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Abstract. Accurately predicting drug-target binding affinity (DTA)
in silico is a key task in drug discovery. Most of the conventional D-
TA prediction methods are simulation-based, which rely heavily on
domain knowledge or the assumption of having the 3D structure of
the targets, which are often difficult to obtain. Meanwhile, tradition-
al machine learning-based methods apply various features and de-
scriptors, and simply depend on the similarities between drug-target
pairs. Recently, with the increasing amount of affinity data available
and the success of deep representation learning models on various
domains, deep learning techniques have been applied to DTA predic-
tion. However, these methods consider either label/one-hot encod-
ings or the topological structure of molecules, without considering
the local chemical context of amino acids and SMILES sequences.
Motivated by this, we propose a novel end-to-end learning frame-
work, called DeepGS, which uses deep neural networks to extract the
local chemical context from amino acids and SMILES sequences, as
well as the molecular structure from the drugs. To assist the opera-
tions on the symbolic data, we propose to use advanced embedding
techniques (i.e., Smi2Vec and Prot2Vec) to encode the amino acids
and SMILES sequences to a distributed representation. Meanwhile,
we suggest a new molecular structure modeling approach that work-
s well under our framework. We have conducted extensive experi-
ments to compare our proposed method with state-of-the-art models
including KronRLS, SimBoost, DeepDTA and DeepCPI. Extensive
experimental results demonstrate the superiorities and competitive-
ness of DeepGS.

1 Introduction
Effectively predicting drug-target binding affinity (DTA) is one of
the important problems in drug discovery. Drugs (or ligands) [17]
are chemical compounds, each of which can be represented by both
a molecule graph with atoms as nodes and chemical bonds as edges,
and a string obtained from the Simplified Molecular Input Line En-
try System (SMILES) [36]. Targets (or proteins) are sequences of
amino acids. Binding affinity indicates the strength of the interaction-
s of drug-target pairs. Through binding, drugs can have a positive or
negative influence on functions carried out by proteins, affecting the
disease conditions [39]. By understanding drug-target binding affin-
ity, it is possible to find out candidate drugs that are able to inhibit
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the target/protein and benefits many other bioinformatic applications
[28, 18, 25]. As a result, DTA prediction has received much attention
in recent years [3, 14, 38].

Early approaches for DTA prediction can be roughly classified in-
to two types: (i) simulation-based methods, and (ii) traditional ma-
chine learning-based methods. Simulation-based methods rely on do-
main knowledge [21] or the 3D structure of target/protein [30, 9],
which are often difficult to obtain. Meanwhile, traditional machine
learning-based methods apply various features [32, 8] and descrip-
tors [7, 13, 6], and simply depend on the similarities between drug-
target pairs [35, 40, 19]. Recently, owing to the remarkable success in
various machine learning tasks (e.g., image recognition and natural
language processing), deep learning-based methods are also exploit-
ed for DTA prediction [23]. These methods consider either label/one-
hot encodings or the topological structure of molecules, they, how-
ever, do not consider the local chemical context of amino acids and
SMILES sequences. It is easily understood that the topological struc-
ture information provides an overview of how the atoms are connect-
ed, while the local chemical context reveals the functionality of the
atoms, like the semantic meaning of a word in a sentence. These two
types of information complement each other and are both important
for DTA prediction. It should be meaningful and interesting to take
these two types of information consideration together. To this end,
this paper proposes a novel end-to-end learning framework for D-
TA prediction, namely Deep representation learning framework for
Graphs and Sequences (DeepGS).

In a nutshell, our framework consists of three major building
blocks. One of the major blocks learns low-dimension vector repre-
sentations for target/protein sequences, using a convolutional neural
network (CNN). The other two blocks learn two representations for
drugs, by using a graph attention network (GAT) and a bi-directional
gate recurrent unit (BiGRU), respectively. Specifically, (i) the CN-
N and BiGRU blocks extract local chemical context information of
amino acids in targets and atoms in drugs, respectively. Since the
label/one-hot encodings of amino acids and atoms often neglect the
context information, and motivated by the idea of Word2Vec [20], we
leverage advanced techniques, Smi2Vec and Prot2Vec, to encode the
amino acids and atoms to a distributed representation, before plug-
ging them to CNN and BiGRU. (ii) The newly designed GAT-based
molecular structure modeling approach extracts the topological fea-
tures of drugs, by aggregating the representations of r-radius sub-
graphs. (iii) The learned representations for both drugs and targets
are then passed to a neural network to predict the binding affinity.

