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Abstract. In endovascular surgery and cardiology, interventional
therapy is currently the treatment of choice for most patients. Ro-
bust guidewire detection in 2D X-ray fluoroscopy can greatly as-
sist physicians in interventional therapy. Nevertheless, this task of-
ten comes with the challenge of the extreme foreground-background
class imbalance caused by the slenderer guidewire structure com-
pared to other interventional tools. To address this challenge, a novel
efficient network architecture, termed Fast Recurrent Attention Net-
work (FRA-Net), is proposed for fully automatic mono-guidewire
and dual-guidewire segmentation and tracking. The main contribu-
tions of the proposed network are threefold: 1) We propose a novel
attention module that improves model sensitivity to guidewire pix-
els without requiring complicated heuristics. 2) We design a recur-
rent convolutional layer that ensures better feature representation. 3)
Focal Loss is reinforced to better address the problems of extreme
class imbalance and misclassified examples. Quantitative and quali-
tative evaluation on various datasets demonstrates that the proposed
network significantly outperforms simpler baselines as well as the
best previously-published result for this task, achieving the state-of-
the-art performance. To the best of our knowledge, this is the first
end-to-end approach capable of real-time segmenting and tracking
mono-guidewire and dual-guidewire in 2D X-ray fluoroscopy.

1 Introduction
In endovascular surgery and cardiology, endovascular aneurysm re-
pair (EVAR) and percutaneous coronary intervention (PCI) are the
primary treatments for abdominal aortic aneurysm (AAA) and coro-
nary heart disease (CHD), respectively. Among them, AAA has been
the most common aneurysm, which is usually asymptomatic until it
ruptures, with an ensuring mortality 85% to 90% [15]. In addition,
CHD has become the largest cause of death worldwide [23]. Thus, it
is imperative to improve the success rate of EVAR and PCI.

During endovascular interventional therapy, physicians insert
guidewire to vessel and place stent to target stenosis using guidewire
guidance. The most critical procedure is to judge the relative posi-
tions of the guidewire and the lesion in 2D X-ray fluoroscopy [6].
Hence, the shape and position of the guidewire obtained by robust
and accurate segmentation and tracking are of great help for the in-
terventional therapy.
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Figure 1. The mono-guidewire and dual-guidewire in 2D X-ray
fluoroscopy with low SNR. The contrast agents (right) and guidewire-like

structures such as vertebrae contours (left) are major challenges for the task
of guidewire segmentation and tracking.

Challenge: Fully automatic segmentation of guidewire is tough. As
shown in Figure 1, the main reasons can be summarized as follows:
(1) The X-ray images have low signal-noise-ratio (SNR) and back-
ground noise greatly interferes with the segmentation of guidewire.
(2) The extreme foreground-background class imbalance is produced
by the low ratio of guidewire pixels to the pixels of the background.
(3) The edge pixels of the guidewire are misclassified examples due
to the guidewire-like structures (e.g. surgical wire, ribs and vertebrae
contours) and contrast agents [30].
Prior Art: As far as we know, there is a few research focus on
guidewire segmentation. Most of researches focus on the guidewire
tracking. Traditional tracking methods of interventional instruments
are based on spline fitting [4, 10], which are difficult in complex
background. And in these methods, the first frame of the fluoroscopy
sequence needs to be initialized manually and the instruments be-
tween two consecutive frames cannot be significantly deformed.

Then, some learning-based tracking methods were proposed, in
which specific hand-crafted features were utilized. In [29], segment-
like features (SEGlets) were introduced to overcome large deforma-
tions between successive frames. Pauly et al. intuitively proposed the
local mean orthogonal profiles as features of the original image [24].
The relationship between tracking errors and features was learned by
regression methods. Hand-crafted features and intuitively designed
tend to have poor generalization and robustness, especially in noisy
environments.

