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Abstract. Adversarial training is shown as an effective method
to improve the generalization ability of deep learning models by
making random perturbations in the input space during model train-
ing. A recent study has successfully applied adversarial training into
recommender systems by perturbing the embeddings of users and
items through a minimax game. However, this method ignores the
collaborative signal in recommender systems and fails to capture
the smoothness in data distribution. We argue that the collaborative
signal, which reveals the behavioural similarity between users and
items, is critical to modeling recommender systems. In this work,
we develop the Directional Adversarial Training (DAT) strategy by
explicitly injecting the collaborative signal into the perturbation pro-
cess. That is, both users and items are perturbed towards their similar
neighbours in the embedding space with proper restriction. To ver-
ify its effectiveness, we demonstrate the use of DAT on Generalized
Matrix Factorization (GMF), one of the most representative collab-
orative filtering methods. Our experimental results on three public
datasets show that our method (called DAGMF) achieves a signif-
icant accuracy improvement over GMF and meanwhile, it is less
prone to overfitting than GMF.

1 Introduction

Adversarial training is a novel method proposed by [12] to address
the problem that deep learning models can be easily fooled by ad-
versarial examples [26], which are constructed by imposing small
perturbation on the input examples. Most recently, several studies
[12, 22, 23] have pointed out that adversarial training can work as a
regularization method to improve the generalization performance as
well as to prevent deep learning models from overfitting.

Although adversarial training achieves great success in the area
of Computer Vision (CV), it is difficult to directly apply it to rec-
ommender systems. This is because the input data are discrete and
mostly represented by high dimensional one-hot vectors (e.g, for
users and items), which are different from the continuous values in
the image domain. Directly adding noise to a discrete value is irra-
tional since it will change the original semantics of input examples.
Instead, a recent study, APR [14], extends adversarial training to rec-
ommender systems by adding perturbations in the embedding space
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Figure 1. Intuitive sketch to explain the process of directional adversarial
training. Observed items that have interaction with the user is in the small
circle and other items in the large circle is unobserved items.

towards the direction that can maximize the loss function. For sim-
plicity, we refer to this perturbation strategy as maximum direction.

The basic strategy of adversarial training is that for an input ex-
ample x, it will keep the same label for x and the adversarial ex-
ample xadv perturbed from x during training. This allows the model
to consider more unseen space around x, thus encouraging the local
smoothness among similar examples and further pushing the model
towards better generalization [23]. However, as illustrated in Fig-
ure 1 (a), the maximum direction perturbation may move the embed-
ding vector of example x close to the examples with different labels
(dissimilar examples) or even non-existing examples. We present a
detailed example through our preliminary experiments in Figure 2.
Figure 2 (a) shows the original Top-10 nearest neighbors for the user
with ID 16 and Figure 2 (b) shows the Top-10 nearest neighbors after
adding maximum direction perturbation in the embedding space. As
we can see, the Top-10 nearest neighbors have a large change under
the maximum direction perturbation. It means that the current max-
imum direction strategy cannot keep the original semantic informa-
tion hidden in the user-item interactions, and has not fully exploited
the advantage of adversarial training for recommender systems.

In this paper, we tackle this problem by imposing proper restric-
tions on the perturbation direction, which we call Directional Ad-
versarial Training (DAT). We perturb an example x towards another
existing example x′ in the embedding space and a weight w is set
to control the distance x towards x′. DAT introduces an extra ad-
versarial loss so that the training process plays a minimax game: the
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Figure 2. User Top-10 nearest neighbors. The number means the ID of the
user. The blue colour denotes original nearest neighbors before adversarial
training. The orange colour denotes new nearest neighbors after adding the
perturbation.

weight w will be calculated via maximizing the Bayesian Personal-
ized Ranking (BPR) loss [24]; next, the model is trained to minimize
the BPR loss and DAT loss. Moreover, we consider yielding more
effective embeddings by guiding the perturbation direction with the
crucial collaborative signal in Collaborative Filtering (CF) recom-
mender systems. The intuition is that users with similar behaviours
would exhibit similar preference on items.