Different from the existing simulation-based methods, our frame-
work needs neither expert knowledge nor 3D structure of the tar-
gets, and so it could be more easy-to-use. Additionally, the proposed
framework takes advantage of the local chemical context information
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of atoms/amino acids in drugs/proteins and uses a newly designed
molecular structure modeling approach, which differ DeepGS from
the existing deep learning models. To summarize, the main contribu-
tions of this paper are listed as follows:

• We propose a novel model DeepGS for DTA prediction. To the
best of knowledge, this work is the first to consider both local
chemical context and topological structure to learn the interaction
between drugs and targets.

• We conduct extensive experiments to study the performance of our
proposed method, based on both small and large benchmarking
datasets. The experimental results demonstrate (i) the promising
performance of our proposed model, (ii) considering jointly local
chemical context and topological structure is effective, and (iii)
the newly designed molecular structure modeling approach works
well under our proposed framework. (The codes of our method are
available at https://github.com/jacklin18/DeepGS.)

The rest of the paper is organized as follows. In Section 2, we
introduce the proposed method for drug-target binding affinity pre-
diction. In Section 3, we report and analyze the performance of our
method. Section 4 reviews the related work. Finally, we conclude the
paper in Section 5.

2 The Proposed Method
In this section, we first provide an overview of the proposed Deep-
GS framework (Section 2.1). Then, we introduce the representation
learning for drugs and targets, respectively (Sections 2.2∼2.3). Final-
ly, we discuss the binding affinity prediction with DeepGS (Section
2.4).

2.1 Overview of DeepGS
Figure 1 shows the overview of DeepGS. It takes the symbolic se-
quences of target/protein and drug, as well as the molecular structure
of the drug as the input. It outputs the binding affinity for the drug-
target pair. Remind that the central idea of DeepGS is to consider
both local chemical context and the molecular structure, by using
some embedding techniques (i.e., Smi2Vec and Prot2Vec) to encode
the amino acids and atoms to a distributed representation. Therefore,
we design DeepGS as a three-step framework for DTA prediction:

1. Encoding symbolic tokens in target/drug sequences;
2. Encoding the whole drug/target sequences and the molecular

structure of the drug;
3. Predicting the binding affinity value based on the encodings of the

drug and the target.

Specifically, motivated by Word2Vec [20], in the first step we en-
code the symbols in the sequence of the target/protein and the drug
to a distributed representation, by using Prot2Vec and Smi2Vec, re-
spectively. Then, the sequences can be transformed into matrices,
where each row is the representation of a symbol in the sequences.
In the second step we extract features, from the drug/target matrices
and the molecule graph, to encode the whole sequences and graph.
For the target/protein, we consider the local chemical context of the
amino acids, by using a convolutional neural network (CNN). For the
drug, we consider both the molecular structure and the local chemical
context. Particularly, since the molecular structure can be represent-
ed by a graph, we suggest a graph attention network (GAT) based
approach to extract the topological information of the drug. In the
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Figure 1. Overview of DeepGS.

meantime, the local chemical context of atoms in the drug is cap-
tured, by using a bi-directional gated recurrent unit (BiGRU). As a
result, we obtain a latent representation for the target and two laten-
t presentations for the drug. To predict the binding affinity, in the
third step DeepGS inputs the concatenation of the three latent rep-
resentations to a stack of fully connected layers, and outputs a real
value binding affinity. Next, we present the details of our method.

2.2 Representation Learning for Drug

2.2.1 Local Chemical Context Modeling

Drugs are often presented in the format of SMILES (Simplified
Molecular-Input Line-Entry System), a specification in the form of
a line notation for describing the structure of chemical compound
[36]. For example, the SMILES string of the drug in Figure 1 is “C-
C1=C2C=C(C=CC...”, which is a sequence of atoms and covalent
bonds. For ease of representation, we consider both atoms and co-
valent bonds as symbolic tokens, and so the SMILES sequence is
a sequence of symbols. To encode the SMILES sequence, existing
deep learning approaches such as DeepDTA [31] use label/one-hot
encoding to represent each symbol in the SMILES sequence. How-
ever, label/one-hot encoding often neglects the context of the sym-
bol, and thus cannot reveal the functionality of the symbol within the
context. To remedy this, we propose to use Smi2Vec [26], a method
similar to Word2Vec [20, 15, 27], to represent the symbols in the S-
MILES sequence. Algorithm 1 shows the pseudo-codes of encoding
SMILES symbols, based on the pre-trained Smi2Vec embeddings. In
general, a SMILES string with fixed length, say m, is divided into a
separate atom or symbol (Line 1). Then, it maps the atom by look-
ing up each of the atom embeddings from the pre-trained dictionary,
while it randomly generates values if it is not in the dictionary (Lines
2-6). Finally, it constructs an atom matrix A by aggregating embed-
ding vectors (Lines 7-8), where each line represents the pre-trained
vector of an atom.