In recent years, convolutional neural networks (CNNs) have
achieved promising results in this field [3, 31, 33]. Ambrosini et
al. attempted to segment the whole catheter and guidewire. How-
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Figure 2. The architecture of FRA-Net. The RCLs instead of regular forward convolutional layers are utilized in both encoder and decoder. The AMs filter
the features propagated through the skip connections. The mask of the model output is superimposed with the input image.

ever, due to the disparate materials and diameter variance between
the catheter and the guidewire, and training in the same network, the
reported error by the guidewire is significantly higher than that of the
catheter [3]. A recent approach based on cascaded CNN in [31] was
designed for segmenting the guidewire, using Faster R-CNN to de-
tect the target region where the guidewire is located firstly, and then
using Deep-Lab network to achieve the segmentation of guidewire in
the cropped region. Whereas cascaded frameworks lead to excessive
and redundant use of computational resources and model parameters,
which results in slow processing speed at 0.25 seconds per frame. Al-
though the above methods provide promising initial results, there are
miscellaneous shortcomings to be addressed.
Approach: To overcome such issues, we propose a novel efficient
network (FRA-Net) for fully automatic segmentation and tracking
of various guidewires in interventional X-ray fluoroscopy. The pro-
posed network has a novel encoder-decoder architecture, which com-
bines the advantages of attention mechanism, recurrent convolutional
neural networks (RCNN) as well as the pre-trained components of
MobileNetV2. The improvements between the proposed network
with respect to the regular U-Net [26] are threefold. Firstly, the atten-
tion module (AM) allows attention coefficients to be more specific
to guidewire regions compared to gating based on a global feature
vector. This improves the precision and sensitivity precision of the
model for dense label prediction with minimal computational cost.
Secondly, the feature accumulation method with respect to different
time-steps in recurrent convolutional layers (RCLs) guarantees better
and stronger feature representation, which helps to extract very low-
level features. Last but not least, the pre-trained components of Mo-
bileNetV2 in encoder can reduce network parameters and improve
model processing speed while ensuring performance. In addition,
Focal Loss [19] is reinforced to effectively address the problems of
extreme class imbalance and misclassified examples. Experiment re-
sults indicate that our proposed approach can significantly improve
the segmentation performance, compared to other state-of-the-art ap-
proaches. Further analysis also indicates that each individual compo-
nent of our proposed network contributes to the overall performance
improvement.
The key contributions and novelties can be concluded as follows:

• As far as we know, this is the first fully automatic approach
that achieves real-time segmentation and tracking of various
guidewires at the inference rate of 15 FPS.

• The proposed novel network significantly outperforms simpler

baselines as well as the best previously-published result, achieving
the state-of-the-art performance on various datasets.

• The proposed attention module and designed recurrent convolu-
tion layer are effective and can be merged into other encoder-
decoder architectures.

• The proposed approach can extend to other applications (e.g.
guidewire endpoint localization & visibility enhancement).

2 Proposed Network Architecture
The architecture of the proposed FRA-Net is shown in Figure 2. The
proposed model has an encoder-decoder architecture. The encoder
starts with a convolution on 512×512 input grayscale images with a
kernel of size 7×7 and a stride of 2. The spatial max-pooling is then
performed in the area of 3×3 with a stride of 2. The latter part of the
encoder consists of components of MobileNetV2 pre-trained on Im-
ageNet and recurrent residual convolutional blocks. The key build-
ing components in the MobileNetV2 network are inverted residual
block [28], which is illustrated in Figure 3. The depth-wise separable
convolutions replace the standard convolutional layers in the resid-
ual block, thereby reducing considerable computational cost. Com-
pared with the pre-trained backbones ResNet-101 (45M), ResNet-
50 (24M) and VGG-16 (34M) utilized in encoder [9], MobileNetV2
(2.4M) greatly reduces the parameters of the network and improves
the processing speed while ensuring performance. Recurrent residual
convolutional blocks will be introduced in later subsections.

Each decoder block in decoder consists of transposed convolution
and batch normalization, followed by the recurrent up-convolutional
blocks, aims to recover the resolution of the feature map from 16×16
to 512 × 512. The details of the decoder block are shown in Figure
3. In addition, the decoder blocks are connected to the correspond-
ing encoder blocks through the skip connections, and the AMs in
decoder highlight salient features useful for the guidewire which are
passed through the skip connections. AM will be introduced in later
subsections. After decoder block, we obtain the final segmentation
mask by a 1× 1 convolution.

