
CAMUS: A Framework to Build Formal Specifications
for Deep Perception Systems Using Simulators

Julien Girard-Satabin1 and Guillaume Charpiat2 and Zakaria Chihani1 and Marc Schoenauer2

Abstract.
The topic of provable deep neural network robustness has raised

considerable interest in recent years. Most research has focused on
adversarial robustness, which studies the robustness of perceptive
models in the neighbourhood of particular samples. However, other
works have proved global properties of smaller neural networks. Yet,
formally verifying perception remains uncharted. This is due notably
to the lack of relevant properties to verify, as the distribution of pos-
sible inputs cannot be formally specified. We propose to take ad-
vantage of the simulators often used either to train machine learn-
ing models or to check them with statistical tests, a growing trend
in industry. Our formulation allows us to formally express and ver-
ify safety properties on perception units, covering all cases that could
ever be generated by the simulator, to the difference of statistical tests
which cover only seen examples. Along with this theoretical formu-
lation, we provide a tool to translate deep learning models into stan-
dard logical formulae. As a proof of concept, we train a toy example
mimicking an autonomous car perceptive unit, and we formally ver-
ify that it will never fail to capture the relevant information in the
provided inputs.

1 Introduction

Recent years have shown a considerable interest in designing “more
robust” deep learning models. In classical software safety, asserting
the robustness of a program usually consists in checking if the pro-
gram respects a given specification. Various techniques can output
a sound answer whether the specification is respected or not, pro-
vided it is sufficiently formally formulated. However, the deep learn-
ing field is different, since the subject of verification (the deep learn-
ing model) is actually obtained through a learning algorithm, which
is not tailored to satisfy a specification by construction. In this pa-
per, we will denote as ”program” the deep learning model that is the
result of a learning procedure. Such a program aims to perform a cer-
tain task, such as image classification, using statistical inference. For
this, it is trained through a learning algorithm, usually involving a
loss minimization by gradient descent over its parameters. This way,
in most deep learning applications, there exists no formal specifica-
tion of what the program should achieve at the end of the learning
phase: instead, the current dominant paradigm in statistical learn-
ing consists in learning an estimator that approximates a probability
distribution, about which little is known. Failures of learning proce-
dures, such as overfitting, are hard to quantify and describe in the
form of a specification.

1 CEA LIST, France, julien.girard2@cea.fr, zakaria.chihani@cea.fr
2 TAU, INRIA, LRI - Université Paris-Saclay, France, First.Last@inria.fr

A particular flaw of deep learning, namely adversarial examples,
has been the subject of intensive research [37, 10, 30, 21]. Recently,
the quest for provable adversarial robustness has been bringing to-
gether the machine learning and formal methods communities. New
tools are written, inspired by decades of work in software safety,
opening new perspectives on formal verification for deep learning.
However, the bulk of these works has focused on the specific issue of
adversarial robustness. Apart from well-defined environments where
strong prior information exists on the input space (see [23]), little
work has been made on formulating and certifying specific proper-
ties of deep neural networks.

The goal of this work is to propose a framework for the general
problem of deep learning verification that will allow the formula-
tion of new properties to be checked, while still benefiting from the
efforts of the formal methods community towards more efficient ver-
ification tools. We aim to leverage the techniques developed for ad-
versarial robustness and extend the scope of deep learning verifica-
tion to working on global properties. Specifically, we focus on a still
unexplored avenue: models trained on simulated data, commonplace
in the automotive industry. Our contribution is twofold: we first pro-
pose a formalism to express formal properties on deep perception
units trained on simulated data; secondly we present an open source
tool that directly translates machine learning models into a logical
formula that can be used to soundly verify these properties, hence
ensuring some formal guarantees. Recent work proposed to analyse
programs trained on simulators [15]. Although their motivations are
similar to ours, they work on abstract feature spaces without directly
considering the perception unit, and they rely on sampling techniques
while we aim to use sound, exhaustive techniques. Their aim is to
exhibit faulty behaviour in some type of neural network controllers,
while we can formally verify any type of perception unit.

The paper is structured as follows: We first describe our formu-
lation of the problem of verification of machine learning models
trained on simulated data. We then describe the translator tools, and
detail its main features. Finally, we present as a first use case a syn-
thetic toy ’autonomous vehicle’ problem. We conclude by presenting
the next issues to tackle.

2 Related work
2.1 Adversarial robustness: a local property
Adversarial perturbations are small variations of a given example that
have been crafted so that the network misclassifies the resulting noisy
example, called an adversarial example. More formally, given a sam-
ple x0 in a set X , a classification function C : x ∈ X → Rd, a dis-
tortion amplitude ε > 0 and a distance metric ‖.‖p, a neural network
is locally ε-robust if for all perturbations δ s.t. ‖δ‖p 6 ε, C(x0) =

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

C(x0 + δ). To provably assert adversarial robustness of a network,
the goal is then to find the exact minimal distortion ε. Note that this
property is local, tied to sample x0. A global adversarial robustness
property could be phrased as: A deep neural network is globally ε-
robust if for any pair of samples (x1, x2) ∈ X 2 s.t. ‖x1 − x2‖p 6 ε,
C(x1) = C(x2). Verifying this global property is intractable, thus
all the work has focused on local adversarial robustness.

Since their initial discovery in [37], adversarial examples became a
widely researched topic. New ways to generate adversarial examples
were proposed [10, 25, 41], as well as defenses [1, 26]. Other works
focus on studying the theory behind adversarial examples. While
the initial work [18] suggests that adversarial examples are a result
of a default in the training procedure, “bugs”, recent investigations
([17, 21, 34]) suggest that (at least part of the) adversarial examples
may be inherently linked to the design principles of deep learning and
to their resulting effects on programs: using any input features avail-
able to decrease the loss function, including “non robust” features
that are exploited by adversarial examples generation algorithms. It
is important to note that their very existence may be tied with the
fact that we employ deep neural network on highly-dimensional per-
ceptual spaces such as images, where we witness counter-intuitive
behaviours. In any case, their imperceptibility for humans and their
capacity to transfer between networks and datasets [30] make them
a potentially dangerous phenomenon regarding safety and security.
For example, an autonomous car sensor unit could be fooled by a
malicious agent to output false direction in order to cause accidents.