Motivated by the gate function in GRU [5], we apply a 1-layer Bi-
GRU on the resulting matrix to obtain a latent representation of the
drug, which allows us to model the local chemical context. Note that
BiGRU takes a fix-sized of matrix as the input, while the length of
SMILES strings may vary. One simple solution is to fix the length
of input sequence at approximately average length of the SMILES
string in the dataset, and apply zero-paddings at the end of the input
sequences. As we will show later in Section 3, an appropriate length
(e.g., larger than the average length of sequences in the dataset) does
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Algorithm 1: Smi2Vec
Input: a molecule s in the format of SMILES, dictionary D,

atom vector’s fixed length m, vector dimension d.
Output: atom matrix A

1 atom set {xj |1 ≤ j < |s|} ←− split(s)
2 for j=1 to m do
3 if xj /∈ dictionary then
4 embedding vector aj ←− randomly generated value

∈ <d

5 else
6 aj

map←−−− xj // by using D
7 atom matrix A←−

∑m
j=1 aj

8 return A ∈ <m×d

not make the performance of our framework change a lot. Consider-
ing the training efficiency and the DTA performance, it is suggested
that a small number is a good trade-off between efficiency and per-
formance.

2.2.2 Molecular Structure Modeling

In addition to the local chemical context, we exploit the molecular
structure to uncover how the atoms connect in the drug. The molecu-
lar structure is an important cue for DTA prediction [31]. To achieve
this, we can first use the RDKit [11] tool to transform SMILES string
of a chemical compound into a molecule graphG = (V,E), in which
the node vi ∈ V represents the i-th atom, and eij ∈ E represents
the chemical bond between the i-th and the j-th atoms. Then, we
can learn a graph attention network (GAT) [33] from the molecule
graphsG. To apply GAT on molecule graph, we can encode all atom-
s and chemical bonds to a d-dimensional vector, and aggregates the
information from the r-radius subgraph for each atom in the molec-
ular graph, where r is the number of hops from an atom. Algorith-
m 2 shows the pseudo-codes of applying GAT on molecule graphs.
Specifically, it first computes an initial vector concatenating the fin-
gerprint (i.e., the r-radius subgraph) and the adjacent information
for each atom (Lines 1-4). Here it leverages Weisfeiler-Lehman al-
gorithm to extract the fingerprint of the atoms. Then, it updates the
atom vectors by propagating the information from its neighboring n-
odes (Lines 5-6). Finally, it aggregates the atom vectors to obtain the
representation of the molecule (Line 7), each of which contains the
r-radius subgraph information.

Algorithm 2: GAT on molecule graph
Input: Molecule graph G = (V,E), radius R
Output: a vector ymolecule for a molecule

1 for each node vi ∈ V do
2 adj(vi)← extract adjacency(G)
3 fp(vi)← extract fingerprints(vi, G,R)
4 Vin ← [adj(vi); fp(vi)]

5 for each node vi ∈ V do
6 update Vin ← Vin +

∑
vj∈Neighbors(vin) GATConv(Vj)

7 return ymolecule←
∑V

v1
Vin

2.3 Representation Learning for Target/Protein
Targets/proteins are often represented as a sequence of amino acid-
s (e.g., MKKFFDSRREQ... shown in Figure 1). Similar to the S-

MILES string, we propose to first encode the amino acids into a d-
dimensional vector following Prot2Vec [2], which allows us to cap-
ture local chemical information in targets/proteins. As a single amino
acid often makes no sense, we apply a fixed-length N -gram split-
ting approach to partition the sequence into meaningful “biological
words”. Note that, here the sequence refers to the fixed-length in-
put protein sequence (instead of the full sequences), which is pre-
processed as similar as we handle the SMILES strings (recall Sec-
tion 2.2). Compared to the commonly used label encoding method-
s, the fixed-length N -gram divides the sequence into a sequence of
N -grams. Each N -gram is considered as a “biological word”. Intu-
itively, it can generates more “words context” than label encoded by
one-hot encoding.