Figure 1 (b) illustrates our directional perturbation strategy. Given
a user u, we make it perturb towards Top-K nearest neighbours in
the embedding space based on pre-trained model parameters. Mean-
while, the perturbation direction of an observed item i and an un-
observed item j will be perturbed towards the other observed items
in the small circle and unobserved items in the large circle, respec-
tively. In this way, the information of similar examples will flow
between each other, which explicitly injects the collaborative sig-
nal into adversarial learning process. Figure 2 (c) shows the Top-10
nearest neighbors of user 16 after adding our direction perturbation,
which is more coherent to the original.

The main contributions of this work are summarized as follows:

• We investigate the limitation of existing adversarial training meth-
ods in recommendation through our preliminary experiments.

• We propose a novel technique, Directional Adversarial Training
(DAT), by restricting the direction of perturbation and explicitly
encoding the collaborative signal into the adversarial learning pro-
cess. We demonstrate the use of DAT on Generalized Matrix Fac-
torization (GMF) [15], leading to our method called Directional
Adversarial training Generalized Matrix Fa ctorization (DAGMF).

• We conduct experiments on three public datasets to verify the
effectiveness of DAT for recommender systems. Specifically,
DAGMF achieves significant improvements in both HR (HitRa-
tio) and NDCG (Normalized Discounted Cumulative Gain) met-
rics compared with the state-of-the-art models.

2 Related Work
Recommendation. With the booming of information, it is a big chal-
lenge for users to find items that meet their preference. CF technique
addresses this challenge by assuming that the users similar in be-
haviours show similar preference on items and focusing on exploit-
ing user-item interactions. Neighbourhood-based CF [21] is one of
the early and effective CF methods by utilizing explicit similar mea-
surement (e.g., Euclidean distance, Cosine similarity) to calculate the
interaction strength between users and items. Model-based CF is one
of the most popular and widely used recommendation approaches in
recent years. Matrix Factorization (MF) [19] approach is an impor-
tant realization of model-based CF methods. It predicts unknown rat-
ings based on the factorization of the original user-item rating matrix

by mapping the one-hot vector of each user and item as an embedding
vector and then conducting inner product between them. Whereas its
linearity structure makes it fail to capture the complex and nonlinear
interaction between users and items [15]. To this end, some recent
works [15, 6] apply deep learning techniques to CF recommender
systems, such as GMF. This is done by modelling user-item inter-
actions with multi-layer perceptron (MLP), which can learn more
powerful and expressive interaction function. Later on, to learn more
effective embedding, much effort has been devoted to incorporating
side information like text or image content feature [5], neighbour re-
lations [29], attributes of users and items [20, 31] and collaborative
signal [30, 7]. Moreover, the session-based recommendation [13] has
been proposed to consider session-based data instead of CF method
when modelling the user preference.

Adversarial Training. In the beginning, adversarial training is
proposed to solve the issue that the state-of-the-art classification
models are vulnerable to the adversarial examples due to their lin-
earity structure [12]. It trains the model with adversarial examples
which can be generated by the fast gradient sign method [12] effec-
tively so as to improve the robustness of the model. Later on, More-
over, the idea of adversarial training has been extended to works on
Natural Language Processing (NLP) tasks (e.g., sequence label) [22]
and Network classifier tasks [11, 8], in which the perturbations are
added on the embedding instead of the inputs. They demonstrate that
their strategy can rather be seen as a regularizer to improve the gener-
alization performance of the classifier model than work as a defence
method.

It is worth noting that most of the existing works about adversar-
ial training focus on CV domain. There are few studies to explore
adversarial training for recommender systems. [28] proposes mini-
max game in recommender systems, namely IRGAN, based on the
Generative Adversarial Nets (GANs) framework, which is to learn
more effective embedding for MF. CFGAN [4] is the vector-wise
GAN-based CF without learning the embedding vectors. They have
very complicated frameworks and suffer from well-recognized hard
training problems. APR [14] considers to exploiting the adversarial
training in the recommender systems as a regularization with adding
maximum perturbation in the embedding space ignoring the collab-
orative signal.

3 Preliminary
We first introduce the technical background for recommender sys-
tems and the formulation of GMF. Then, we recapitulate the
Bayesian Personalized Ranking method, with a pairwise ranking loss
function.