2.2 Proving global properties in non-perceptual
space

It is possible to express formal properties in simpler settings than
adversarial robustness. By simpler, we mean two main differences:
(i) the dimensionality of the input is much lower than in typical per-
ception cases, where most of adversarial examples occur, and (ii) the
problem the program aims to solve provides an explicit description of
the meaning of the inputs and outputs, making a formulation of safety
property much simpler. Rephrased otherwise, the program is working
on inputs whose semantics is (at least partially) defined. Since deep
neural networks use simple programming concepts (e.g., no loops), it
is quite easy to translate them directly to a standard verification for-
mat, such as SMT-LIB [5]. Provided the inputs are sufficiently well
defined, it is then possible to encode safety properties as relation-
ships between inputs and outputs, such as inequality constraints on
real values.

An example of such setting can be seen in the Anti Collision
Avoidance System for Unmanned aircrafts (ACAS-Xu) [27]. Inputs
correspond to aircraft sensors, and outputs to airplane commands.
In such case, specifications can be directly encoded as a set of con-
straints on the inputs and outputs. In [23], the authors proposed an
implementation of ACAS-Xu as a deep neural network, and they
were able to formally prove that their program respected various
safety properties.

It is important to note that the inputs of the program are here high-
level information (existence of an intruder together with its position),
which completely bypasses the problem of perception (as airplanes
have direct access to this information, in a low-level form, through
their sensors, and through communications with ground operators).

2.3 Tools for provable deep learning robustness

Critical systems perform operations whose failure may cause physi-
cal harm or great economical loss. A self-driving car is a critical sys-
tem: failure of embedded software may cause harm, as seen in acci-
dents such as [19]. In the automobile industry, one expects the airbag
to resist to a given pressure, the tires to last for a lower-bounded du-
ration, etc. As software is more and more ubiquitous in vehicles, it is
natural to have high expectations for software safety as well. An at-
tempt to meet these expectations makes use of formal methods. This
general term describes a variety of techniques that aim to provide
mathematically sound guarantees with respect to a given specifica-
tion. In less than a decade, an impressive amount of research was
undertaken to bring formal verification knowledge and tools to the
field of adversarial robustness. Deep learning verification has devel-
oped tools coming from broadly two different sets of techniques; this
taxonomy is borrowed from [9].

The first set is the family of exact verification methods, such as
Satisfiability Modulo Theory [6]. SMT solvers perform automated
reasoning on logical formulae, following a certain set of rules (a
logic) on specific entities (integers, reals, arrays, etc.) described by
a theory. An SMT problem consists in deciding whether, for a given
formula, there exists an instantiation of the variables that makes the
formula true. Programs properties and control flow are encoded as
logical formulae, that specialized SMT solvers try to solve. It is pos-
sible to express precise properties, but since most SMT solvers try to
be exhaustive over the search space, a careful formulation of the con-
straints and control flow is necessary to keep the problem tractable.
It was formally proven in [23] that solving a verification problem
composed of conjunction of clauses by explicit enumeration for a
feedforward network is NP-hard. However, the NP-hardness of a
problem does not prevent us from designing solving schemes. In this
same work, the authors introduced ReLuPlex, a modified solver and
simplex algorithm, that lazily evaluates ReLUs, reducing the need to
branch on non-linearities. Their follow-up work [24] improves and
extends the tool to support more complex networks and network-
level reasoning. Others [9] rephrase the problem of adversarial ro-
bustness verification as a branch-and-bound problem and provide a
solid benchmark to compare current and future algorithms on piece-
wise linear networks. Other exact techniques are based on mixed in-
teger linear programming (MILP). The verification of adversarial ro-
bustness properties on piece-wise linear networks can indeed be for-
mulated as a MILP problem [38], and a pre-conditioning technique
drastically reduces the number of necessary calculations. Adversar-
ial robustness properties were thus checked on ResNets (a very deep
architecture) with l∞-bounded perturbations on CIFAR-10.

The second set of techniques in formal methods is based on over-
approximating the program’s behaviour. Indeed, since solving the ex-
act verification problem is hard, some authors worked on computing
a lower bound of ε, using techniques building overapproximations
of the program, on which it is easier to verify properties. Abstract
interpretation (first introduced in [12]) is an example of such tech-
nique. It is a mathematical framework aiming to prove sound prop-
erties on abstracted semantics of program. In this framework, a pro-
gram’s concrete executions are abstracted onto less precise, but more
computationally tractable abstract executions, using numerical do-
mains. Finding numerical domains that balance expressiveness, ac-
curacy and calculation footprint is one of the key challenges of ab-
stract interpretation.

The first instance of specifically-tailored deep learning verifica-
tion described how to refine non-linear sigmoid activation function

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

to help verification [32]. [40] proposes an outer convex envelope for
ReLu classifiers with linear constraints, expressing the robustness
problem as a Linear Programming (LP) problem. [29] and [35] pro-
pose a framework for building abstract interpretations of neural net-
works, which they use to derive a tight upper bound on robustness for
various architectures and for regularization. On MNIST, both works
displayed a robustness of 97% bounded by a l∞ = 0.1 perturbation.
On CIFAR-10, they achieved a 50% robustness for a similar net with
a l∞ = 0.006 perturbation. Symbolic calculus on neural networks
is performed in [39], allowing symbolic analysis and outperform-
ing previous methods. A verification framework based on bounding
ReLu networks with linear functions is proposed in [8].

The boundary between these two families of techniques can be
blurry, and both techniques can be combined. For instance, [36] com-
bines overapproximation and MILP techniques to provide tighter
bounds on exact methods. Competing with complete methods, they
verify a hard property on ACAS-Xu faster and provide precise
bounds faster than other methods.