Considering that there are generally 20 kinds of amino acids, ren-
dering that the maximum number of possible N-grams is 20N . To
make trade-off between the training feasibility and vocabulary size,
in our paper we define N = 3. Specifically, given a protein or target
sequence L = {xi|(i = 1, 2, ..., |l|)}, where xi represents the i-th
amino acid and |l| represents the sequence length, the fixed-length
3-gram splitting method partitions the sequence into the following
3-grams, each of which is a biological word consisting of 3 amino
acids: [x1;x2;x3], [x4;x5;x6], ..., [x|l|−2;x|l|−1;x|l|]. For each bi-
ological word, we map it to an embedding vector by looking up a pre-
trained embedding dictionary for 9048 words [2], which is obtained
from Swiss-Prot (https://www.uniprot.org/) with 560,118 manually
annotated sequences. As a result, we transform each target sequence
to a matrix, in which each row is the embedding of a biological word.
The matrix is then fed into a CNN to extract the local chemical con-
text of the target. It is worth noting that, different from the early
ligand-based approach [13] that neglects the local context informa-
tion in targets/proteins, our solution above leverages the embedding
technique to learn the representation from the protein sequence.

2.4 Drug-target Binding Affinity Prediction
In this study, we look on drug-target prediction as a regression task
by predicting the binding affinity values. With the representation
learned from the previous sections, we can integrate all the infor-
mation from drugs and targets to predict the binding affinity. In brief,
we concatenate all the representations and feed them to three fully-
connected dense layers to output the affinity value. More precisely,
for the GAT block, we use two graph attention layers to update the
node vectors in a graph considering their neighbor nodes. For the
CNN block, we use three consecutive 2D-convolutional layers. And
for the BiGRU block, we use one BiGRU layer. Besides, we use Rec-
tified Linear Unit (ReLU) [22] as the activation function, which has
been commonly adopted in deep learning research. Given a set of
drug-target pairs and the ground-truth affinity values in the training
dataset, we can use the mean square error (MSE) as the loss function:
LMSE = 1

N

∑N
i=1 (ŷi − yi)

2, where ŷi is the predicted value, yi is
the ground-truth value, and N represents the number of drug-target
pairs.

3 Experiments
In this part, we first describe the experimental settings (Section 3.1).
Then, we compare our proposed method with state-of-the art mod-
els (Section 3.2). Besides, we conduct more experiments to analyze
our model including the prediction performance and sensitiveness
(Section 3.3). Finally, we conduct an ablation study to investigate the
effectiveness of main strategies suggested in the paper (Section 3.4).
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3.1 Experimental Setup
3.1.1 Datasets

Following prior works [23, 12], we employed widely-used datasets
that are specialized for DTA prediction:

• The Davis dataset, which contains 68 drugs and 442 targets with
30,056 drug-target interactions.

• The KIBA dataset, which originally comes from a method named
Kinase Inhibitor BioActivity (KIBA), and it introduces KIBA s-
cores with integration of the statistic information of Kd, Ki and
IC50 into a single bioactivity score for drug-target interaction.
The dataset contains 2,111 drugs and 229 targets with 118,254
interactions after processing [23].

We randomly split the datasets into 6 subsets with the equal size, and
used five of them for training and the remaining one for testing. For
Davis dataset, we use theKd values transformed into log space, pKd,
as the binding affinity value. For KIBA dataset, it integrated from
multiple sources (i.e., Ki, Kd, and IC50) into a bioactivity matrix,
we use the value (i.e., KIBA-values) in matrix as the binding affinity
value.

3.1.2 Evaluation Metrics

We used four metrics commonly used in regression task (recall Sec-
tion 2.4) to evaluate the performance. They include: Mean Squared
Error (MSE), Concordance Index (CI), r2m, and Area Under Preci-
sion Recall (AUPR) score.

MSE has been defined in the previous section as the objective
of DeepGS. CI [23] measures whether the predicted binding affin-
ity values rank the corresponding drug-target interactions in the
same order as the ground-truth does. It is computed as CI =
1
Z

∑
yi>yj

ζ(fi − fj) and ζ(b) = {1, b > 0; 0.5, b = 0; 0, b < 0},
where Z is a normalization constant that equals the number of drug-
target pairs with different binding affinity values. More specifically,
when yi > yj , a positive score is given if and only if the predicted
fi > fj . Here, ζ(b) is a step function.

The metric r2
m is used to evaluate the external prediction perfor-

mance of QSAR (Quantitative Structure-Activity Relationship) mod-
els. A model is acceptable if and only if r2m ≥ 0.5. And r2m =
r2 ∗ (1 −

√
r2 − r20), where r2 and r20 represent the squared corre-

lation coefficient values between the observed and predicted values
with and without intercept, respectively.