As mentioned in the introduction, the proposed network consists
of three major components: (1) The RCLs used for feature accumu-
lation guarantee better and stronger feature representation. (2) The
AM highlights salient features which are passed through the skip
connections. (3) The augmented Focal Loss is utilized for address-
ing the problems of extreme foreground-background class imbalance
and misclassified examples.
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Figure 3. The inverted residual block (left) and decoder block (right). The
parameters in the convolution block indicate the kernel sizes.

2.1 Recurrent Residual Convolutional Block
RCNN and its variants have shown superior performance on differ-
ent object recognition tasks [18]. According to the improved-residual
network [1, 2], the recurrent residual convolution operation can be
proved mathematically. The operations of the RCL are performed
with respect to the discrete time steps. As shown in Figure 4, we
assume the xl is the input of lth layer of the recurrent residual con-
volutional block and a pixel is located at (i, j) in an input sample on
the kth feature-map. In addition, the output of the network Olijk(t)
which is at the time step t. The output can be formulated as follows:

Olijk(t) = (wck)
T ∗ xc(i,j)l (t) + (wrk)

T ∗ xr(i,j)l (t− 1) + bk (1)

where xc(i,j)l (t) and xr(i,j)l (t − 1) are the inputs to the regular for-
ward convolutional layer and for the lth RCL respectively. The wck
and wrk are the weights of regular forward convolutional layer and
RCL of the kth feature-map respectively, and bk is the bias. The out-
put Olijk(t) is fed into the standard ReLU activation function. And
the final outputs xl+1 of the recurrent convolutional unit pass through
the residual unit. It can be calculated as follows:

xl+1 = xl + F (xl, wl) = xl +max(0, Olijk(t)) (2)

Here, xl represents the input samples of the recurrent residual con-
volutional block. F (xl, wl) is the output of the lth layer of the recur-
rent convolutional block. The output F (xl, wl) is utilized for down-
sampling and up-sampling layers in the encoding and decoding units
of the FRA-Net respectively. The final output xl+1 is the input of im-
mediate succeeding sub-sampling or up-sampling layers. In order to
extract the features of the lower layers, we further deepen the recur-
rent residual convolution blocks, each containing three RCL layers.
The pictorial representation of the unfolded RCL layers with respect
to time-step is shown in Figure 4. Here t = 3(0 ∼ 3), refers to the re-
current convolutional operation that includes one single convolution
layer followed by three subsequential recurrent convolutional layers.
As mentioned in introduction, the feature accumulation based on dif-
ferent time-steps ensures a better and stronger feature representation.
Therefore, it helps to extract very low-level features that are essential
for guidewire segmentation and tracking.

2.2 Attention Module
In order to capture a sufficiently large receptive domain to obtain
semantic context information, the feature-map grid is progressively
down-sampled in the standard CNN architecture. However, it is still
difficult to reduce false-positive predictions for tiny objects with

Figure 4. The recurrent residual convolutional block (left) and unfolded
recurrent convolutional unit for t = 3 (right).

Figure 5. Schematic of the proposed attention module (AM). Input
features are scaled with attention coefficients computed in AM.

large shape variability. To improve accuracy, the current segmen-
tation frameworks [27, 16] rely on the previously additional object
localization models to simplify the task to separate localization and
subsequent segmentation steps. Here, we demonstrate that the same
goal can be achieved by integrating the proposed AMs into a stan-
dard CNN model. This does not require training multiple models and
a large number of additional model parameters. Compared with cas-
caded CNN, AM gradually suppresses the feature responses of irrel-
evant background regions without the necessity of region of interest
(ROI) [21].

As shown in Figure 5, the attention coefficient αi ∈ [0, 1] iden-
tifies image salient regions to preserve the activation relevant to the
guidewire. The input of AMs can be divided into two parts. The first
part is to obtain the key feature map (K.F.) by a series of convolu-
tion 3 × 3, BN and ReLU. Another part is to directly adjust the fea-
ture map (D.F.) to the universal. Then making the summation of two
parts to enhance the nonlinearity. The output of AMs is the element-
wise multiplication of input feature-maps and attention coefficients:
x̂li,c = xli,c · αli. In the default setting, a single scalar attention value
is calculated for each pixel vector xli,c, where Fl corresponds to the
number of feature-maps in layer l. The gating vector gi is utilized for
each pixel i to determine the attention regions. Additive attention [5]
is utilized to obtain the gating coefficient. Although additive attention
is computationally more expensive, experiments have shown that it
has higher accuracy than multiplication attention [20]. The formula
of AM is represented as follows:

αli = σ2(ψ
T (σ1(W

T
x x

l
i +WT

g gi + bg)) + bψ) (3)

where σ1 and σ2 correspond to the ReLU activation and sigmoid
activation respectively. The Wx and Wg are the weights of linear
transformation, and bg and bψ are the bias. In order to reduce the
number of trainable parameters and the computational complexity of
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AMs, linear transformation is performed without any spatial support
(1× 1× 1 convolution), and the input feature-map is down-sampled
to the resolution of the gating signal. Grid re-sampling of the atten-
tion coefficients is performed by trilinear interpolation to avoid the
regional aliasing effect. The proposed AMs are merged into our net-
work to highlight salient features useful for the guidewire, as shown
in Figure 2. The information extracted from coarse scale is utilized
in gating to disambiguate irrelevant and noisy responses in skip con-
nections, thereby improving the accuracy and sensitivity of the model
for foreground pixels prediction.

2.3 Augmented Focal Loss
In the task of guidewire segmentation, the slender guidewire struc-
ture results in extremely imbalanced ratio, especially the mono-
guidewire (1 : 1000). Meanwhile, due to the influence of guidewire-
like structures and contrast agents, the edge pixels of the guidewire
turn into the misclassified examples. The huge number of easy and
background examples tend to overwhelm the training. The two-stage
cascade network has been shown effective to alleviate the over-
whelming effect of easy samples in many computer vision tasks [25].
Whereas it leads to excessive and redundant use of computational re-
sources and model parameters.

To this end, we reinforce the Focal Loss to better address the prob-
lems of extreme class imbalance and misclassified examples. It is the
dynamically scaled cross entropy loss. The scaling factor can auto-
matically reduce the weight of easy examples in the training process
and quickly focus the model on misclassified examples. The aug-
mented Focal Loss is formulated as follows:

Loss =

{
−α(1− pi)

γ log pi
−pγi log(1− pi)

yi = 1
yi = 0

(4)

where yi is the label of the ith pixel, 1 for guidewire, 0 for back-
ground and pi is the final mask probability of the ith pixel. The
weighting factor α and the modulating factor γ are tunable within
the range of α, γ ≥ 0. Whether it is the foreground class or the back-
ground class, the loss contribution from easy examples can be de-
creased by γ. Moreover, we have strengthened the role of weighting
factor α to increase the weight contribution of the guidewire more
efficiently, thus solving the extreme class imbalance. Moreover, α
and γ are hyper-parameters, and their optimal combination will be
verfied in experiments.

3 Materials and Implementation
3.1 Data Acquisition
There are no public datasets for the guidewire currently. Hence, we
establish a new dataset called MDGSeg based on 2D X-ray flu-
oroscopy, which is provided by Shanghai Huadong Hospital and
Peking Union Medical College Hospital. The Innova 3100-IQ dig-
ital flat-panel angiography instrument (GE Healthcare) is utilized to
acquire clinical sequences of the most representative 30 patients. The
details of the MDGSeg dataset are illustrated in Table 1.

In the process of data annotation, a new annotation tool has been
designed specifically for labeling the guidewire, which is shown in
Figure 6. We first determine the area where the guidewire is located
and enlarge the image of the area through the bounding box. Then we
mark some points on the guidewire and fit a spline by these points.
For each image, it is manually annotated by two technical experts
with +5 years experience in medical imaging. When the average error

Table 1. The details of the MDGSeg dataset. The dataset contains 3239
images of 180 sequences from 30 patients.

NO. Guidewire Type Patient Sequence Image
Train Test Train Test Train Test

1 Mono-guidewire 10 2 54 18 920 460
2 Dual-guidewire 8 2 45 15 656 328
3 Stiff Guidewire 6 2 36 12 585 290
- Total 24 6 135 45 2161 1078

Figure 6. Process of data annotation. (a) Determine the coarse bounding
box. (b) The guidewire is enlarged. (c) Mark the points along the guidewire.