All these techniques are employed either for proving local prop-
erties (local adversarial robustness), or on simpler, non perceptual
input spaces. On the opposite, our work proposes a framework to
prove global properties on perceptual inputs.

3 CAMUS: a new formalism to specify and verify
machine learning models

3.1 Motivation

In most deep learning application domains, such as image classifica-
tion [20], object detection [11], control learning [7], speech recogni-
tion [33], or style transfer [22], there exists no formal definition of
the input. Let us consider the software of an autonomous car as an
example. A desirable property would be not to run over pedestrians.
This property can be split in i) all pedestrians are detected, and ii)
all detected pedestrians are avoided. For a formal certification, the
property should be expressed in the form “For any image containing
pedestrians, whatever the weather conditions or camera angle could
be, all pedestrians present in that image are detected and avoided”.
Such a formulation supposes one is able to describe the set of all
possible images containing pedestrians (together with their location).
However, there exists no exact characterization of what a pedestrian
is or looks like, and certainly not one that takes into account weather
condition, camera angle, input type or light conditions. Any hand-
made characterization or model would be very tiresome to build, and
still incomplete.

On the upside, machine learning has demonstrated its ability to
make use of data that cannot be formally specified, yielding impres-
sive results in all above-mentioned application domains, among oth-
ers; on the downside, it has also been demonstrated that ML models
can easily fail dramatically, for instance when attacked with adversar-
ial examples. Thus, manufacturers of critical systems need to provide
elements that allow regulators, contractors and end-users to trust the
systems in which they embed their software.

Usually, car manufacturers rely on test procedures to measure their
system’s performances and safety properties. But testing can, at best,
yield statistical bounds on the absence of failures: The efficiency of
a system against a particular situation is not assessed before this sit-
uation is actually met during a real-world experiment. As the space
of possible situations is enormous (possibly infinite) and incidents
are rare events, one cannot assess that an autonomous vehicle will be
safe in every situation by relying on physical tests alone.

A current remedy is to use artificial data, and to augment the ac-
tual data with data generated by a simulation software, with several
benefits: Removing the need to collect data with expensive and time
consuming tests in the real world; Making it possible to generate po-
tentially hazardous scenarios precisely, e.g., starting with the most
common crash cases. Examples of such simulators are Carla [14]
and the NVIDIA Drive Constellation system. However, even if it is
possible to artificially generate corner cases more easily, the space
of possible scenarios is still enormous, and some accidents remain
completely unpredictable a priori by human test designers. For in-
stance, in a recent car accident involving partially self-driving tech-
nology, the manufacturer admitted that the camera failed to distin-
guish a white truck against a bright sky [19], causing the death of the
driver. Such a test case is difficult to come up with for a human, be-
cause it is the conjunction of specific environmental conditions and
specific driving conditions.

Our motivation is to bring an additional layer of trust, not rely-
ing on statistical arguments, but rather on formal guarantees. Our
long term objective is to be able to formalize a specification and to
provide guarantees on every possible scenario, automatically finding
violations of the specification. Because practitioners are now rely-
ing more and more on simulators, we propose as a first step to study
such simulated setting, and to formalize it. The idea is to rephrase
the verification problem in order to include both the deep learning
model and the simulator software within the verification problem.
As said earlier, a simulator offers more control on the learning data
by providing explicit parameters (for instance: number and positions
of pedestrians on the image).

3.2 Problem formulation and notations
Let f : X → Y be an algorithm taking a perceptual input x ∈ X and
yielding a decision y ∈ Y . The perceptual space X will typically be
of the form Rd or [0, 1]d. In the general framework of this work, f is
a program trained with a learning procedure on a finite subset of X
to perform a specific task (e.g., drive the passengers safely home). In
our example, the task would be to output a command from an image,
in which case, for a given image x, f(x) would be the driving action
taken when in environment x.

Let us denote by g : S →X the simulator, that is, a function taking
as input a configuration s ∈ S of parameters, and returning the result
of the simulation associated to these parameter values. A configura-
tion s of parameters contains all information needed by the simulator
to generate a perceptual input; each parameter may be a discrete or
continuous variable. Let us take as running example a simulator of
autonomous car images: s would contain the road characteristics, the
number of pedestrians and their positions, the weather conditions. . . ,
that is, potentially, thousands or millions of variables, depending on
the simulator realism.

The problem to solve here is the following: For a model f trained
on data belonging toX generated by g to perform a certain task, how
can we formulate and formally verify practical safety properties for
all possible x ∈ X , including samples never seen during training?

3.3 Including the simulator in the verification
In standard settings, such as the ones schematized in Figure 1, spec-
ifications express relationships from X to Y using a formulation of
f . But X is such a huge space that formulating properties that are
non trivial, let alone verify these, is prohibitively difficult, especially
in the case of perceptive systems where the domain of x cannot be

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

specified: all matrices in
(
[0, 255]3

)#pixels are images, technically,
but few of them make sense, and one cannot describe which ones.
Moreover, given an image x, the property to check might be difficult
to express, as, to state that all pedestrians were detected and avoided,
one needs to know whether there are pedestrians in x and where,
which we do not know formally from just the image x. And if one
had a way to retrieve such information from x (number and location
of pedestrians) without any mistake, one would have already solved
the initial problem, i.e., safe self-driving car.

Figure 1: Natural inputs with huge perceptual space: no characterization of
the input nor property can be formulated.

To summarize, in this setting, it is impossible to express a relevant
space for x and a property to verify Φ:

∀x ∈ ?, Φ?
(
f(x)

)
In the setting of simulated inputs, though it remains difficult to for-

mulate properties on the perceptual spaceX , we know that this space
is produced by g applied to parameters in S. On the contrary to X ,
S is a space where there exists an abstract, albeit simplistic charac-
terization of entities. Indeed, setting parameters for a pedestrian in
the simulated input yields a specification of what a pedestrian is in
X according to the inner workings of g. The procedure g transforms
elements s ∈ S, that represent abstracted entities, into elements x ∈
X that describe these entities in the rich perceptual space. To output
values in Y , f has to capture the inner semantics contained inX , that
is to say, to abstract back a part of S from X .