The AUPR score is widely used for binary classification. A com-
monly used binding affinity value is defined based on the logarithm
of Kd as pKd = −log10(Kd

1e9
), where Kd refers to the dissociation

value [29]. Here, we transformed the datasets into binary datasets
with predefined thresholds. We followed the prior work [23] to select
pKd value of 7 and 12.1 as threshold for the Davis and KIBA dataset,
respectively.

3.1.3 Baseline Methods

We compared DeepGS against the following state-of-the-art models:

• KronRLS [24]: This approach is based on Kronecker Regularized
Least Square (http://staff.cs.utu.fi/ aatapa/software/RLScore/). It
aims to minimize the objective function, J(f) =

∑m
i=1(yi −

f(xi))
2 + λ‖ f ‖2k, where xi (i=1,...,m) is a set of training input

features, f is a non-linear function, yi represents their correspond-
ing real-valued labels, and λ > 0 is a pre-defined regularization
parameter, ‖ f ‖2k is the norm of f with kernel k.

• SimBoost [12]: This baseline constructs three kinds of features
and trains a gradient boosting machine [4] model to represent the
nonlinear associations between the input features and the binding
affinities.

• DeepCPI [31]: This baseline is originally designed for CPI/DTI
prediction, and cannot be used directly for DTA task. Here, we
need to change it to a regression task. Specifically, we replaced the
loss function of cross entropy with MSE, and set the dimension of
output layer to 1. The rest is consistent with the original paper.

• DeepDTA [23]: DeepDTA trains two 3-layer CNNs with
label/one-hot encodings of compound and protein sequences to
predict DTA task. Their CNN model consists of two separate CN-
N blocks to learn the features from SMILES strings of compounds
and protein sequences, respectively. The representations of drugs
and targets are concatenated and passed to a fully connected layer
for DTA prediction.

As for KronRLS and SimBoost, they both use PubChem clustering
server for drug similarity and Smith-Waterman for protein similarity
computation; For DeepDTA, the input for Davis dataset consists of
(85, 128) and (1200, 128) dimensional matrices for the compounds
and proteins, respectively, and with a (100, 128) dimensional matrix
for the compounds and a (1000, 128) dimensional matrix for the pro-
teins for KIBA dataset. The other settings are kept as the same as the
original paper.

3.1.4 Implementation Details

For Smi2Vec, we used an embedding layer with 100 dimensions
to represent the symbols in SMILES sequences, and for Prot2Vect
we used 100-dimensional pre-trained representations for the biolog-
ical words. As a result, we constructed matrices with (100, 100) and
(2000, 100) dimensions for drug and target, respectively. In our ex-
periments, when the molecular graph was used, we employed the
RDKit [11] software to convert the textual representation in SMILES
format to a graph representation. For the GAT block, we set the num-
ber of heads to 10, and it was implemented using pytorch geometric
(https://github.com/rusty1s/pytorch geometric), and we set the same
radius r = 2 as in [31]. For the BiGRU block, we set the size of input
and hidden layer to 100. For the CNN block, we set the size of ker-
nel to 23. Note that, we performed grid search over a combination of
the hyper-parameters to determine the settings. The detailed settings
are summarized in Table 1. And we obtained a high performance
of the proposed framework with a relatively small range on hyper-
parameter tuning. The proposed framework was implemented using
PyTorch with Tensorflow [1] backend and ADAM optimization. Our
experiments were run on Linux 16.04.10 with Intel(R) Xeon(R) CPU
E5-2678 v3@2.50GHz and GeForce GTX 1080Ti (11GB).

Table 1. The detailed training settings of DeepGS. The length of
SMILES/protein sequence has three various settings, which are used to study

the impact of SMILES/protein sequence length.

Parameter Setting Parameter Setting
Radius r 2 Layer of CNN 3
N-gram 3 Layer of BiGRU 1

CNN kernel size 23 Learning rate (lr) 1e-4
Length of SMILES sequence 50, 100, 500 lr decay 0.9
Length of protein sequence 500, 1000, 2000 Decay interval 20

Vector dimension 32 Weight decay 1e-5
Window size 11 Epoch 100
Depth in GAT 2 Batchsize 1
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3.2 Comparison Results

To examine the competitiveness of the proposed model, we com-
pared DeepGS with state-of-the-art models (including classic and
deep learning models) used for DTA prediction. Table 2 reports the
average CI, MSE, r2m and AUPR scores on the Davis dataset.

Table 2. The average CI, MSE, r2m and AUPR scores on the Davis dataset.
The results of KronRLS, SimBoost and DeepDTA are reported from [23].