3.1 Problem Definition
Formally, we denote that there is a set of m users, U =
{u1, u2, ..., um}, a set of n items, I = {i1, i1, ....., in} and a sparse
matrix Rm×n. An entry (u, i) in R denoted by rui is 1 if user u has
interaction with item i and 0 otherwise. In the model-based recom-
mender system, the input consists of two feature vectors vUu and vIi
that describe user u and item i, respectively. In this paper, the fea-
ture input vector is a binary sparse vector by one-hot encoding the
identity of a user or an item. Above the input is the embedding layer,
which transforms the sparse feature vector into a dense embedding
vector. After that, a user or an item will be represented by a dense
vector, also known as embedding vector. Next, the user and item
embedding vectors will be fed into the interaction function to map
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the latent vectors to prediction scores. Then let r̂ui denote the pre-
dicted preference score of user u on item i. The calculation of r̂ui in
recommender system is formulated as follows:

r̂ui = f(pu,qi | P,Q,Θf ) (1)

where f(·) is the interaction function modelling the user u’s prefer-
ence on item i and Θf is the parameters of it. We define that P =
{pu}u∈U denotes the embedding matrix of users, Q = {qi}i∈I de-
notes the embedding matrix for items. Let pu = PT vUu (pu ∈ RD)
and qi = QT vIi (qi ∈ RD), denoting the embedding vector for user
u and item i, respectively, and D is the dimension of embedding
vectors.

NCF [15] is a deep CF framework proposed to capture the com-
plex and nonlinear relationships between users and items with multi-
layer perceptrons (MLP). GMF is one of the most representative
collaborative filtering model constructed under this framework. In
GMF, pairwise user embedding and item embedding will be mapped
to preference scores by utilizing both MLP and the inner product.

φ1(pu,qi) = pu � qi

r̂ui = φout(φx...(φ2(φ1(pu,qi))))

(2)

where φ1 is the the inner product between the user and the item em-
bedding vector, φx and φout are the x-th and output MLP layer of
GMF.

3.2 Bayesian Personalized Ranking
In this paper, we use the Bayesian Personalized Ranking (BPR) loss
function, which is a widely used pairwise loss function for optimiz-
ing recommender systems towards personalized ranking [24]. The
basic intuition is that observed (positive) items should be ranked
higher than the unobserved (negative) ones. To implement this idea,
the BPR objective function is formulated as follow:

LBPR =
∑

(u,i,j)∈T

−lnσ(r̂ui − r̂uj) + λ ‖Θ‖2 (3)

where Θ denotes the parameters of the model including the embed-
ding matrix Θ̂ and Θf , λ controls the importance of regularization
parameters to prevent overfitting and σ(·) is the sigmoid function.
The set T =

{
(u, i, j) | u ∈ U, i ∈ I+

u , j ∈ I \ I+
u

}
denotes the set

of all pairwise training instances, where I+
u denotes the set of ob-

served items of user u. As we can see, by optimizing the BPR loss,
we obtain a larger margin between observed items and the unob-
served ones and then get the personalized ranking list for user u.

4 Method
In this section, we first introduce the architecture of Adversarial
training GMF (AGMF). Next, we present the DAGMF method, an
instantiation of DAT combined with GMF. Lastly, the strategy of
choosing the direction for perturbation is discussed in detail.

4.1 Adversarial Training
Adversarial training is proposed by [12] as a novel regularization
method for improving the robustness of the classifier model in CV
domain. Unlike in CV domain, [22] applies adversarial training in

NLP domain no longer adding the perturbation in input space. They
add the adversarial perturbation in the embedding layer and consider
this method as effective regularization to prevent overfitting and im-
prove generalization performance. Similar to the language process-
ing, APR [14] introduce the adversarial training in MF-BPR, via per-
turbing the embedding vectors which represent the users and items.
In this paper, we would like to extend APR in the deep learning
model, GMF, with exerting the perturbation only in the embedding
layer, namely AGMF.

In this section, we first introduce the architecture of Adversarial
training GMF (AGMF). Next, we present the DAGMF method, an
instantiation of DAT combined with GMF. Lastly, the strategy of
choosing the direction for perturbation is discussed in detail.