The above remark is the key to the proposed framework: If we in-
clude S and g alongside f , X and Y in the verification problem, then
all meaningful elements of S are de facto included. It then becomes
possible to formulate interesting properties, such as “given a simula-
tor that defines pedestrians as a certain pattern of pixels, does a model
trained on the images generated by this simulator avoid all pedestri-
ans correctly?”. Formally, to ensure that the output y = p ◦ g(s)
satisfies a property Φ for all examples x = g(s) that can ever be
generated by the simulator, the formula to check is of the form:

∀s ∈ S, Φ
(
s, p ◦ g(s)

)
The property Φ may depend on s indeed, as, in our running example,
s explicitly contains the information about the number of pedestrians
to be avoided as well as their locations.

Including S and g in a formal property to check requires to for-
mulate at least partially the multiple functions that compose g. De-
scribing precisely these procedures is a key problem that we plan to
address later.

As our framework relies on including the simulator in the verifica-
tion problem, we call it Certifying Autonomous deep Models Using
Simulators (CAMUS).

Figure 2: Generated inputs with integration of the generation procedure in
the verification problem. There are now new properties to check
since we have a formal characterization of the perceptual elements.

3.4 Separating perception and reasoning
Before the rise of deep learning, the perception function (which, e.g.,
recognizes a certain pattern of pixels as a pedestrian) and the control,
or reasoning function (which, e.g., analyzes the location of a pedes-
trian and proposes a decision accordingly) in vehicles were designed
and optimized separately. However, work such as [7] showed that
end-to-end learning can in general be a much more efficient alter-
native; there exist many incentives to adopt this end-to-end architec-
ture, mixing and training jointly the perception and control functions.
However, combining perception and reasoning into one model makes
the formulation of safety properties more difficult.

Thus in our description (see Fig. 3), we choose to separate the per-
ception and the reasoning functions, respectively in the components
p and r. The perception part p is in charge of capturing all relevant
information contained in the image, while the reasoning part r will
make use of this relevant information to output directives accordingly
to a specification.

One way to make sure that p retrieves all relevant information is to
require it to retrieve all information available, that is, to reconstruct
the full simulator parameter configuration s. In this setting, the output
s′ of the perception module p lies in the same space as the parameter
configuration space S, and the property we would like to be satisfy
can be written as p ◦ g = Id, which can be rewritten as:

∀s ∈ S, p ◦ g(s) = s (1)

This way, we ensure that the perception module p correctly perceives
all samples that could ever be generated by the simulator. In the case
some parameters are known not to be relevant (image noise, decora-
tion details, etc.), one can choose not to require to find them back,
therefore asking to retrieve only the other ones. For the sake of no-
tation simplicity, we will here consider the case where we ask to
reconstruct all parameters.

This separation between perception p and further reasoning r
brings modularity as an additional benefit: even when dealing with
different traffic regulations, it is only necessary to prove p once; the
verification of compliance towards local legislations and specifica-
tions by r can be done separately. It allows to reuse the complex
perception module with different reasoning modules r without need-
ing to re-prove it. Note also that r does not need to be as complex as
p, since it will work on much smaller spaces; multiple verifications
of r are then easier.

One could argue that this formulation makes the problem more
complex, and it indeed may be the case. However, our proposition is
aimed at safety, and in order to provide additional trust, it is some-
times necessary to formulate the problem differently. For instance,
there are good practices to structure the code to provide some safety
guarantees: bounded loops, correctly allocated and de-allocated ref-
erences, ban of function references, . . . are constructs that voluntarily
restrain the expressive power of the programming language to ensure

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Figure 3: Integration of the generation procedure in the verification, with split
between perception and reasoning: p learns to capture all the rele-
vant parameters; r learns to respect the specification. Verifying φ1
proves the perception module once and for all; verifying φ2 can
be done when the specification changes (e.g., for different driving
rules).

a safer behaviour. Hence, although this formulation might seem like
a step back with regard to the state-of-the-art, we argue that it pro-
vides a new way to formulate safety properties, and hence will be
beneficial in the long run.

3.5 Properties Formulation
Considering jointly the simulator g and the machine learning model
f , split in p and r, two families of properties are amenable to formal
checking:

• Φ1: perception module p has captured sufficient knowledge from
X ;

• Φ2: reasoning module r respects a specification property regard-
ing Y .

Families of property φ2 have been addressed in the literature - see
Section 2.2. The key point of the proposed approach is thus to obtain
a representation space that reliably yields semantic meaning, which
is the objective of Φ1. Since the simulator is included in the verifica-
tion problem, properties of family Φ1 can be written as relationships
between input parameter configurations s ∈ S and retrieved parame-
ter configurations s′ ∈ S, outputs of the perception module p. Strict
equality between s and s′ may be difficult to achieve, and is actually
not needed as long as the reasoning module r is able to deal with
small estimation errors.

Expressed in the proposed formalism, the perception task is equiv-
alent to finding (a good approximation of) S. Thus, a relaxed version
of property 1 to satisfy could be formalized as some tolerance ε > 0
on the reconstruction error ‖s′ − s‖ (for some metric ‖ · ‖):

∀s ∈ S, ‖s− p ◦ g(s)‖ 6 ε (2)

3.6 Discussion
As stated earlier, it is not always necessary to retrieve all parameters
of configuration s. For instance, one could seek to retrieve only the
correct number of pedestrians and their locations, from any image
generatable by the simulator. In this case, the output of p would be
just a few coefficients of s, and must consequently be characterized
differently (e.g., as belonging to a given subspace of S). This would
allow to express more flexible properties than simply reconstruct all
parameters.

