0.001 (5/0/0) 0.120±0.018 (4/0/1) 0.738±0.004 (5/0/0) 0.176±0.002 (5/0/0) 0.511±0.005 (4/0/1) 0.569±0.007 (5/0/0)
enron 0.047±0.001 (5/0/0) 0.225±0.007 (5/0/0) 0.224±0.005 (4/0/1) 0.079±0.004 (5/0/0) 0.691±0.003 (5/0/0) 0.738±0.005 (5/0/0)
image 0.146±0.004 (5/0/0) 0.243±0.016 (5/0/0) 0.157±0.008 (5/0/0) 0.130±0.010 (5/0/0) 0.841±0.010 (5/0/0) 0.886±0.010 (5/0/0)
scene 0.083±0.003 (5/0/0) 0.192±0.007 (5/0/0) 0.063±0.002 (5/0/0) 0.059±0.002 (5/0/0) 0.889±0.004 (5/0/0) 0.956±0.003 (5/0/0)
yeast 0.190±0.003 (5/0/0) 0.225±0.009 (5/0/0) 0.434±0.006 (5/0/0) 0.159±0.002 (5/0/0) 0.769±0.003 (5/0/0) 0.733±0.006 (5/0/0)
corel16k-s1 0.019±0.001 (5/0/0) 0.726±0.002 (2/0/3) 0.316±0.012 (5/0/0) 0.163±0.007 (4/0/1) 0.295±0.002 (4/0/1) 0.695±0.002 (3/0/2)
corel16k-s2 0.018±0.001 (5/0/0) 0.727±0.001 (1/0/4) 0.313±0.016 (4/0/1) 0.160±0.009 (3/0/2) 0.284±0.007 (2/0/3) 0.697±0.011 (3/0/2)
eurlex-sm 0.007±0.001 (5/0/0) 0.201±0.012 (5/0/0) 0.043±0.001 (5/0/0) 0.021±0.001 (5/0/0) 0.784±0.008 (4/0/1) 0.900±0.002 (4/0/1)
mediamill 0.027±0.001 (5/0/0) 0.144±0.002 (5/0/0) 0.128±0.002 (5/0/0) 0.035±0.001 (5/0/0) 0.725±0.010 (3/0/2) 0.843±0.004 (5/0/0)

sum of score 45/0/0 37/0/8 43/0/2 42/0/3 37/0/8 40/0/5

2 4 6 8
Layers

0.20

0.22

 h
am

m
in

g 
lo

ss

final layer index
RF-PCT

2 4 6 8 10
Layers

0.23

0.24

0.25

 o
ne

-e
rro

r final layer index
RF-PCT

2 4 6 8
Layers

0.44

0.45

 c
ov

er
ag

e final layer index
RF-PCT

2 4 6 8
Layers

0.16

0.17

0.18

 ra
nk

in
g 

lo
ss final layer index

RF-PCT

2 4 6 8
Layers

0.74

0.76

 a
ve

. p
re

cis
io

n

final layer index
RF-PCT

2 4 6 8 10 12
Layers

0.68

0.70

0.72

 m
ac

ro
-A

UC

final layer index
RF-PCT

Figure 3. The test performance of MLDF in each layer on six measures on
yeast dataset respectively. The triangle indicates the performance of

RF-PCT, and the circle means the final layer index L. ↓ (↑) means the
smaller (larger) the value is, the performance will be the better.

4.5 Label correlations exploitation
Intuitively, the cascade structure enables MLDF to utilize label cor-
relations. Thus we perform a distinctive approach to exploit label
correlations. Our layer-wise method gradually considers more com-
plex label correlations by utilizing the lower layer label representa-
tion in higher layer modeling. Here we deliberately delete a specific
label in the first layer representation. Then train the second layer and
check the influence of that malicious deletion. Suppose an accuracy
decrease on label B is observed after deleting label A, we consider
the two labels are correlated. The normalized relative decrease indi-
cates the strength of correlations, and we show the result on scene
dataset in Figure 4. As shown in Figure 4, label “beach” is highly
correlated with label “urban” since sometimes they exist in scene
dataset together [3]. It indicates that MLDF utilizes some correla-
tions between labels to obtain better performance in inner layers.