Let ∆u
adv denote the adversarial perturbation to be added to the

embedding vector of user u. The dimension size of ∆u
adv isD, which

is the same as the user u embedding vector. Let p∆
u
adv denote the

adversarial embedding vector of user u (p∆
u
adv = pu + ∆u

adv).
Analogously, we can obtain the adversarial embedding vector q∆

i
adv

for item i. The predicted preference scores of user u in item i can be
calculated:

r̂ui∆ = f(p∆
u
adv,q∆

i
adv | P∆adv,Q∆adv,Θf ) (4)

where P∆adv = {p∆
u
adv}u∈U denotes the adversarial embedding

matrix for users, Q∆adv =
{
q∆

i
adv

}
i∈I denotes the adversarial

embedding matrix for items.
The adversarial perturbation aims to maximize the objective func-

tion of recommendation model. Thus we define it as follow:

∆adv = arg max
∆,‖∆‖≤ε

LBPR(T | Θ̂ + ∆,Θf ) (5)

where Θ̂ is the embedding matrix for users and items, including P
and Q, ∆ denotes the perturbation on embedding matrix, and ε rep-
resents the hyper-parameter that controls the norm of ∆. T denotes
the set of all pairwise training instances. In this paper, we adapt L2

norm (‖·‖).
It is intractable to get the estimate ∆adv in the Eq.6 because the

objective function and the neural network involve the sophisticated
operations. As such, [12] proposes an approximation method fast
gradient sign by linearizing the objective function around ∆. With
this method and the ε-constraints, the ∆adv can be further approxi-
mated as follow:

∆adv = ε
g

‖g‖ ,g = ∇Θ̂LBPR(T | Θ̂ + ∆,Θf ) (6)

After obtaining the ∆adv , the adversarial objective function can
be defined as:

LBPR∆ =
∑

(u,i,j)∈T

−lnσ(r̂ui∆ − r̂uj∆) (7)

In the end, the adversarial training objective function is the com-
bination of LBPR and LBPR∆:

Ladv = LBPR + λLBPR∆ (8)

This formulation will be minimized in the training process. The ad-
versarial term LBPR∆ can be seen as an adversarial regularizer. λ
controls the relative importance of it, and when the λ = 0, adversarial
term has no impact on training.
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Figure 3. Illustration of our DAGMF method. The perturbations ∆(w) are
enforced on each embedding vector of user and item.

4.2 Directional Adversarial Training

However, only considering perturb toward the maximum direction in
the embedding space for recommendation models will bring some
noise information into the training process. As such, we propose Di-
rectional Adversarial Training to address this problem for better ap-
plying adversarial training in recommender systems. The intuition of
our method is that the perturbation direction in embedding space can
be restricted toward other examples in existing embedding space in-
stead of the worst perturbation direction so that we can integrate the
collaborative signal into the training process. In playing the minimax
game, the quality of embedding layers will be improved gradually.
Figure 3 illustrates the framework of applying Directional Adversar-
ial Training in the model GMF.

Firstly, we define the direction vector in the embedding space from
user ut to user uz as dut

uz
:

dut
uz

=
d̃ut
uz∥∥∥d̃ut
uz

∥∥∥
2

, d̃ut
uz

= puz − put , (9)

It is worth noting that the direction vector dut
uz

is always a unit
vector, ‖dut

uz
‖

2
= 1. Specially, if the z = t, the dut

uz
will be defined

as a zero vector.
Next, we define wut

uz
as the weight corresponding to the direction

vector dut
uz

. Next let ∆(wu) denote the the direction adversarial per-
turbation of user u:

∆(wu) = wuu′du
u′ (10)

In our method, the users which training example will perturb to-
wards is defined as the target set Uutarget. Thus, u′ is from the set of
Uutarget.

Then, the directional adversarial embedding vector of user u is
formulated as follow:

p∆u
dadv

= pu + ∆(wu) (11)

Since BPR loss will be minimized in the training process, we con-
sider how to seek the worst-case weights of the direction vectors that
can maximize the BPR loss:

wudadv = arg max
wu,‖wu‖≤ε

LBPR(T | Θ̂ + ∆(wu),Θf ) (12)

Algorithm 1 SGD learning algorithm for DAGMF
Input: Training data T
Parameter: embedding size, learning rate η, ladversarial noise level
ε, adversarial strength λ
Output: Θ̂,Θf

1: Initialize Θ̂,Θf from GMF
2: while criteria not converge do
3: Randomly sample examples (u, i, j) from D
4: // Calculating the direction vector
5: d← Equation (9)
6: // Calculating the worst case weights
7: wdadv ← Equation (12)
8: // Constructing direction adversarial perturbation
9: ∆(w)← Equation (10)