For the model f to correctly generalize, the simulated data must
yield two characteristics:

1. they need to be sufficiently realistic (that is to say, they should
look like real-world images); if not the network could overfit the
simplistic representation provided by the simulator;

2. they must be representative of the various cases the model has to
take into account, to cover sufficiently diverse situations.

Additional characterization of the simulator would be difficult. For
instance, one could suggest to require the simulator g to be either
surjective or injective, in order to cover all possible cases x ∈ X ,
or for parameters to be uniquely retrievable. Yet, the largest part of
the perceptual space X is usually made of nonsensical cases (think
of random images in

(
[0, 255]3

)#pixels with each pixel color picked
independently: most are just noise), and the subspace of plausible
perceptual inputs is generally not characterizable (without which the
problem at hand would already be solved). Regarding injectivity, be-
ing one-to-one is actually not needed when dealing with properties
such as 2.

Finally, let us consider the case where several simulators are avail-
able, and where, given a perceptive system p, we would like to assert
properties of type Φ1 for each of the simulators. At first glance, as the
output of p consists of retrieved parameters, this would seem to re-
quire that all simulators are parameterized exactly identically (same
S). However, for real tasks, one does not need to retrieve all param-
eters but only the useful ones (e.g., number of pedestrians and their
locations), which necessarily appear in the configuration of all simu-
lators. As it is straightforward to build for each simulator a mapping
from its full list of parameters towards the few ones of interest, a
shared space for retrieved parameters can be defined, a unique per-
ception system p can be trained, and formal properties for all simu-
lators can be expressed.

4 Translating neural networks into logical
formulae

In previous section, we introduced two families of properties: Φ1

involves the simulator g, its parameter space S, the perceptual space
X where simulated data lie, and the perception unit p; Φ2 involves
the representation space learned by p (which should be a copy of S),
the reasoning unit r and its output space Y .

In order to be able to actually formulate properties of these fam-
ilies, we must first be able to represent all these elements as logical
formulae. The goal of this section is to introduce ONNX2SMT, a tool
to do so automatically.

ONNX2SMT provides an interface to all machine learning models
that use the Open Neural Network Exchange format [2], and trans-
lates them into the standard language SMT-LIB[5], allowing all state-
of-the-art generalist SMT solvers and deep learning verification spe-
cialized tools to work on a direct transcription of state-of-the-art neu-
ral networks. ONNX2SMT will be open-sourced to further help the
community effort towards safer deep learning software3.

4.1 ONNX and SMT-LIB
The Open Neural Network eXchange format (ONNX)4 is a com-
munity initiative kickstarted by Facebook and Microsoft, that aims
to be an open format for representing neural networks, compatible
across multiple frameworks. It represents neural networks as directed
acyclic graphs, each node of the graph being a call to an operation.
Common operations in machine learning and deep learning are tensor
multiplications, convolutions, activations functions, reshaping, etc. 5.

3 See https://www.lri.fr/˜gcharpia/camus/ for future release
4 https://onnx.ai/
5 Full list of supported operators is available at:

https://github.com/onnx/onnx/blob/master/docs/Operators.md

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

https://www.lri.fr/~gcharpia/camus/

Operations have predecessors and successors, describing the flow of
information in the network. The network parameters are also stored
in the ONNX graph. A wide variety of deep learning frameworks
support ONNX, including Caffe2, PyTorch, Microsoft CNTK, Mat-
Lab, SciKit-Learn and TensorFlow. Examples of use cases presented
in the official page6 include benchmarking models coming from dif-
ferent frameworks, converting a model prototyped using PyTorch to
Caffe2 and deploying it on embedded software.

SMT-LIB2 is a standard language used to describe logical formu-
lae to be solved using SMT solvers. Most state-of-the-art solvers im-
plement a SMT-LIB support, which facilitates benchmarks and com-
parisons between solvers. SMT-COMP [4] is a yearly competition
using SMT-LIB as its format. This challenge is a unique opportunity
to present different techniques used by solvers, to increase the global
knowledge of the SMT community. SMT-LIB2 supports expressing
formulae using bit vectors, Boolean operators, functional arrays, in-
tegers, floating points and real numbers, as well as linear and non-
linear arithmetic. In this work, only the Quantifier-Free Non linear
Real Arithmetic (QF NRA) theory will be used. Since the language
aims to be compatible with a wide variety of solvers, expressivity is
limited compared to languages such as Python, used by most deep
learning platforms. In particular, there is no built-in Tensor type, and
it is hence necessary to adapt the semantics of tensors to SMT-LIB2.
This adaptation is performed by ONNX2SMT.

4.2 Features
Features of ONNX2SMT include the support of the most common
operations in modern neural networks, such as tensors addition and
multiplication, maxpooling and convolution on 2D inputs. Support
for a wider range of operators (such as reshaping or renormalization
operators) is on-going work.

ONNX being a low-level standard, ONNX2SMT uses a Neural
IntErmediate Representation (NIER) to perform optimizations and
modifications of the NN structure, e.g., by avoiding superfluous vari-
able creation during the flattening of the tensors that results from
broadcast. While ONNX is considered a standard, it is a rather per-
missive one, as networks generated by PyTorch and TensorFlow, for
example, will not store the same information in the same fields. Our
intermediate representation therefore provides the unification neces-
sary to the more strict SMT-LIB standard. Finally, NIER also allows
our planned work of offering an ouput to CP and MIP solvers that
are not always compatible with SMT-LIB standard.

The conversion from ONNX to NIER is performed thanks to the
reference protobuf description of ONNX, converted to OCaml types
using the piqi7 tool suite. ONNX2SMT provides straightforward
conversion from ONNX to SMT-LIB, using NIER as an intermediate
representation.

All the features described above allow us to encode machine learn-
ing models (p and r) as SMT formulae. X and Y can be expressed
directly using QF NRA existing primitives. Future work will provide
an additional mechanism to encode g and S.