Method Drugs Targets CI MSE r2m AUPR

KronRLS Pubchem S-W 0.871 0.379 0.407 0.661
SimBoost Pubchem S-W 0.872 0.282 0.644 0.709
DeepCPI GNN CNN (Embedding) 0.867 0.293 0.607 0.705
DeepDTA CNN CNN (One-hot) 0.878 0.261 0.630 0.714
DeepGS GAT+Smi2Vec CNN (Prot2Vec) 0.882 0.252 0.686 0.763

From this table, we can see that, on the whole classic methods
such as KronRLS perform worse than deep learning-based methods.
This is because classic methods rely heavily on hand-crafted features
and the similarity matrices of drugs and targets. In contrast, deep
learning-based approaches capture more information via automatic
feature engineering with CNN and GNN. In addition, we find that our
method performs better than other two deep learning-based methods.
The reason could be that (i) compared to DeepCPI, our method joint-
ly considers topological structures and local chemical context, which
is benefit to the performance; (ii) compared to DeepDTA, we incor-
porate GAT model to obtain the topological information of drug and
advanced embedding techniques which bring more contextual infor-
mation than one-hot vectors for modeling both drugs and targets.

Overall, this set of experiments demonstrate that our proposed
method DeepGS outperforms all these baselines in all metrics. This
is a very encouraging result. It is worth noting that, although the im-
provements seem to be small at the first glance, it is essentially a
non-trivial achievement in terms of DTA prediction.

Table 3. The average CI, MSE, r2m and AUPR scores on the KIBA dataset.
The results of KronRLS, SimBoost and DeepDTA are reported from [23].

Method Drugs Targets CI MSE r2m AUPR

KronRLS Pubchem S-W 0.782 0.411 0.342 0.635
SimBoost Pubchem S-W 0.836 0.222 0.629 0.760
DeepCPI GNN CNN (Embedding) 0.852 0.211 0.657 0.782
DeepDTA CNN CNN (One-hot) 0.863 0.194 0.673 0.788
DeepGS GAT+Smi2Vec CNN (Prot2Vec) 0.860 0.193 0.684 0.801

Besides the comparison on the Davis dataset, we also conduct the
comparison on the KIBA dataset. Table 3 shows the comparison re-
sults. It can be seen that, the overall performance tendency is similar
to that on the Davis dataset. For example, the performance of Kron-
RLS is inferior to that of deep learning-based approaches, the perfor-
mance of DeepCPI is inferior to that of DeepDTA, and our method
exhibits better performance on almost all these metrics. This further
demonstrates the competitiveness of DeepGS. Note that, in terms of

CI metric, our method still has the comparable performance to Deep-
DTA, since the value of our method is only slightly smaller than that
of DeepDTA. The possible reason is that, the KIBA dataset comes
from multiple sources (e.g., Ki, Kd and IC50, recall Section 3.1),
the data heterogeneity in KIBA dataset may make a negative effect
on the CI metric of our model.

3.3 Model Analysis

In this section, we conduct more experiments to analyze our mod-
el. In the first experiment, we further examine the prediction per-
formance of our model based the predicted value (p) and measured
value (m). In the second experiment, we examine the sensitiveness
of our model by using various sequence lengths.
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Figure 3. Predictions from DeepGS model against measured binding
affinity values. The left and right figures plot the results on the Davis and

KIBA datasets, respectively.

Figure 3 plots the predicted value (p) and measured value (m) on
these two datasets. Note that, a good model should hold that predict-
ed value (p) is close to the measured value (m), and thus the samples
should fall close to the dashed (p = m) line. One can see that, for the
Davis dataset, the dense area of the pKd value is in the range of 5 to
6 in terms of x-axis. This is because the pKd value of 5 constitutes
more than half of the dataset (i.e., 20,931 out of 30,056, as reported
from [23]). In addition, we observe that the dense area of the KIBA
score is in the range of 10 to 14 in terms of x-axis. The reason is
similar to that for the Davis dataset. Particularly, for both datasets,
the samples are close to the dashed (p = m) line. This justifies, from
another perspective, that the proposed solution has a good prediction
performance.

To investigate the sensitiveness of our model, a simple way is to
remove some information of the input sequences, and then to test
the model’s prediction performance. In this paper, we use the fol-
lowing scheme that not only can remove some information of input
sequences but also can partially reflect the impact of sequence length.
Specifically, we fix the length of the input sequences at some value,
say l, when training BiGRU and CNN. To achieve this, we cut the
input sequence if the length of the input sequence is longer than l,
and otherwise we use the zero-padding at the end of the input se-
quence. As for the drug’s input sequence (i.e., SMILES), we set its
length to [50, 100, 500], as shown in Table 1. Note that, the average
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Figure 2. CI, MSE, r2m, and AUPR vs. Lds (drug SMILES sequences in the Davis dataset).
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Figure 4. CI, MSE, r2m, and AUPR vs. Lps (protein sequences in the Davis dataset).
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Figure 5. Sequence length distribution in Davis dataset. The left and right
figures refer to the length distribution of SMILES and protein sequences,

respectively.

length of SMILES sequences in the Davis dataset is 64 and the bold
refers to the default value. Correspondingly, we set the length of tar-
get/protein’s input sequence (i.e., amino acids) to [500, 1000, 2000].
Here, the average length of protein sequences in the Davis dataset is
788. For clarity, we use Lds and Lps to denote the Length of drug
sequence and that of protein sequence, respectively.

Figure 2 shows the results when we set Lds to 50, 100 and 500, re-
spectively. Meanwhile, Figure 4 shows the results when we set Lps

to 500, 1000 and 2000, respectively. We observe that, (i) the per-
formance gap between Lds = 100 and Lds = 500 is very tiny,
and the performance gap between Lps = 1000 and Lps = 2000
is not so obvious; (ii) the performance gap between Lds = 50 and
Lds = 100 can be easily perceived, and the performance gap be-
tween Lps = 500 and Lps = 1000 is obvious. This phenomenon is
a little bit strange at the first glance. To dig out the reason behind it,
we plot the distribution of sequence lengths, as shown in Figure 5.
It can be seen that the lengths of most SMILES sequences are less
than 100 and larger than 50. Thus, it is natural that the performance
gap between Lds = 100 and Lds = 500 is very tiny, since almost
all SMILES sequences do not need to be cut even if Lds = 100,
i.e., few information is missing. However, when Lds = 50, many
SMILES sequences may need to be cut, and so the performance de-

grades. With the similar argument, it is not hard to understand that
the performance gap between Lps = 500 and Lps = 1000, since
most protein sequences need to be cut when Lps = 500. The reason
for the relatively small performance gap between Lps = 1000 and
Lps = 2000 can be inferred with the similar argument. This result
may imply that when the sequence length l is set to a value larger
than the average length of sequences in the dataset, the performance
degradation could be trivial.

3.4 Ablation Study

As mentioned before, existing models for DTA prediction have lever-
aged the topological structure to learn the representation for drug
and target/protein, while they often ignored the local chemical con-
text. Thereby, this work considers both local chemical context and
topological structure to learn the interaction between drugs and tar-
gets. More precisely, the core idea of DeepGS is to fully leverage
local chemical context, by using advanced embedding techniques, to
better learn the drug and target representations. To study the effec-
tiveness of the central idea, we implemented a variant of our model,
called DeepGS1. This variant model removes both drug’s and pro-
tein’s local chemical context information obtained by Smi2Vec and
Prot2Vec from the framework. The detailed configuration of Deep-
GS1 is illustrated in Table 4. In the following experiments, we use
the same experimental settings mentioned in Table 1.

Figure 6 shows the comparison results. It can be seen that Deep-
GS1 is basically inferior to DeepGS in terms of CI, MSE, rm2 and
AUPR. These results demonstrate that combining the local chemical
context information, which reflects the functionalities of the atoms,
is benefit to learning a good representation for drugs and proteins,
improving the prediction performance.

In addition to examining the effectiveness of the central idea, we
also conduct another experiment, which is used to answer the fol-
lowing interesting question. Recall Section 2.2.2, we develop a GAT-
based molecular structure modeling approach. One could argue that,
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Figure 6. Ablation study on all metrics for our proposed model and two variants on the Davis dataset.
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Table 4. The detailed description of the variant of our model. DeepGS1 is
mainly for investigating the local chemical context information, while
DeepGS2 is used to justify the choice of GAT used in our molecular

structure modeling component.

Model Drug Representation Target Representation
DeepGS FP+GAT & Smi2Vec+BiGRU Prot2Vec+CNN
DeepGS1 FP+GAT & one-hot/Label+BiGRU one-hot/Label+CNN
DeepGS2 FP+GNN & Smi2Vec+BiGRU Prot2Vec+CNN

GNN (Graph Neural Network) can also map a graph to a vector that
encodes the topological structure of the graph, since recent work [31]
have showed that GNN can effectively model drugs. To address it, we
implemented another variant of our model, called DeepGS2. Com-
pared to our model, the major difference is that it uses a GNN-based
molecular structure modeling approach (cf., Table 4).