4.6 Flexibility
In previous experiments, RF-PCT and ERF-PCT are the forest blocks
in MLDF, which achieve the best performance. A natural question
will be is it possible to replace the forest block by other multi-
label tree-based methods in MLDF, and how will the performance
change? To investigate this problem, we take one RFML-C4.5 and
one ERFML-C4.5 in MLDF. To ensure fairness, we keep all the other

beach leaf sunset field urban mount

beach

leaf

sunset

field

urban

mount
1.0

0.5

0.0

0.5

1.0

Figure 4. Effect of missing representation information on each label
respectively. The scene dataset has 6 labels (top-to-down, left-to-right):

“beach”, “leaf”, “sunset”, “field”, “urban” and “mountain”.

configurations same as those in Section 4.2. Table 5 shows the result
of MLDF based on RFML-C4.5. By comparing the results in Table
4, we count the times that MLDF wins/draws/loses the comparison.
It is evident that MLDF based on RFML-C4.5 also achieves the best
performance among all compared methods. Thus, no matter based on
RF-PCT or RFML-C4.5, MLDF can achieve the best performance.
It indicates that MLDF has excellent flexibility.

5 CONCLUSION
In this paper, we first introduce the deep forest framework to multi-
label learning and propose Multi-Label Deep Forest (MLDF). The
designed multi-layer structure enables MLDF to utilize correla-
tions among labels. Because of the two measure-aware mechanisms,
measure-aware feature reuse and measure-aware layer growth, our
proposal can optimize different multi-label measures based on user’s
demand, reduce the risk of overfitting, and achieve the best results
on a bunch of benchmark datasets. Experiments show that achieves
excellent performance on wide-range benchmark datasets.

In the future, the efficiency of MLDF could be further improved
by reusing some components during the process of forest training.
We will try to find a way to interpret how high-order correlations use.
Furthermore, we plan to embed extreme multi-label tree methods like
FastXML [16] into MLDF and test the performance on extreme-scale
multi-label problems.

ACKNOWLEDGEMENTS
This research was supported by the NSFC (61751306, 61673201).
The authors would like to thank the anonymous reviewers for con-
structive suggestions, as well as Shen-Huan Lyu, Ming Pang and
Peng Zhao for helpful discussions.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



REFERENCES
[1] David Belanger, Bishan Yang, and Andrew McCallum, ‘End-to-end

learning for structured prediction energy networks’, in ICML, pp. 429–
439, (2017).

[2] Hendrik Blockeel, Luc De Raedt, and Jan Ramon, ‘Top-down induction
of clustering trees’, in ICML, pp. 55–63, (1998).

[3] Matthew R. Boutell, Jiebo Luo, Xipeng Shen, and Christopher M.
Brown, ‘Learning multi-label scene classification’, Pattern Recogni-
tion, 37(9), 1757–1771, (2004).

[4] Xiang Cheng, Shu-Guang Zhao, Xiao Xuan, and Kuo-Chen Chou,
‘iatc-mhyb: a hybrid multi-label classifier for predicting the classifi-
cation of anatomical therapeutic chemicals’, Oncotarget, 8(35), 58494,
(2017).

[5] Amanda Clare and Ross D. King, ‘Knowledge discovery in multi-label
phenotype data’, in PKDD, pp. 42–53, (2001).

[6] Ji Feng, Yang Yu, and Zhi-Hua Zhou, ‘Multi-Layered Gradient Boost-
ing Decision Trees’, in NeurIPS, pp. 3555–3565, (2018).

[7] Ji Feng and Zhi-Hua Zhou, ‘Autoencoder by forest’, in AAAI, pp. 2967–
2973, (2018).

[8] Pierre Geurts, Damien Ernst, and Louis Wehenkel, ‘Extremely random-
ized trees’, Machine Learning, 63(1), 3–42, (2006).

[9] Geoffrey Hinton and Ruslan Salakhutdinov, ‘Reducing the dimension-
ality of data with neural networks’, Science, 313(5786), 504–507,
(2006).

[10] Dragi Kocev and Michelangelo Ceci, ‘Ensembles of extremely random-
ized trees for multi-target regression’, in Discovery Science, pp. 86–
100, (2015).

[11] Dragi Kocev, Celine Vens, Jan Struyf, and Sašo Džeroski, ‘Tree en-
sembles for predicting structured outputs’, Pattern Recognition, 46(3),
817–833, (2013).

[12] Gjorgji Madjarov, Dragi Kocev, Dejan Gjorgjevikj, and Sašo Džeroski,
‘An extensive experimental comparison of methods for multi-label
learning’, Pattern Recognition, 45(9), 3084–3104, (2012).

[13] Jinseok Nam, Jungi Kim, Eneldo Loza Menc’ia, Iryna Gurevych, and
Johannes Fürnkranz, ‘Large-scale multi-label text classification - revis-
iting neural networks’, in ECML, pp. 437–452, (2014).