(d) Spline fitting for those points. (e) Obtain the groundtruth mask.

distance of the center line of the guidewire labelled by the two is
less than 0.5 pixels, the label is considered valid. After annotation,
each 2D X-ray image in sequences is a binary image with size of
512× 512. In binary images, the pixel value of the guidewire is 1, or
else 0.

3.2 Implementation Details

The proposed network was implemented on PyTorch library (version
0.4.1) with one NVIDIA TITAN Xp (12 GB). In the training phase,
two independent sequences in the training set were split as valida-
tion set to prevent over-fitting due to insufficient data. To shorten the
training cycle, transfer learning was used as the backbone architec-
ture instead of learning from scratch [22]. Stochastic gradient descent
(SGD) was used as optimizer with an initial learning rate of 0.001,
weight decay of 0.0005 and momentum of 0.9. To find the optimal
performance, we reduced the learning rate by the factor of 2 when the
validation accuracy was saturated. Moreover, we set the batch size of
32, and 300 epochs was used for each model training.

4 Experiments and Results

In this section, several ablation studies are first given to prove the
effectiveness of the proposed modules. And then to further evalu-
ate the proposed approach, we apply our network on two different
datasets. The first dataset is our own dataset MDGSeg, which con-
sists of patients data of PCI and EVAR. And the other dataset is a
publicly available challenge dataset which will be introduced in later
subsections.

4.1 Error Metrics

We report three main metrics including precision, sensitivity and F1-
Score (a higher value is better) to evaluate the segmentation perfor-
mance. The definition of these metrics are clarified in [29]. The pro-
cessing time is utilized to evaluate the real-time performance of the
proposed approach. To calculating the processing speed, we load the
sequence into the proposed model and compute each frame parallelly
offline. The total processing time T can be computed after getting the
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Table 2. Quantitative Comparison: Varying α and γ for Augmented Focal Loss.

Method Precision Sensitivity F1-Score
Focal loss 0.914 ± 0.025 0.927 ± 0.024 0.918 ± 0.013
GHM-C 0.939 ± 0.024 0.909 ± 0.012 0.923 ± 0.016

α = 50 γ = 1.5 0.896 ± 0.027 0.926 ± 0.021 0.917 ± 0.019
α = 50 γ = 2.0 0.938 ± 0.018 0.909 ± 0.023 0.921 ± 0.011
α = 75 γ = 2.0 0.914 ± 0.015 0.932 ± 0.009 0.924 ± 0.023
α = 75 γ = 2.5 0.928 ± 0.014 0.917 ± 0.019 0.926 ± 0.009
α = 100 γ = 2.5 0.929 ± 0.022 0.949 ± 0.017 0.940 ± 0.011
α = 100 γ = 3.0 0.943 ± 0.009 0.911 ± 0.016 0.927 ± 0.027
α = 125 γ = 3.0 0.937 ± 0.012 0.887 ± 0.021 0.912 ± 0.019

results of all the frames (N). Therefore, we obtain the final processing
speed N/T FPS and processing time 1000× T/N ms.

To show results more clearly, the mean of distances from ground
truth to segmentation results, is also evaluated and called as
guidewire special precision (GSP). The distances in this paper are
all in image pixels (px), which is formulated as follows:

dspe(DG, Ds, s) = min
s

(∥DG(s)−Ds(s)∥) (5)

where DS(s) is segmentation results and DG(s) is the ground truth.

4.2 Analysis of Augmented Focal Loss

To evaluate the effectiveness of the augmented Focal Loss on our
approach, we apply our model on two different loss function. The
first is the regular Focal Loss [19], which yields the optimal solution
at α = 0.25 and γ = 2. The second is the gradient harmonizing
mechanism (GHM), which is currently the state-of-the-art method of
solving class imbalance. The GHM is to make a balanced cumulative
contribution of samples of various difficulty types by weighting the
gradients, which are generated by different samples and changing
their contribution [17]. Therefore, we utilize the regular Focal Loss
and GHM classification loss (GHM-C) as the experimental baselines.

The augmented Focal Loss has two hyperparameters α and γ. The
experimental results indicate when weighing factor α and modulat-
ing factor γ are 100 and 2.5 respectively (as shown in Table 2), the
model has the optimal performance. The mean F1-score, precision
and sensitivity are respectively 0.940, 0.929 and 0.949 wherein the
F1-Score is improved by 2.41% and 1.84% over baseline respec-
tively.

As shown in Figure 8, some of the guidewire pixels in the segmen-
tation results of the regular Focal Loss are missing due to the influ-
ence of extreme class imbalance and guidewire-like structures (e.g.
vertebrae). The influence of contrast agents results in the misclas-
sification of background pixels and the missing of guidewire pixels
in the segmentation results of GHM-C. In contrast, the segmentation
results of the augmented Focal Loss are more smooth and accurate.

4.3 Ablation Experiments

In this section, we conduct extensive ablation studies to validate the
effectiveness of the proposed AM and RCL. We follow the previous
protocols. Augmented Focal Loss and the pre-trained MobileNetV2
are utilized as the base loss function and the backbone network,
respectively. Then we verify the efficiency of the pre-trained Mo-
bileNetV2 for improving processing speed.

Table 3. Quantitative comparison: Ablation experiments.

Method F1-Score Time (ms)
FRA-Net 0.940 ± 0.011 66.5 ± 1.6

without AM 0.908 ± 0.023 60.6 ± 2.3
without RCL 0.910 ± 0.015 58.4 ± 1.9
ResNet-34 0.929 ± 0.018 133.5 ± 4.2
ResNet-50 0.940 ± 0.021 139.6 ± 2.7
ResNet-101 0.944 ± 0.013 172.2 ± 3.4

VGG-11 0.925 ± 0.017 129.6 ± 1.9
VGG-16 0.934 ± 0.021 155.3 ± 3.8

To evaluate the contribution of the AM and RCL on our approach,
we remove the AM and recurrent convolution block from the original
model separately and train them. To verify the improvement in pro-
cessing speed brought by the pre-trained MobileNetV2, we replace
the backbone of the original network with wildly-used backbones
ResNet and VGGNet. As shown in Table 3, it clearly demonstrates
the improvement in accuracy brought by the proposed AM and RCL,
and the promotion in processing speed brought by the pre-trained
MobileNetV2. The MobileNetV2 as the backbone of the network
processes one image much faster than other heavy backbones.

To further verify the robustness of our proposed network, the class
activation map (CAM) is utilized to visualize the discriminative re-
gion of the network for the test frames. The global average pooling
outputs the spatial average of the feature map. The predicted class
scores are mapped back to the previous convolutional layer to gener-
ate the CAMs [32]. The CAM highlights the discriminative regions
of the specific class. As shown in Figure 7, most of the discrimina-
tive regions are concentrated around the guidewire, indicating that
the network has learned robust discriminative ability.

Figure 7. The class activation maps (CAMs) of typical test frames. The
maps highlight the discriminative regions of the guidewire.
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Table 4. Quantitative comparison: The segmentation metrics of different approaches on MDGSeg dataset.

Method Fully Auto. Mean ± Std (px) Med (px) F1-Score Time (ms)
U-Net [26]

√
1.624 ± 1.439 1.598 0.909 102.4

TernausNet [14]
√

0.873 ± 0.647 0.899 0.926 130.5
LinkNet [8]

√
1.106 ± 0.755 1.182 0.914 112.8

ITT [10] × 4.726 ± 4.011 2.996 0.847 59.7
DT [11] × 5.378 ± 4.824 2.545 0.864 111.1
GE [13] × 4.961 ± 4.118 3.232 0.902 \

SEG [29]
√

2.245 ± 2.196 1.359 0.923 500
Ours

√
0.568 ± 0.436 0.342 0.940 66.5

Figure 8. Qualitative comparison: The various guidewire segmentation results of typical test frames by different approaches. Stiff guidewire in EVAR (top),
mono-guidewire (MG) in PCI (mid) and dual-guidewire (DG) in PCI (bottom).

4.4 Comparison with State-of-the-Art Methods
To demonstrate the advantage of our proposed approach, we compare
it with the widely-used networks (U-Net, TernausNet and LinkNet)
and four other previously proposed approaches on the same dataset
(MDGSeg). It is worth noting that we implement other approaches
with best parameters. As shown in Table 4, it clearly demonstrates
that our approach achieves better accuracy than other state-of-the-art
approaches in terms of mean and median GSP, F1-Score and process-
ing time. As can be seen in Figure 8, the proposed approach is robust
to all kinds of guidewires in different interventional treatments, and
the segmentation results are accurate without any post-processing.

To further analyze the generalization capability of our proposed
approach, we compare it with well-known medical segmentation net-
works [26, 8, 14, 21] on six different patient sequences in the test set.
Among them, TernausNet is an improved U-Net with the VGG-11

encoder pre-trained on ImageNet [14]. LinkNet is the network that
can obtain accurate instance-level predictions [8]. And the patient
sequences in the test set consist of the samples of mono-guidewire,
dual-guidewire and stiff guidewire. Quantitative comparison of dif-
ferent patient sequences are shown in Figure 9. As shown in Figure
9 (a), the proposed approach has good generalization performance
and has achieved excellent F1-Score in different patients and differ-
ent guidewire sequences. As can we seen from the Figure 9 (b), our
approach is far superior to other medical segmentation networks and
achieves the state-of-the-art segmentation performance.

In addition, Heidbuchel et al. mentioned that to reduce the radia-
tion intake of physicians, the C-arm system operates at a low frame
rate (6 ∼ 12 FPS) [12]. The average processing time per image of
our proposed network is about 66.5 ms (15 FPS), which enables ac-
curate real-time segmentation and tracking.
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Figure 9. Quantitative comparison: The F1-Score of different approaches for six patient sequences on the test set. M1, M2: Patients treated with
mono-guidewire in PCI. D1, D2: Patients treated with dual-guidewire in PCI. S1, S2: Patients treated with stiff guidewire in EVAR.

Table 5. Quantitative comparison: The F1-Score of different approaches on NLM Chest X-ray Database. This five sequences on the test set contain the
cases with manifestation of tuberculosis and the normal cases.

Method Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5 Mean F1-Score
U-Net [26] 0.899 0.907 0.864 0.882 0.887 0.888
LinkNet [8] 0.902 0.915 0.872 0.893 0.896 0.896

TernausNet [14] 0.910 0.922 0.898 0.909 0.912 0.910
Ours 0.953 0.966 0.932 0.941 0.944 0.947

4.5 Validation on NLM Chest X-ray Database
We further validate our proposed approach on Chest X-ray dataset,
which is the standard digital image database for tuberculosis [7]. The
chest X-rays are from out-patient clinics, and were captured as part
of the daily routine using Philips DR Digital Diagnose systems. This
dataset consists of 336 cases with manifestation of tuberculosis and
326 normal cases. We select five sequences in the database contain-
ing tuberculosis and normal cases as the test set.

We conduct the experiment in leave-one-out manner. We visualize
typical test samples in Figure 10 to make a qualitative comparison.
The proposed approach can capture better contour which is usually
considered as hard regions compared with the U-Net. As can be seen
in Table 5, the quantitative comparison (the proposed network can
improve the segmentation performance by about 3.7 % in terms of
mean F1-Score) also indicates the success of our proposed approach.

5 Conclusions and Future Work
In this paper, we proposed a novel network, FRA-Net, to address
the challenging task of real-time segmentation and tracking of var-
ious guidewires in interventional X-ray fluoroscopy. Quantitative
and qualitative evaluation on MDGSeg dataset and NLM Chest X-
ray database demonstrates that our approach achieve significant im-
provement in terms of both accuracy and robustness. Extensive abla-
tion experiments prove the effectiveness of our proposed modules
(AM and RCL) and augmented Focal Loss. By integrating these
components into the network, our proposed model completely ad-
dress extreme class imbalance and misclassified examples, achieving
the state-of-the-art performance. Moreover, the inference rate of our
model is approximately 15 FPS, which is promising for real-time as-
sisting physicians in completing endovascular interventional therapy.

Figure 10. Qualitative comparison: The segmentation results of different
approaches on NLM Chest X-ray Database.

As future work, we would like to concentrate on applying the ap-
proach proposed in this paper to the vascular interventional surgery
robot to achieve the computer-assisted treatment.
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