10: //Optimizing model parameters
11: Θ̂,Θf ← Equation(14)
12: end while

The approximation method in the Eq.6 is no longer performed in
calculating the worst-case weights after we restrict the direction of
perturbation. Therefore, we borrow the idea from the [23], in which
the perturbation strength wu can be approximated estimated by ap-
plying the second-order Taylor in LBPR(T | Θ̂ + ∆(wu),Θf ).
Formally, the solution to estimate worst-case weight can be defined
as follow:

wudadv = ε
g

‖g‖ , g = ∇wuLBPR(T | Θ̂ + ∆(wu),Θf ) (13)

Analogously, widadv can be obtained by following the process
mentioned above. Similar to Eq.8, the overall objective function for
directional adversarial training is optimized as follow:

< Θ̂,Θf >= arg min
Θ̂,Θf

LBPR + λLBPR∆dadv
(14)

By unifying the two process above, we can formulate a mini-
max objective function. The optimization of model parameters <
Θ̂,Θf > is the minimizing player, and seeking the worst-case per-
turbations weights wdadv is the maximizing player:

< Θ̂,Θf , wdadv >= arg min
Θ̂,Θf

arg max
wdadv

LBPR + λLBPR∆dadv

(15)

From another point of view, our DAT can be regarded as a way of
data augmentation, which trains the model on both raw data and per-
turbation data with containing collaborative signal simultaneously.
We leave this exploration as future work since we focus on adversar-
ial training in this paper.

Algorithm 1 shows the detailed training procedure of our DAGMF.
Finally, it is worth noting that in the beginning, the model parameters
Θ̂,Θf are initialized by optimizing GMF (line 1), instead of ran-
domly. This is because when the model is underfitting, the normal
training process is sufficient to get better parameters. It is necessary
to add the adversarial perturbations after the model parameters start
to overfit the data.

4.3 The Strategy of Choosing the Direction
As mention above, the worst direction of perturbation is abandoned,
and the directions of perturbations are restricted inside the existing
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embedding space with learnable weight so that we avoid the incorrect
information incorporated in the training process. In addition, with
choosing the perturbation direction properly, the collaborative sig-
nal can be encoded in the directions of perturbations in embedding
space, which subsequently enhance the expressive of embedding lay-
ers. As we all know, the core assumption of Collaborative Filtering
recommender systems is that the users with similar behaviours and
features have similar preference.

Following this assumption, we instinctively restrict the direction
of perturbation for user u to the Top-K nearest neighbours of user u
in the users embedding space. We fix the Top-K nearest neighbours
of user u, n(K), as Uutarget, based on the pre-trained model param-
eters for improving model efficiency. Firstly, we randomly select a
target user u′ (u′ ∈ Uutarget) to calculate the direction vector from
user u to u′. Then, the weight wuu′ can be obtained according to the
Eq.12. Moreover, the direction of perturbation for observed item i
will be selected from the I+

u − i. Likewise, the target set Ijtarget of
unobserved item j will be obtained by substitute I+

u − i with I \ I+
u .

The weight wii′ or wjj′ will be obtained in the same way of the user.
To summarize, the advantage of our DAT is that it can incorporate
the collaborative signal into CF recommender systems. Through this
way, the preferences between similar users would be captured pre-
cisely in the training process, which benefits the performance of rec-
ommender systems significantly.

Table 1. Dataset

Datasets #users #items #ratings sparsity

Yelp 2,265 11,386 44,812 99.82%
Movielens 6,040 3,952 1,000,000 95.72%

Ciao 7,375 105,114 284,086 99.97%

5 Experiments

In this section, we perform experiments on three real-world datasets
to evaluate our proposed method with the aim of answering the fol-
lowing research questions:

RQ 1 Can our proposed DAGMF outperform the state-of-the-art
traditional and adversarial recommendation methods?

RQ 2 How is the effect of the adversarial training and can it im-
prove the generalization of the model?

RQ 3 How do the key hyper-parameters ε and λ affect the perfor-
mance? how to choose the optimal values?

In what follows, we first describe the experimental settings, fol-
lowed by answering the above three research questions in turn.

5.1 Experimental Settings

Dataset. To evaluate the effectiveness of DAGMF, we conduct exper-
iments on three public datasets: Yelp4, MovieLens5, and Ciao[27],
which are accessible and vary in terms of domain, size, and spar-
sity. Especially, as the Yelp dataset is too large, we randomly se-
lect 3,000 users and discard the users with less than two interactions
and the items without interactions. Table 1 summarizes their detailed
statistics. For each dataset, we treat items that have interaction (e.g.,
purchase, click) with the user as observed items and the others as
unobserved items.

4 https://github.com/hexiangnan/theano-BPR
5 https://grouplens.org/datasets/movielens/

Evaluation Protocols. Following the prominent work in item
ranking recommendation [16, 2, 24], we adopt the standard leave-
one-out protocol to evaluate the performance of models. Specifically,
we hold-out the latest interaction as the test set for Movielens and
Yelp datasets and randomly select one interaction item as the test set
for Ciao dataset because they don’t have timestamp. The remaining
data will be maintained for training. While it is too time-consuming
to ranking all items for every user during the evaluation, we follow
the common approach [10, 18] to randomly sample 499 items that
have not interacted with the user. Then, we rank the test item with
these 499 items as the rank list. We study the performance of Top-N
recommendation models with HR and NDCG. Without special men-
tion, we truncate the ranking list of 500 items at position 10 for both
metrics. Therefore, the HR@10 intuitively judges whether the Top-
10 list contains the test items and the NDCG@10 measures position
of the test item in the Top-10 list, assigning the higher scores for the
higher position.

Baselines. We compare our DAGMF with the following methods.

• ItemPop. This is a non-personalized method, which ranks the
items according to their popularity evidenced by the number of
interactions in the training set. It benchmarks the performance of
the personalized recommendation.

• MFBPR [24]. In this method, the MF model is optimized by the
BPR loss in the Eq.3. It is a baseline method for personalized
ranking recommendation and only exploits the linear interaction
between users and items.

• GMF [15]. GMF is a state-of-the-art neural CF model which com-
bines the linearity of inner product and non-linearity of multiple
hidden layers for modelling user-item interactions. Specially, we
employ the one-layer MLP.

• AGMF [14]. This method is constructed by encoding the GMF
into the adversarial training for the recommendation (APR) [14].
APR refers to the whole mechanism in image processing. It works
as a regularization by perturbing the embedding layer of examples
towards the maximize direction.

• NGCF [30]. This method learns the more effective embedding
layer by encoding the collaborative signal in the form of high-
order connectivities which performs via embedding propagation.
We use the two-order propagation to implement the NGCF and
follow the learning rate and the L2 normalization in this paper.

• IRGAN [28]. In IRGAN, a generative model approximates the
relevance distribution to generate user-item pairs and feed them
together with the pairs constructed from the real data to the dis-
criminator and then the discriminative model tries to classify the
real data and the data generated from the generative model. We
use the code released by the authors. For model initialization, we
employ the pre-train embedding layer in LambdaFM [32] for the
generator following the suggestion in [14].

The aforementioned baselines are the state-of-the-art model-based
CF for item ranking recommendation. GMF is the advanced deep
neural collaborative filtering model which has achieved a significant
improvement above the conventional model (e.g., MFBPR, item-
based CF). AGMF and IRGAN make use of the adversarial train-
ing to improve the training process so they show outstanding perfor-
mance. NGCF exploits the high-order collaborative signal through
the embedding propagation. CFGAN [4] is the vector-wise GAN-
based CF without learning the embedding vectors so we do not select
it for comparison.

Implementation details. DAGMF model is implemented based
on PyTorch. For a fair comparison, we fix the embedding
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Table 2. Top-K recommendation performance comparison of different methods. The Tra. and Adv. indicates that the relative improvement of DAGMF over
the best traditional methods and adversarial methods.

Datasets Metrics
Traditional Adversarial Ours Improvement

ItemPop MFBPR GMF NGCF IRGAN AGMF DAGMF-R DAGMF Tra. Adv.

MovieLens

HR@5 0.1222 0.2214 0.2404 0.2591 0.2424 0.2495 0.2437 0.2638 1.814% 5.731%
HR@10 0.1892 0.3204 0.3573 0.3653 0.3584 0.3608 0.3561 0.3729 2.080% 3.354%

NDCG@5 0.0740 0.1354 0.1462 0.1501 0.1454 0.1533 0.1480 0.1622 8.061% 5.806%
NDCG@10 0.0946 0.1658 0.1818 0.1894 0.1806 0.1840 0.1823 0.1913 1.003% 3.967%

Ciao

HR@5 0.0275 0.2369 0.2511 0.2758 0.2568 0.2715 0.2487 0.2868 3.988% 5.635%
HR@10 0.1223 0.2951 0.3137 0.3285 0.3079 0.3245 0.3033 0.3439 4.688% 5.978%

NDCG@5 0.0105 0.1664 0.1813 0.1994 0.1902 0.1979 0.1802 0.2093 4.965% 5.760%
NDCG@10 0.0510 0.1842 0.2005 0.2164 0.2058 0.2141 0.1980 0.2298 6.192% 7.333%

Yelp

HR@5 0.1506 0.7377 0.7638 0.8021 0.7909 0.7978 0.7475 0.8199 3.512% 2.767%
HR@10 0.2283 0.8406 0.8637 0.8957 0.8720 0.8862 0.8667 0.8938 0.915% -0.278%

NDCG@5 0.0948 0.5352 0.5728 0.5953 0.5916 0.6022 0.5471 0.6355 6.742% 5.519%
NDCG@10 0.1185 0.5610 0.6041 0.6344 0.6257 0.6328 0.5891 0.6617 4.293% 4.568%

size to 32 for all the models and optimize them (except IR-
GAN) via the mini-batch Adagrad [9] with the batch size in
{256, 512, 1024}. For IRGAN, we set the optimizer to stochas-
tic gradient descent (SGD) following the code released by the au-
thors. For hyperparameters, we apply the grid search: the learn-
ing rate η is tuned in {0.001, 0.005, 0.01, 0.05}, the coefficient
of L2 normalization is tuned in {0.0001, 0.001, 0.01, 0.1}. For
DAGMF, the λ is tune in {0.001, 0.01, 0.1, 1, 10, 100}, ε is tune in
{0.1, 0.3, 0.5, 0.7, 0.9, 1, 5} and the K in n(K) is fixed at 20.

5.2 Performance Comparison
In this section, we compare the HR@N and NDCG@N of DAGMF
with all baselines, where N ∈ {5, 10}. The results are shown in Ta-
ble 2. Inspecting the result from the top to bottom, we can obtain the
following key observations:

• Our DAGMF outperforms the-state-of-the-art adversarial CF
model (e.g., IRGAN and AGMF) on three datasets and traditional
CF model (e.g., IRGAN and AGMF) in most case with a p-value
of smaller than 0.01. The only exception is on Yelp dataset, in
which the NGCF obtains better performance than DAGMF by a
small margin in HR@10.

• DAGMF-R is the method, in which we randomly pick the ex-
amples without involving the collaborative signal. Specifically,
the Uutarget is set to all other users instead of the Top-K near-
est neighbours. The target items of observed items and the unob-
served items are chosen from all other items rather than only from
the items with the simple label. We can observe that the perfor-
mance of DAGMF-R is much worse than DAGMF, which verifies
the importance of the collaborative signal. Moreover, it is worth
noting that DAGMF-R even achieves poorer performance than
GMF in sparse datasets (Ciao and yelp). We analyze that in sparse
datasets, more incorrect information is encoded in the DAGMF-
R model when the direction of perturbation is chosen randomly.
This crashes the performance of DAGMF-R model.

• Compared with the AGMF, a recently proposed adversarial train-
ing model, DAGMF avoids encoding the error information into
training and exhibits an average improvement of 4.1%. Such sig-
nificant improvement might be attributed to that DAGMF incorpo-
rates the interaction between similar users or items in adversarial
training.

• DAGMF generally performs better than IRGAN, which applies
a generator model and a discriminative model to play a minimax

game. This again verifies the effective of our DAT. Another advan-
tage of DAT is that unlike the GAN model need to tune the com-
plicate structure and hyper-parameters to overcome the model-
collapse, DAT has succinct architecture and only requires the ini-
tialization parameters of GMF.

• NGCF is the-state-of-the-art model-based CF, which exploits
the collaborative signal into the embedding layer. We find that
DAGMF is consistently superior to NGCF, and the improvement
of it is 3.4%. This might be that applying the high-order embed-
ding propagation will lead to the overfitting problem. This phe-
nomenon has already been pointed out by the authors in [30].

5.3 Impact of Directional Adversarial Training
Regularization

In this section, we explore the impact of DAT on the generalization
performance of GMF, from two aspects: the training epoch and the
embedding size.

Training Process. We show the training process of GMF and
DAGMF: Firstly GMF will be trained for 120 epochs and then we
perform the DAT on parameters from the GMF for 80 epochs. Note
here that we evaluate their generalization performance per epoch on
three datasets and the results are shown in the Figure 4. As can be
observed, GMF converges after 120 training epochs, whereas further
training GMF with DAT can bring an obvious improvement in HR
and NDCG. To be specific, on the Ciao dataset, the best HR and
NDCG of GMF is 0.3137 and 0.2005, respectively, which are further
improved to 0.3439 and 0.2298 by DAGMF. There is roughly 9.6%
and 14.6% relative improvement in HR and NDCG. These results
again verify the effectiveness of DAGMF, emphasizing the signifi-
cance of DAT to improve model performance.

Embedding Size. Furthermore, we study how the embedding size
influences the model performance and the result is shown in the Fig-
ure 5. Under the different embedding size, our DAGMF consistently
outperforms the GMF. Note here that when the embedding size is 4,
the performance improvement of DAGMF becomes less significant.
The probably reason is that the small capacity of the model con-
strains the information that the embedding layer can contain. Such
that the advantage of DAT can not be exploited. In addition, we can
notice that as the embedding size becomes larger, the GMF becomes
slightly overfitting, especially in the Ciao dataset. Specially, the per-
formance of GMF degrades, while the DAGMF increase continually
when the embedding size is fixed at 64. This illustrates that DAT is
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Figure 4. Learning curves of GMF and DAGMF.
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Figure 5. Impact of embedding size on GMF and DAGMF.

an effective regularization to prevent the overfitting for model-based
CF. In addition, it is worth noting that HR and NDCG of DAGMF
exhibit different trends when the embedding size is set to 64 in the
Yelp dataset. This is interpretable since BPR loss takes advantage in
ranking top items and it can rank the test items in higher position
after they are in the Top-10 list.
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Figure 6. Impact of λ and ε.

5.4 Hyper-parameter Sensitivity
Because of the succinct architecture of DAGMF, it only introduces
two additional hyperparameters λ and ε to control the strength of
directional adversarial regularization and the perturbation level, re-
spectively. Figure 6 shows the HR and NDCG of DAGMF varying

the different parameters on three datasets. To explore the optimal
value of one parameter, the other parameters will be fixed in the
same.

Figure 6 (a), (c) and (e) displays the performance trend of DAGMF
by varying the λ from 0.001 to 100. As can be seen, when the λ is
smaller than the threshold (i.e,1 in Movielens dataset), the perfor-
mance of DAGMF will increase as the λ becomes larger. When the
λ is larger than the threshold, which will lead to performance degra-
dation. The threshold value is different across the different datasets,
1 for Yelp and MovieLens, 10 for Ciao.

Figure 6 (b), (d) and (f) shows the performance trend with respect
to ε, which is from the set {0.1, 0.3, 0.5, 0.7, 0.9, 1, 5}. The opti-
mal results are obtained when ε = 0.7 on MovieLens, ε = 1 on Ciao
and Yelp. We can observe that when ε is set too small, the DAGMF
only has minor improvements. The possible reasons lies in that the
DAGMF is almost the same as GMF. In addition, when the ε is set
too large, the perturbation will ruin the training process of model and
cause the performance drop.

6 Conclusion
In this work, we propose a novel technique, Directional Adversarial
Training, by restricting the perturbation direction towards existing
examples in the embedding space to address the limitation of exist-
ing adversarial training model-based CF that will change the original
semantic information hidden in the user-item interaction. Moreover,
we newly design the strategy to incorporate collaborative signal into
the perturbation direction, which explicitly learns the more effective
embedding for the model. We apply the directional adversarial train-
ing as regularization in a recently developed neural model-based CF,
GMF. Extensive experiments on three real-world datasets are con-
ducted to prove the rationality and effectiveness of DAGMF.

In the future, we would like to explore how to employ the di-
rectional adversarial training technique on the deeply hidden layer,
whose parameters also can be added with perturbation. In addition,
we are interested in extending the adversarial training technique to
other recommendation models, such as content-based [5], session-
based [17]. Last but not the least, we think the adversarial training
technique has the potential for other information retrieval scenarios
such as text retrieval [1], web search [3] and question answering [25].
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