4.3 Usage
ONNX2SMT workflow can be summarized as follows:
Input: an ONNX file created using an ML framework;
1. Convert the ONNX model to NIER (onnx parser);
2. Convert NIER to a SMT-LIB (smtifyer) string, written on disk;

6 https://github.com/onnx/tutorials/
7 https://github.com/alavrik/piqi

3. Add the property to validate to the existing SMT-LIB file;
Output: An SMT-LIB file that can be solved to prove the property.

5 Experiments
As a proof of concept for the proposed framework, it is applied
it to a simple synthetic problem. Neural networks are trained with
PyTorch[31], then converted into ONNX using the built-in ONNX
converter, and finally converted into the intermediate representation
in SMT-LIB format with ONNX2SMT. We use z3[13], CVC4[3],
YICES[16] and COLIBRI[28] SMT solvers as standard verification
tools.

Let us consider here the perception module of an autonomous ve-
hicle, whose goal is to output driving directives that result in safe
driving behaviour. The perception module is modeled as a deep neu-
ral network with one output node, taking as input an image. If an
obstacle lies in a pre-defined “danger zone”, the network should out-
put a “change direction” directive. Otherwise, it should output a “no
change” directive.

The “simulator” is here a Python script, taking as input the number
and the locations on the image of the one-pixel wide obstacles and
generating the corresponding black-and-white images.

The verification problem consists in the formulation of the net-
work structure and constraints on the inputs, and in the following
properties to check:

1. verify that an input with an obstacle (or several ones) in the danger
zone will always lead to the “change direction” directive;

2. verify that an input without obstacle on the danger zone will never
lead to the “change direction” directive.

If both properties are verified, our model is perfect for all the inputs
that can be generated. If the first one is not verified, our verification
system will provide examples of inputs where our model fails, which
can be a useful insight on the model flaws. Such examples could be
used for further more robust training, i.e., integrated into a future
training phase to correct the network misclassifications. Similarly,
if the second property is not verified, the solver will provide false
positives, that can help designers reduce erroneous alerts and make
their tools more acceptable for the end-user.

Experimental setting
In this toy example, input data are N × N black-and-white im-
ages (see Fig. 4 for examples). The space of possible simulated data
g(S) ⊂ X can simply be described by the constraint that each
pixel can only take two values (0 and 1). In real life, data are much
more complex, possibly continuous; such data can also be handled
in our framework, though experimenting with realistic simulators is
the topic of future work. The neural network is fully-connected with
two hidden layers. The number of neurons in the first and second
hidden layers are respectively one half and one quarter of the flat-
tened size of the input (N2). We used Glorot to initialize weights,
with a gain of 1. The network was trained with Adam optimizer for
2000 epochs, batch size of 100, using the binary cross entropy loss.
The danger zone is defined as the bottom half part of the image. Any
image with at least one white pixel in this zone should then yield a
“change direction” directive.

Here, constraints on inputs are encoded as statements on the SMT-
LIB variables. A fragment of property to check is presented on Figure
5. On such a simple problem, the decomposition perception/reason-
ing is not needed, since there exists a formal characterization of what

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Figure 4: Example of inputs for the toy problem. White pixels represent ob-
stacles. If they are in the top half of the image, no alert should be
fired (first two exemples), while an alert should be fired if at least
one lies in the (dashed) bottom half of the image (last two exam-
ples). 9x9 picture is depicted here for clarity.

;;;; Automatically generated part
;; Inputs declaration
(declare-fun |actual_input_0_0_0_8| ()

Real)
. . .

;; Weights declaration
(declare-fun |l_1.weight_31_4| () Real)
(assert (= |l_1.weight_31_4| (/ -5585077

33554432)))
. . .

;; An example of encoded calculation
(assert (= |8_0_0_0_39| (* |

actual_input_0_0_0_8| (+ |7_80_39| (*
|actual_input_0_0_0_7| (+ |7_79_39| (*
|actual_input_0_0_0_6| (+ |7_78_39|

. . .
;; Outputs declaration
(assert (= |actual_output_0_0_0_1| (+ |16

_0_0_0_1| |l_3.bias_1|)))
. . .

;;;; Handmade annotations
;; Simulator description
;; Input space constraints:
;; inputs between 0 and 1
(assert (or (= actual_input_0_0_0_8 0) (=

actual_input_0_0_0_8 1)))
. . .

;; Property to check
;; ‘‘If at least one input in
;; the danger zone is white...’’
(assert
(or
(or (= actual_input_0_0_0_5 1.)

(= actual_input_0_0_0_6 1.))
(or (= actual_input_0_0_0_7 1.)

(= actual_input_0_0_0_8 1.))
. . .

;; Formulate constraint on outputs
;; ‘‘... then output for detected
;; obstacle always higher
;; than for no obstacle’’
(assert (> actual_output_0_0_0_0

actual_output_0_0_0_1))

Figure 5: A SMTLIB2 file describing our problem. First part is a full de-
scription of the network, automatically produced by ONNX2SMT.
Handmade annotations describe the property to check, i.e. there are
no false negatives in our network. The goal for the solver is to find
a counterexample.

an obstacle is. All network’s parameters were converted using the QF
NRA theory.

Results
We present preliminary results forN ∈ {3, 5, 7}. The goal was to re-
turn UNSAT, meaning no counterexample to the property was found.
Under the hypothesis that the space of all possible data is described
by the simulator (which is the case here), the model will never fail to
detect obstacles. Runtimes are available in Table 2. For N = 5 and
N = 7, most of possible input configurations were not seen in the
training or test sets. Yet, the network is proven always correct, which
shows interesting generalization abilities. We were thus able to ver-
ify quickly that this perceptive module will never miss obstacles, at
least for inputs generable by the simulator.

N 3 5 7
Train set size 461 500 500
Test set size 51 500 500

Total possible number of samples 512 2672 19650

Table 1: Total number of possible samples for each N .

N z3 CVC4 YICES COLIBRI
3 0.04s 0.08s TIMEOUT UNKNOWN
5 30.2s 61.2s TIMEOUT TIMEOUT
7 434s TIMEOUT TIMEOUT TIMEOUT

Table 2: Runtimes of solvers to answer UNSAT. TIMEOUT is one hour.

6 Discussion and perspectives
We introduced CAMUS, a formalism describing how to formally ex-
press safety properties on functions taking simulated data as input.
We also proposed ONNX2SMT, a tool soon to be open sourced, that
leverages two standards used by the communities of formal meth-
ods and machine learning, to automatically write machine learning
algorithms as logical formulae. We demonstrated the joint use of
ONNX2SMT and CAMUS on a synthetic example mimicking a self-
driving car perceptive unit, as a proof of concept of our framework.
This toy example is of course still simplistic and much work on scal-
ability is needed before real self-driving car simulators can be incor-
porated into formal proofs.

Among future work, ONNX2SMT will be released (see https:
//www.lri.fr/˜gcharpia/camus/) and gain support for
more deep learning operations. While we provide a toolkit to trans-
late neural networks directly in our framework, a way to easily rep-
resent a simulator is yet to include. It is not an easy task, since the
simulator must be describable with sufficient granularity to allow the
solver to use the simulator internal working to simplify the verifi-
cation problem. A scene description language with a modelling lan-
guage for simulators is a possible answer to these issues. Further
theoretical characterization of the simulator procedure and its link
with the perceptive unit will be undertaken, for instance to encom-
pass stochastic processes. Besides, on more complex simulators, pro-
grams and examples, the problem to verify will remain computation-
ally difficult. Various techniques to enhance solvers performances
will be developed and integrated in CAMUS, taking advantage of
the domain knowledge provided by the simulators parameters. Fi-
nally, our current framework checks properties for all possible in-
puts, including anomalous ones such as adversarial attacks. A pos-
sible extension would be to identify “safe” subspaces instead, where
perception is guaranteed to be perfect, and “unsafe” subspaces where
failures may happen.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

https://www.lri.fr/~gcharpia/camus/
https://www.lri.fr/~gcharpia/camus/

Acknowledgment

The work of J. Girard-Satabin was partially funded by a Ph.D. grant
of the French Ministry of Defence, while Z. Chihani was partially
funded by projects SPARTA and CPS4EU.

REFERENCES
[1] Alexandre Araujo, Rafael Pinot, Benjamin Negrevergne, Laurent Me-

unier, Yann Chevaleyre, Florian Yger, and Jamal Atif, ‘Robust Neural
Networks using Randomized Adversarial Training’, arXiv:1903.10219
[cs, stat], (March 2019). arXiv: 1903.10219.

[2] Junjie Bai, Fang Lu, Ke Zhang, et al. Onnx: Open neural network ex-
change. https://github.com/onnx/onnx, 2019.

[3] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovi’c, Tim King, Andrew Reynolds, and Cesare Tinelli,
‘CVC4’, in Proceedings of the 23rd International Conference on Com-
puter Aided Verification (CAV ’11), eds., Ganesh Gopalakrishnan and
Shaz Qadeer, volume 6806 of Lecture Notes in Computer Science, pp.
171–177. Springer, (July 2011). Snowbird, Utah.

[4] Clark Barrett, Leonardo De Moura, and Aaron Stump, ‘Smt-comp: Sat-
isfiability modulo theories competition’, in International Conference on
Computer Aided Verification, pp. 20–23. Springer, (2005).

[5] Clark Barrett, Pascal Fontaine, and Aaron Stump, ‘The SMT-LIB Stan-
dard’, 104.

[6] Clark Barrett and Cesare Tinelli, ‘Satisfiability modulo theories’, in
Handbook of Model Checking, 305–343, Springer, (2018).

[7] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard
Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Mon-
fort, Urs Muller, Jiakai Zhang, et al., ‘End to end learning for self-
driving cars’, arXiv preprint arXiv:1604.07316, (2016).

[8] Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca
Daniel, ‘CNN-Cert: An Efficient Framework for Certifying Robust-
ness of Convolutional Neural Networks’, arXiv:1811.12395 [cs, stat],
(November 2018). arXiv: 1811.12395.

[9] Rudy Bunel, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and
M. Pawan Kumar, ‘A Unified View of Piecewise Linear Neural Net-
work Verification’, arXiv:1711.00455 [cs], (November 2017). arXiv:
1711.00455.

[10] Nicholas Carlini and David Wagner, ‘Towards Evaluating the Ro-
bustness of Neural Networks’, arXiv:1608.04644 [cs], (August 2016).
arXiv: 1608.04644.

[11] Florian Chabot, Mohamed Chaouch, Jaonary Rabarisoa, Céline
Teulière, and Thierry Chateau, ‘Deep manta: A coarse-to-fine many-
task network for joint 2d and 3d vehicle analysis from monocular im-
age’, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2040–2049, (2017).

[12] Patrick Cousot and Radhia Cousot, ‘Abstract Interpretation: A Uni-
fied Lattice Model for Static Analysis of Programs by Construc-
tion or Approximation of Fixpoints’, in Proceedings of the 4th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages, POPL ’77, pp. 238–252, New York, NY, USA, (1977). ACM.

[13] Leonardo De Moura and Nikolaj Bjørner, ‘Z3: An efficient smt solver’,
in Proceedings of the Theory and Practice of Software, 14th Interna-
tional Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS’08/ETAPS’08, pp. 337–340, Berlin, Hei-
delberg, (2008). Springer-Verlag.

[14] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez,
and Vladlen Koltun, ‘CARLA: An open urban driving simulator’, in
Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–
16, (2017).

[15] Tommaso Dreossi, Daniel J Fremont, Shromona Ghosh, Edward Kim,
Hadi Ravanbakhsh, Marcell Vazquez-Chanlatte, and Sanjit A Seshia,
‘Verifai: A toolkit for the formal design and analysis of artificial
intelligence-based systems’, in International Conference on Computer
Aided Verification, pp. 432–442. Springer, (2019).

[16] Bruno Dutertre and Leonardo De Moura, ‘The yices smt solver’, Tech-
nical report, (2006).

[17] Nic Ford, Justin Gilmer, Nicolas Carlini, and Dogus Cubuk, ‘Adver-
sarial Examples Are a Natural Consequence of Test Error in Noise’,
arXiv:1901.10513 [cs, stat], (January 2019). arXiv: 1901.10513.

[18] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy, ‘Explain-
ing and Harnessing Adversarial Examples’, arXiv:1412.6572 [cs, stat],
(December 2014). arXiv: 1412.6572.

[19] Andrew J. Hawkins, ‘Tesla didnt fix an autopilot problem for three
years, and now another person is dead’, The Verge, (May 2019).

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, ‘Deep
Residual Learning for Image Recognition’, arXiv:1512.03385 [cs],
(December 2015). arXiv: 1512.03385.

[21] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom,
Brandon Tran, and Aleksander Madry, ‘Adversarial Examples Are Not
Bugs, They Are Features’, arXiv:1905.02175 [cs, stat], (May 2019).
arXiv: 1905.02175.

[22] Tero Karras, Samuli Laine, and Timo Aila, ‘A style-based generator ar-
chitecture for generative adversarial networks’, in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp.
4401–4410, (2019).

[23] Guy Katz, Clark Barrett, David Dill, Kyle Julian, and Mykel Kochen-
derfer, ‘Reluplex: An Efficient SMT Solver for Verifying Deep Neu-
ral Networks’, arXiv:1702.01135 [cs], (February 2017). arXiv:
1702.01135.

[24] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher
Lazarus, Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Alek-
sandar Zelji, David L. Dill, Mykel J. Kochenderfer, and Clark Barrett,
‘The Marabou Framework for Verification and Analysis of Deep Neu-
ral Networks’, in Computer Aided Verification, eds., Isil Dillig and Ser-
dar Tasiran, volume 11561, 443–452, Springer International Publish-
ing, Cham, (2019).

[25] Alexey Kurakin, Ian Goodfellow, and Samy Bengio, ‘Adversarial ex-
amples in the physical world’, arXiv:1607.02533 [cs, stat], (July 2016).
arXiv: 1607.02533.

[26] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu, ‘Towards Deep Learning Models Resis-
tant to Adversarial Attacks’, arXiv:1706.06083 [cs, stat], (June 2017).
arXiv: 1706.06083.

[27] Guido Manfredi and Yannick Jestin, ‘An introduction to acas xu and the
challenges ahead’, in 2016 IEEE/AIAA 35th Digital Avionics Systems
Conference (DASC), pp. 1–9. IEEE, (2016).

[28] Bruno Marre, François Bobot, and Zakaria Chihani, ‘Real behavior of
floating point numbers’, (2017).

[29] Matthew Mirman, Timon Gehr, and Martin Vechev, ‘Differentiable Ab-
stract Interpretation for Provably Robust Neural Networks’, 9.

[30] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow, ‘Trans-
ferability in Machine Learning: from Phenomena to Black-Box At-
tacks using Adversarial Samples’, arXiv:1605.07277 [cs], (May 2016).
arXiv: 1605.07277.

[31] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer, ‘Automatic differentiation in PyTorch’, in NIPS Au-
todiff Workshop, (2017).

[32] Luca Pulina and Armando Tacchella, ‘An Abstraction-Refinement Ap-
proach to Verification of Artificial Neural Networks’, in CAV, (2010).

[33] Mirco Ravanelli, Titouan Parcollet, and Yoshua Bengio, ‘The PyTorch-
Kaldi Speech Recognition Toolkit’, arXiv:1811.07453 [cs, eess],
(November 2018). arXiv: 1811.07453.

[34] Carl-Johann Simon-Gabriel, Yann Ollivier, Lon Bottou, Bernhard
Schlkopf, and David Lopez-Paz, ‘First-order Adversarial Vulnerabil-
ity of Neural Networks and Input Dimension’, arXiv:1802.01421 [cs,
stat], (June 2019). arXiv: 1802.01421.

[35] Gagandeep Singh, Timon Gehr, Markus Pschel, and Martin Vechev, ‘An
Abstract Domain for Certifying Neural Networks’, 3, 30.

[36] Gagandeep Singh, Timon Gehr, Markus Pschel, and Martin Vechev,
‘Robustness Certification with Refinement’, (September 2018).

[37] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-
mitru Erhan, Ian Goodfellow, and Rob Fergus, ‘Intriguing properties
of neural networks’, arXiv:1312.6199 [cs], (December 2013). arXiv:
1312.6199.

[38] Vincent Tjeng, Kai Xiao, and Russ Tedrake, ‘Evaluating Robustness of
Neural Networks with Mixed Integer Programming’, arXiv:1711.07356
[cs], (November 2017). arXiv: 1711.07356.

[39] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman
Jana, ‘Formal Security Analysis of Neural Networks using Symbolic
Intervals’, arXiv:1804.10829 [cs], (April 2018). arXiv: 1804.10829.

[40] Eric Wong and J. Zico Kolter, ‘Provable defenses against adversarial
examples via the convex outer adversarial polytope’, (November 2017).

[41] Zhewei Yao, Amir Gholami, Peng Xu, Kurt Keutzer, and Michael Ma-
honey, ‘Trust Region Based Adversarial Attack on Neural Networks’,
arXiv:1812.06371 [cs, stat], (December 2018). arXiv: 1812.06371.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

https://github.com/onnx/onnx

	Introduction
	Related work
	Adversarial robustness: a local property
	Proving global properties in non-perceptual space
	Tools for provable deep learning robustness

	CAMUS: a new formalism to specify and verify machine learning models
	Motivation
	Problem formulation and notations
	Including the simulator in the verification
	Separating perception and reasoning
	Properties Formulation
	Discussion

	Translating neural networks into logical formulae
	ONNX and SMT-LIB
	Features
	Usage

	Experiments
	Discussion and perspectives