The experimental results are also shown in Figure 6. We can see
that, the variant DeepGS2 is obviously poorer than our model. These
results justify our choice in Section 2.2.2. The reasons could be two-
fold: (i) the molecular structure may contribute a lot to the prediction
performance; and (ii) The changes to the molecular structure model-
ing approach are sensitive to the model, especially when local chem-
ical context is also considered in the model.

4 Related Work

Drug-target binding prediction has been an interesting topic in
drug discovery. Most of previous works focused on simulation-
based methods (i.e., molecule docking and descriptors) or machine
learning-based models. For example, Li et al. [16] proposed a dock-
ing method based on random forrest (RF). The RF model was also
adopted in KronRLS [24] with a similarity score through the Kro-
necker product of similarity matrix to improve the predictive per-
formance. To remedy the limitation of linear dependencies in Kron-
RLS, a gradient boosting method was proposed in SimBoost [12] to
construct the similarities among drugs and targets. Although clas-
sic methods show reasonable performance in drug-target predic-
tion, they are often computational expensive, or require external ex-
pert knowledge or the 3D structure of target/protein, which are d-
ifficult to obtain. Different from the classic methods, the proposed
framework is able to automatically extract features from the data,
and requires neither expert knowledge nor 3D structure of the tar-
get/protein. These salient features make the proposed framework ap-
plicable to large scale affinity data which is becoming available.

Owing to the great success of deep learning, much attention has
been devoted to applying deep learning techniques for drug-target
prediction. Most of the existing methods are based on topological
similarity. For example, in [37] they developed a Deep Belief Net-
work (DBN) model constructed by stacking Restricted Boltzmann
Machines (RBMs). Instead of using DBN, a nonlinear end-to-end
learning model named NeoDTI [34] was proposed. NeoDTI inte-
grates variety of information from heterogeneous network data and
uses topology-preserving based representations of drugs and target-
s to facilitate drug-target prediction. With the increasing popularity
of graph neural networks (GNNs), researchers are adopting GNNs
model for drug prediction. For example, graph convolutional network
was used to model molecule based on the extraction of their circu-
lar fingerprint [6]. By learning from molecular structures and protein
sequences, Gao et al. [10] proposed a neural model for drug-target
prediction and used a two-way attention mechanism to provide bio-
logical interpretation of the prediction. Ma et al. [19] proposed to use

multi-view graph auto-encoders to obtain better inter-pretability and
they also added attentive mechanism to determine the weights for
each view, according to the corresponding tasks and features. More-
over, Zitnik et al. [41] presented a Decagon model used for model-
ing polypharmacy side effects, their model constructs a multimodal
graph of various interactions (i.e., protein-protein interactions, drug-
target interactions) and the polypharmacy side effects.

Among the research on deep learning for drug discovery, Deep-
DTA [23] and DeepCPI [31] are the most relevant to our work. Both
of them addressed the problem of drug-target prediction. DeepDTA
takes label/one-hot encodings of compound/protein sequences as in-
put, and trains two CNNs for the drug and target, respectively, to
predict the binding affinity value of drug-target pairs. DeepCPI is o-
riginally specialized for DTI prediction, it uses a traditional GNN
based on representation of r-radius fingerprints to encode the molec-
ular structure of drugs, and a CNN to encode protein sequences. At-
tention mechanism is adopted to concatenate drug and protein rep-
resentations for prediction. Here, we take measures to revise it to be
used for DTA prediction. Compared with DeepDTA and DeepCPI,
the proposed framework considers both local chemical context and
the topological information of drugs at the same time to improve the
binding affinity prediction, by using Smi2Vec and Prot2Vec to en-
code the atoms in drugs and amino acids in targets, while the exist-
ing methods consider only one of these important factors. Moreover,
our work also suggests a new molecular structure modeling approach
that works well under our framework.

5 Conclusions
Accurately predicting DTA is a vital and challenging task in drug dis-
covery. In this paper, we have proposed an end-to-end deep learning
framework named DeepGS for DTA prediction. It combines a GAT
model to extract the topological information of molecular graph and a
BiGRU model to obtain the local chemical context of drug. To assist
the operations on the symbolic data, we used advanced embedding
techniques (i.e., Smi2Vec and Prot2Vec) to encode the amino acid-
s and SMILES sequences to a distributed representation. We have
conducted extensive experiments to compare our proposed method
with state-of-the-art models. The experimental results demonstrate
that the promising performance of our proposed method. This study
opens several future research directions: 1) investigating whether our
method can be further improved by integrating other state-of-the-art
techniques, for example, Generative Adversarial Networks; 2) ex-
tending our method to other types of problems in data mining and
bioinformatics fields.
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