[14] Ming Pang, Kai-Ming Ting, Peng Zhao, and Zhi-Hua Zhou, ‘Improving
deep forest by confidence screening’, in ICDM, pp. 1194–1199, (2018).

[15] John C. Platt, ‘Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods’, in Advances in Large
Margin Classiers, pp. 61–74. MIT Press, (1999).

[16] Yashoteja Prabhu and Manik Varma, ‘Fastxml: A fast, accurate and sta-
ble tree-classifier for extreme multi-label learning’, in KDD, pp. 263–
272, (2014).

[17] Jamie Ray, Heng Wang, Du Tran, Yufei Wang, Matt Feiszli, Lorenzo
Torresani, and Manohar Paluri, ‘Scenes-objects-actions: A multi-task,
multi-label video dataset’, in ECCV, pp. 660–676, (2018).

[18] Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank, ‘Clas-
sifier chains for multi-label classification’, Machine Learning, 85(3),
333–359, (2011).

[19] Jesse Read, Peter Reutemann, Bernhard Pfahringer, and Geoff Holmes,
‘MEKA: A multi-label/multi-target extension to Weka’, Journal of Ma-
chine Learning Research, 17, 1–5, (2016).

[20] Robert E Schapire and Yoram Singer, ‘Boostexter: A boosting-based
system for text categorization’, Machine learning, 39(2-3), 135–168,
(2000).

[21] Grigorios Tsoumakas and Ioannis Katakis, ‘Multi-label classification:
An overview’, International Journal of Data Warehousing and Mining,
3(3), 1–13, (2007).

[22] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis P. Vlahavas, ‘Min-
ing multi-label data’, in Data Mining and Knowledge Discovery Hand-
book, 667–685, Springer, (2010).

[23] Grigorios Tsoumakas and Ioannis P. Vlahavas, ‘Random k -labelsets:
An ensemble method for multilabel classification’, in ECML, pp. 406–
417, (2007).

[24] Jiang Wang, Yi Yang, Junhua Mao, Zhiheng Huang, Chang Huang, and
Wei Xu, ‘CNN-RNN: A unified framework for multi-label image clas-
sification’, in CVPR, pp. 2285–2294, (2016).

[25] Xi-Zhu Wu and Zhi-Hua Zhou, ‘A unified view of multi-label perfor-
mance measures’, in ICML, pp. 3780–3788, (2017).

[26] Min-Ling Zhang and Zhi-Hua Zhou, ‘Multi-label neural networks with
applications to functional genomics and text categorization’, IEEE
Transactions on Knowledge and Data Engineering, 18(10), 1338–1351,
(2006).

[27] Min-Ling Zhang and Zhi-Hua Zhou, ‘A review on multi-label learning
algorithms’, IEEE Transactions on Knowledge and Data Engineering,
26(8), 1819–1837, (2014).

[28] Qian-Wen Zhang, Yun Zhong, and Min-Ling Zhang, ‘Feature-induced
labeling information enrichment for multi-label learning’, in AAAI, pp.
4446–4453, (2018).

[29] Ya-Lin Zhang, Jun Zhou, Wenhao Zheng, Ji Feng, Longfei Li, Ziqi Liu,
Ming Li, Zhiqiang Zhang, Chaochao Chen, Xiaolong Li, and Zhi-Hua
Zhou, ‘Distributed deep forest and its application to automatic detec-
tion of cash-out fraud’, ACM Transactions on Intelligent Systems and
Technology, 10(5), 1–19, (2019).

[30] Fang Zhao, Yongzhen Huang, Liang Wang, and Tieniu Tan, ‘Deep se-
mantic ranking based hashing for multi-label image retrieval’, in CVPR,
pp. 1556–1564, (2015).

[31] Peng Zhou and Nora El-Gohary, ‘Ontology-based multilabel text clas-
sification of construction regulatory documents’, Journal of Computing
in Civil Engineering, 30(4), 04015058, (2015).

[32] Zhi-Hua Zhou, Ensemble Methods: Foundations and Algorithms, Chap-
man and Hall/CRC, 2012.

[33] Zhi-Hua Zhou and Ji Feng, ‘Deep forest: Towards an alternative to deep
neural networks’, in IJCAI, pp. 3553–3559, (2017).

[34] Zhi-Hua Zhou and Ji Feng, ‘Deep Forest’, National Science Review,
6(1), 74–86, (2019).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain


