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Abstract. In multi-objective decision making problems, multi-
objective reinforcement learning (MORL) algorithms aim to approx-
imate the Pareto frontier uniformly. A naive approach is to learn
multiple policies by repeatedly running a single-objective reinforce-
ment learning (RL) algorithm on scalarized rewards. The scalarization
methods denote the preferences of objectives, which are different in
each run. However, in this way, the model representation and com-
putation are redundant. Furthermore, uniform preferences can not
guarantee a uniformly approximated Pareto frontier. To address these
problems and leverage the expressive power of deep neural networks,
we propose a two-stage MORL framework integrating a multi-policy
deep RL algorithm and an evolution strategy algorithm. Firstly, a
multi-policy soft actor-critic algorithm is proposed to collaboratively
learn multiple policies which are assigned with different scalarization
weights. The lower layers of all policy networks are shared. The first-
stage learning can be regarded as representation learning. Secondly,
the multi-objective covariance matrix adaptation evolution strategy
(MO-CMA-ES) is applied to fine-tune policy-independent parameters
to approach a dense and uniform estimation of the Pareto frontier.
Experimental results on two benchmarks (Deep Sea Treasure and
Adaptive Streaming) show the superiority of the proposed method.

1 Introduction
Deep reinforcement learning (RL) algorithms have been applied
in many challenging decision making problems, such as video
games [21, 44, 20], the game of Go [34, 35] and robotics [15, 9, 8].
In these scenarios, only one objective is optimized. Nevertheless,
many real-world decision making problems consider more than one
objective. Network routing takes energy, latency and channel capacity
into account [23]. Medical treatment needs to release symptoms and
minimize side effects [17, 16]. Economic systems are analyzed from
both economic and ecological perspectives [41].

A naive approach is to run a single-objective RL algorithm inde-
pendently and repeatedly. In each iteration, a specific scalarization
method is adopted to transfer multiple objectives into a single one. The
scalarization method denotes a specific preference for the objectives.
For example, in a linear weighted scalarization method, the higher
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weight reflects that the related objective is more preferred. This kind
of algorithms learns only one policy in a single run, so it is named
a single-policy method. However, the naive single-policy method is
inefficient due to the redundancy in both computation and model
representation. Furthermore, uniform preferences can not guarantee a
uniform approximation of the Pareto frontier.

To address these problems and leverage the expressive power of
deep neural networks, we propose a two-stage MORL framework
integrating a deep multi-policy RL algorithm and a multi-objective
evolution strategy algorithm. At the first stage, the soft actor-critic
(SAC) algorithm [9, 8] is extended to a multi-policy soft actor-critic
(MPSAC) algorithm. The extension is based on the assumption that ex-
ploration efficiency can be improved by collaboratively learning mul-
tiple policies with different targets. The model collaboratively learns a
group of policy networks. Each policy targets on a specific scalarized
objective. In this work, the linear weighted scalarization method is
adopted. During training, the model maintains a multi-channel replay
buffer. Each channel is related to a group of scalarization weights. The
collaboration is conducted through replay buffer sharing. Furthermore,
to reduce the redundancy of model representation and computation,
all policy networks share the same low-level parameters.

At the second stage, the multi-objective covariance matrix adap-
tation evolution strategy (MO-CMA-ES) is applied to fine-tune the
policy-independent parameters. The policy-independent parameters
are vectorized as the chromosomes of individuals. The individuals of
the first generation are initialized from the policies learned at the first
stage. In each generation, every individual generates one offspring
through its covariance matrix. The new offsprings are evaluated and
marked by a fitness score vector. Then all individuals are ranked and
half elitist individuals are selected as the parents of the next genera-
tion. The ranks are determined by the non-dominated ranks at first.
Then, in each non-dominated set, the crowding distance is utilized
as the second ranking criterion to approximate the Pareto frontier
uniformly.

The proposed framework can be applied in both Markovian and non-
Markovian environments. Specifically, in the non-Markovian situation,
recurrent neural networks (RNN) are adopted as the policy networks.
The recurrent connections are learned at the first learning stage and
fixed at the second stage. Previous works [33, 37] adopt evolution
strategy and neuroevolution to train deep neural networks, but training
RNNs are not considered in their frameworks. Safe Mutations [14] is
proposed to learn RNN policies, while this method needs to compute
gradients during the neuroevolution algorithm.

The principal contribution of this paper is as follows: (1) A multi-
policy gradient-based deep reinforcement learning algorithm with
high sampling efficiency. (2) A multi-objective reinforcement learn-
ing framework to approach a well-distributed Pareto frontier. (3) This
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framework learns compact model representation with lower compu-
tational complexity. (4) This framework can be applied in the non-
Markovian environment to train deep recurrent neural networks.

Experimental results on two benchmarks (Deep Sea Treasure and
Adaptive Streaming) show the superiority of our proposed method.

2 Preliminaries

Markov Decision Process (MDP). In a single-objective RL prob-
lem [39], an agent learns from interacting with the environment to
achieve a goal. The problem can be modeled as a Markov Deci-
sion Process (MDP) defined by a tuple (S,A,R, p, γ). At each time
step t, the agent receives the current state st ∈ S and selects an
action at ∈ A according to a stochastic policy π(at|st). Then the
agent observes a reward rt = R(st, at) ∈ R and transitions to a
new state st+1. The transition is based on the transition probabil-
ity p(st+1|st, at). The goal is to maximize an expectation over the
discounted accumulated reward

∑T
t=0 γ

trt, where γ ∈ [0, 1] is a
discounted factor. S ,A andR denote the state space, the action space
and the reward space, respectively. Following a specific policy π,
ρπ(s, a) = Eπ[ 1

T

∑T
t=1 1(st = s, at = a)] denotes the state-action

marginal distribution, which measures the probability of the state-
action pairs being visited in a finite-length episode. In this work, we
consider the continuous state space and the discrete action space.

Multi-Objective Markov Decision Process (MOMDP). In an
MOMDP, at each time step, the agent receives a reward vector
rt = R(st, at) ∈ RM , where M is the number of the objectives.
The ultimate goal is to approximate the Pareto frontier uniformly. The
Pareto frontier represents a set of non-dominated solutions.

Soft Actor-Critic (SAC) algorithm. SAC algorithm [9, 8] is uti-
lized as our baseline single-policy RL algorithm. To make this paper
as self-contained as possible, SAC is described elaborately. SAC is a
policy iteration method designed on a maximum entropy RL frame-
work. The objective function is:

J(π) =

T∑
t=0

E(st,at)∼ρπ [r(st, at) + αH(π(·|st))], (1)

whereH denotes the entropy of the policy and α denotes the tempera-
ture parameter. During learning, SAC updates the soft Q-function and
the soft policy iteratively. The soft Q-function is defined as Q(st, at),
which is approximated by a neural network, called Q-network. Under
this framework, the Bellman update of Q-network is processed by
minimizing the square error of the estimated Q-value and the target
value Q̄(st, at):

JQ = [Q(st, at)− Q̄(st, at)]
2,

Q̄(st, at) = [r(st, at) + γE(st+1,at+1)∼ρπ [Q(st+1, at+1)−
α log π(at+1|st+1)]].

(2)

Then the policy network is updated towards the exponential of the
new soft Q-function:

πnew = arg min
π∈Π

Jπ

= arg min
π∈Π

DKL

(
π(·|st)

∥∥∥exp( 1
α
Qπold(st, ·))

Zπold(st)

)
,

(3)

where Jπ denotes the objective function of the policy network, DKL

denotes the Kullback-Leibler divergence and Zπold(st) represents
the partition function.

SAC is an off-policy algorithm which maintains a replay buffer
during learning. The model learning is an iterative process and each
iteration consists of a sampling stage and a learning stage. At the
sampling stage, the agent interacts with the environment following
the current policy and the experience is stored in the replay buffer. At
the learning stage, the method updates the Q-network and the policy
network. In the practical implementation, SAC mainly adopts two
techniques to make learning more stable and efficient. Firstly, two soft
Q-functions are adopted to mitigate positive bias, which is suggested
in double Q-learning [44]. Specifically, two Q-networks are learned
simultaneously, and the minimum value of two estimates are used
to compute the target value for the Bellman update. Secondly, target
networks are utilized to calculate the target value, which is suggested
in [22]. Since SAC maintains two Q-networks, SAC also maintains
two target networks, which are fixed during the Bellman update and
updated slowly in the end of each iteration.

Multi-objective evolution strategy. CMA-ES [10] is a real-valued
optimization method relying on covariance matrix adaptation. It is
known to work well for solution spaces of up to a few thousand param-
eters [7, 6, 33, 37]. MO-CMA-ES [13, 11, 40, 47] is a multi-objective
extention of CMA-ES. As claimed in [33], the advantages using
evolution strategy for RL are: 1) little influence from the sparsely dis-
tributed rewards and long time horizons; 2) no gradients computation;
3) avoidance of approximating the value function.

3 Method

The proposed method learns a set of policies Π? = {π?i }Ni=1 to
approximate the Pareto frontier uniformly.

3.1 Multi-Policy Soft Actor-Critic Algorithm

Algorithm. The single-policy SAC is extended to a multi-policy al-
gorithm, which learns more than one policy in the same time. Each
policy is related to a specific preference of objectives. The preference
is represented by specific weights. During learning, A multi-channel
replay buffer is maintained. Each channel is associated with a specific
policy. Collaborative learning is conducted through buffer sharing to
improve sampling efficiency.

Specifically, Algorithm 1 shows the pseudocode, in which N0 de-
notes the number of learned policies. The algorithm maintains N0

groups of Q-networks and policy networks. The double Q-learning
technique and target network technique are also adopted in this al-
gorithm to stabilize learning. Therefore, in the i-th group, there are
two Q-networks θi,1, θi,2, two target Q-networks θ̄i,1, θ̄i,2 and one
policy network φi. The target networks are initialized randomly. And
each group is associated with a specific weight vector wi. In each
epoch, the algorithm includes two key procedures. Firstly, the agents
sample data by interacting with the environment. The experience tuple
(st, at, r(st, at), st+1, i) of agent i is stored in the i-th channel of
the replay buffer. Secondly, training data is sampled from the replay
buffer to update Q-networks and policy networks. Each group of
Q-networks and policy networks is optimized by the single-policy
SAC on the rewards scalarized by linear weights wi. The objective
functions JQ and Jπ are defined in Preliminaries. Thus the target
networks are updated consequently. As suggested in [5], the A2C
scheme is adopted to learn the proposed algorithm. Specifically, the
agents interact with the environment asynchronously, while the net-
works are optimized synchronously in a central agent. In this setting,
the central agent needs to broadcast actions and receive rewards and
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Algorithm 1 Multi-Policy Soft Actor-Critic Algorithm

1: Input: Initialize N0 Q-networks with {θi,1, θi,2}N0
i=1, N0 target Q-networks with {θ̄i,1, θ̄i,2}N0

i=1 and N0 policy networks with {φi}N0
i=1.

2: Initialize an empty multi-channel replay buffer: D = {Di}, where Di ← ∅ for i = 1, 2, · · · , N0.
3: Initialize the step sizes λQ, λπ , τ for learning Q-networks, policy networks and target Q-networks, respectively.
4: Set the scalarization weights: {wi}N0

i=1.
5: for each epoch do
6: for each environment step do
7: for i = 1, 2, · · · , N0 do asynchronously
8: Sample action from the policy: at ∼ πφi(at|st)
9: Get transition from the environment: st+1 ∼ p(·|st, at)

10: Store the experience in the replay buffer: Di ← Di ∪ {(st, at, r(st, at), st+1, i)}
11: end for
12: end for
13: for each gradient step do
14: Sample experience from the replay buffer Xi ⊆ Di for i = 1, 2, · · · , N0.
15: for i = 1, 2, · · · , N0 do synchronously

16: Construct training data: X̃i =
N0⋃
j=1

Xj or X̃i = Xi or X̃i ← Xi
⋃
j∈Ωi

Xj . Ωi denotes the set of adjacent policies.

17: Weighted scalarization: X̃i ← {(st, at,wT
i r(st, at), st+1)}, where the channel index is neglected.

18: Update the Q-function parameters: θi,j ← θi,j − λQ∇̂θi,jJQ(θi,j) for j ∈ {1, 2}
19: Update policy weights: φi ← φi − λπ∇̂φiJπ(φi)
20: Update target network weights: θ̄i,j ← τθi,j + (1− τ)θ̄i,j for j ∈ {1, 2}
21: end for
22: end for
23: end for
24: Output: Parameters of learned policy networks: {φi}N0

i=1

the next states. See Algorithm 1 for a more formal description of the
algorithm.

SAC is not the only alternative RL algorithm for our framework.
Other single-objective off-policy RL algorithms such as Deep Q-
Learning [21] and DDPG [15] can be extended in the same way.

Linear scalarization method. Considering a specific policy, the
linear scalarization method transfers the reward vector rt to a scalar:
rt = wTrt, where w denotes the weights. Since the number of
objectives is M , w is a M -dim vector. Each element of the weight
vector should be equal or larger than zero. And at least one element
is larger than zero. How to assign the weights reveals the prefer-
ence/importance of the related objectives. Furthermore, the strategy
of assigning weights is different from one problem to another. Thus,
considering two objectives, the method empirically fixes the weight of
the first objective as 1 and varifies the weight of the second objective
in a predefined range uniformly. Even though there are limitations
in the linear scalarization method when the Pareto frontier is con-
cave [43]. Specifically, the methods with linear scalarization method
can not achieve the Pareto optimal solutions in the concave region.
This problem is handled by the evolution strategy at the second stage.

Shared low-level layers. To reduce computational complexity,
the policy networks share low-level network parameters. From the
perspective of representation learning, joint optimization learns a
more compact and robust representation, thus the performance is
improved. The learned representation guarantees the performance at
the second stage, in which the low-level parameters are fixed. In the
non-Markovian environment, recurrent neural networks (RNN) are
adopted as policy networks. The recurrent connections are utilized
to gather the information of previous time steps. At the second stage,
the recurrent part of RNN is fixed. Note that we adopt asynchronous
exploration and synchronous learning, so there is no communication
bottleneck for sharing low-level layers. Since the shared low-level
structures are not compulsive for MPSAC, specified symbols of shared

parameters and policy-independent parameters are not demonstrated
in Algorithm 1.

Replay buffer sharing. The collaborative learning is implemented
by sharing replay buffer. We belive that each policy learns a spe-
cific exploration mode since each policy aims to optimize a specific
weighted goal. Hence closer scalarization weights may lead to closer
modes. The collaboration is two folds: firstly, policies with close
modes follow similar/overlap exploration pattern to cooperate on data
sampling; secondly, if a policy trained by the sampled data from an-
other policy working in different mode, the value function is learned
more critically, thus its exploration efficiency is improved. The multi-
channel replay buffer consists of experience tuples. Each tuple is
represented by {(st, at, r(st, at), st+1, i)}, which includes the cur-
rent state st, action at, reward vector r(st, at), the next state st+1

and the index of associated policy i. The index can also be explained
as the channel index. By storing the reward vectors rather than the
scalarized rewards, each policy can utilize data sampled from other
policies. According to which part of the replay buffer a policy can
access, we investigate three buffer sharing strategies. In the global
sharing strategy, a policy accesses the whole buffer. In the no sharing
strategy, each policy only accesses its buffer. And in the neighbor
sharing strategy, each policy can utilize its buffer and the buffer of
the adjacent policies. The adjacent set is defined as the set of policies
with closest scalarization weights. Through ablation experiments, the
global sharing strategy is regarded as the default strategy since this
strategy achieves the best result.

3.2 Multi-Objective Covariance Matrix
Adaptation Evolution Strategy (MO-CMA-ES)

The implementation of MO-CMA-ES is adapted from the Shark ma-
chine learning library [12], which is mainly based on [13, 47]. The
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Table 1. Experimental results of Deep Sea Treasure. HI denotes hypervolume indicator. The number in the bracket of deterministic results indicates the number
of approached Pareto optimal policies. The number of iterations of our algorithm includes two parts since the method has two stages, thus “+” is used to separate

two numbers.

HI (Deterministic) HI (Stochastic) Iterations Wall-Clock Time Parameters
HB 1364.00± 0.00(1.00± 0.00) - 4, 000 6.68× 104s 8.97× 104

RA 1406.33± 54.41(2.17± 0.37) 1857.75± 156.19 4, 000 7× 104s 8.45× 104

PFA 1346.47± 125.58(2.03± 0.18) 1713.71± 274.73 1, 400 2.45× 104s 8.45× 104

Ours 1756.13± 28.20(9.53± 0.62) - 400 + 100 3× 103s 1.31× 104

Ours - 2134.81± 88.80 400 + 1500 1.93× 104s 1.31× 104

Algorithm 2 Multi-Objective Convariance Matrix Adaptation Evolu-
tion Strategy

1: Input: Initialize the first generation with N individuals. Each
individual ai consists of a search point φ̄i, a global step size σi
and a covariance matrix Ci.

2: Evaluate the first generation, each individual ai is labeled with a
fitness vector yi.

3: for each generation do
4: Generate one offspring for each individual: φ̄(g+1)

i ∼
N (φ̄

(g)
i , σ

(g)
i C

(g)
i ).

5: Evaluate N offsprings by simulation, each individual a(g)
i is

labeled with a fitness vector y(g)
i .

6: Sort 2N individuals (parents and offsprings), then select first
N individuals.

7: Update step size and covariance matrix for each individual.
8: end for
9: Output: Optimized parameters: {φi}Ni=1

MO-CMA-ES aims to refine the rough approximation of the Pareto
frontier from the first stage.

Algorithm 2 shows the general procedures (four main steps) of MO-
CMA-ES. The method maintains N individuals. Note that it is not
compulsive to constrain that N must be equal to N0. Each individual
ai consists of a chromosome (search point) φ̄i, a global step size σi
and a covariance matrix Ci. The chromosome φ̄i is a n-dimensional
vector initialized by vectorizing the policy-independent parameters of
a randomly selected learned policy at the first stage. σi is initialized
as 0.1 and Ci is initialized as a n-dimensional identity matrix. The
initialized individual ai is evaluated by simulation and labeled by
a fitness vector yi. Each element of yi represents the accumulated
reward of the related objective. In every generation, each individual
generates one offspring by sampling from the Gaussian distribution:
φ̄i ∼ N (φ̄i, σiCi), in which the mean and the covariance matrix
are φ̄i and σiCi. New offsprings are evaluated by simulation and
labeled with fitness vectors. Then all individuals are ranked and theN
elitists are selected as the parents of the next generation. At last, the
covariance matrix of each selected individual is updated consequently.
Please refer to [13, 47] for more details. The algorithm repeats this
procedure until the stopping criterion is met.

Selection step. Two ranking criteria are considered: the non-
dominance level and the crowding distance, as suggested by [4].
The non-dominance level is determined by recursively exclude non-
dominant individuals from the solution set. Formally, let A be a
population and a, a′ be two individuals. The non-dominant set of A
is defined as:

ndom(A) = {a ∈ A|@a′ ∈ A : a ≺ a′}, (4)

where ≺ denotes the Pareto-dominance relation. Let A0 = A,
Al = Al−1\ndom(Al−1), for l ≥ 1, where “\” denotes a removing

operation. Thus rank(a,A) = i + 1, iff a ∈ ndom(Ai). When the
Pareto frontier is concave, the optimal solution in the concave region
still has a high non-dominance level, then the limitation of linear
scalarization is handled.

Through the first criterion, the individuals are ranked to many non-
dominant sets. The crowding distance is used as the second ranking
criterion to rank the points in a non-dominant set. For M objectives,
the crowding distance of point a in the non-dominant setA′ is defined
by:

c(a,A′) =

M∑
m=1

cm(a,A′)/(fmax
m − fmin

m ), (5)

where fmax
m and fmin

m are maximum and minimum values of the m-
th objective respectively. cm(a,A′) is positive infinite when a is a
boundary point. Otherwise, cm(a,A′) is the distance between two
closest points of a w.r.t. the m-th objective. Therefore, the boundary
points and the less crowded points are preferred, so that the approxi-
mated Pareto frontier is more spread and uniform.

4 Experiments

In this section, we introduce the comparative methods, the evaluation
protocol, the experimental results on two benchmark problems and
ablation studies. Furthermore, some illustrative tables and figures are
demonstrated for a detailed comparison.

4.1 Comparative Methods

The proposed methods are compared with three methods, the
hypervolume-based (HB) [45] algorithm, the radial algorithm
(RA) [30] and the Pareto following algorithm (PFA) [30]. HB is
an extension of Deep Q-learning [21]. This method maintains value
function approximation for each objective and takes actions according
to the largest hypervolume indicator. Hence, no scalarization method
is applied in HB. In the other two comparative methods, the linear
scalarization method is adopted. RA optimizes more than one policy
simultaneously. Each policy is assigned with a specific weight vector
on objectives. In each iteration, through applying SAC, every individ-
ual policy is optimized independently by the gradients related to its
assigned preference. From another idea, PFA is optimized directedly
on the Pareto frontier. Specifically, at first, an initial model is learned
by SAC with initialized preference weights. Then the weights are
tuned gradually and uniformly, and the model is fine-tuned for each
preference iteratively. Naive stochastic gradient descent methods are
utilized in RA and PFA, considering the computational complexity.
For a fair comparison, the same network structures are adopted for
the proposed methods and the comparative methods.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



4.2 Evaluation Protocol

The comparative experiments are conducted on two benchmark prob-
lems: Deep Sea Treasure and Adaptive Streaming. The hypervolume
indicator [50] is utilized as our evaluation protocol, which is sug-
gested by [42] because of its sensitivity on the improvements in any
frontal characteristics (accuracy, extent, diversity). The experimental
results are represented by the mean and standard deviation to show
the overall performance and stability. The results are calculated from
repeated independent runs. The number of the repeats is 30 and 10 for
two benchmark problems, respectively. Different random seeds are
used for training and testing. We also demonstrate the wall-clock time
and the number of parameters. The codes run on PyTorch 1.0 [31],
Ubuntu 16.04 system with 44 Intel(R) Xeon(R) CPUs.

4.3 Problem 1: Deep Sea Treasure

Problem Description. This is an episodic task. A submarine searches
for treasures in a 10 × 11 grid. The treasures with different values
are in different locations. At each episode, the submarine starts from
the top left corner, searches by four actions- left, right, up and down.
The end condition is reaching a treasure or moving 1, 000 steps. The
reward is a 2-dim vector. The first element is negative time and the
second element is the reached treasure value. Therefore, the goal
is to maximize the treasure value and minimize the time penalty.
This task is created to highlight the limitations of linear weighted
scalarization [43], since the Pareto frontier of this task is globally
concave.

This task is tested in two different ways. Firstly, the learned poli-
cies are tested deterministically. The agent always takes action with
maximum probability. In this setting, there are ten Pareto optimal
policies. Each optimal policy leads to one treasure location. Secondly,
the policies are tested stochastically. During testing, the actions are
sampled according to the learned policy. The results are averaged
from 20 simulations.

Consequently, the proposed algorithm adopts different fitness eval-
uation mechanisms at the evolution strategy stage to handle these
two test settings. For testing deterministic policies, the evaluation is
conducted in only one episode. During learning stochastic policy, the
fitness score vector is averaged from the results of 20 episodes.

Implementation Details. The input state is a 61-dim binary vec-
tor. Each element of the vector is related to a specific position. All
elements are zero except the element representing the current position
of the submarine. Both the policy network and the Q-network consist
of two linear layers with ReLU activation functions. The hidden layer
has 128 hidden units. A softmax layer is on the top of the policy net-
work. At the first stage, the model simultaneously learns five policies
by 25 agents. The linear weights of learned policies are (1.0, 0.1),
(1.0, 0.12), (1.0, 0.14), (1.0, 0.16) and (1.0, 0.18), respectively. The
model learns 400 epochs, each of which includes 100 sampling it-
erations and 100 training iterations. Each mini batch includes 100
samples from each agent. The learning rate is 0.001. At the second
stage, the number of individuals in each generation is 10. To calculate
the hypervolume indicator, the reference point is (−30, 0).

Experimental Results of Deterministic Policies. HB only maxi-
mizes hypervolume indicator for a single policy, which causes poorly
diversified solutions and low hypervolume indicator on all learned
policies. In this problem, HB converges to the policy approaching the
highest treasure value. As shown in Table 1, when testing determinis-
tic policies, policy gradient methods with linear scalarization (RA and
PFA) are not able to approach all Pareto frontier. Both RA and PFA

achieve near two out of ten Pareto optimal solutions, which causes
low hypervolume indicator. Our method with evolution strategy can
approach all optimal policies and higher hypervolume indicator.

Experimental Results of Stochastic Policies. HB is not tested in
this scenario because it is not trivial to transfer HB into a stochastic
policy. As shown in Table 1, compared with PFA, RA achieves higher
average hypervolume indicator and lower standard deviation, which
shows that RA is more effective and more stable than PFA in this task.
Nevertheless, PFA needs less training time since it operates on the
Pareto frontier with model reusing. Our method outperforms these
comparative methods with a considerable margin. Furthermore, to
consider the smoothness of the approximated Pareto frontier, the solu-
tions are ranked so that one objective is monotonically increasing and
the other objective is monotonically decreasing. Then the Euclidean
distance between all pairs of neighbor solutions is calculated. By
doing this, a distance array is achieved. The standard deviation of this
distance array is utilized to measure the smoothness. The smoothness
of RA, PFA and our method are 21.72, 19.54 and 11.65 respectively,
which indicates that our method approaches better distributed frontier.

Work Loads. As shown in Table 1, considering the number of
iterations, the wall-clock time and the number of parameters, our
algorithm has lower time and space complexity. Especially, to store
optimal solutions of deterministic policies, our algorithm uses much
fewer parameters to represent more optimal solutions than compara-
tive methods.

4.4 Problem 2: Adaptive Streaming

Problem Description. This problem is derived from [1], which pro-
posed a rate-distortion optimization framework for Adaptive Stream-
ing [38, 19, 36, 49]. In this problem, the server segments each video
into a set of 4-second consecutive video chunks. Each chunk is en-
coded into different representations. Each representation is character-
ized by a perceptual quality and a bitrate. The perceptual quality is
estimated from the encoded video segment and the assumed viewing
device. During downloading, the controller determines which repre-
sentation to download for the next chunk. Then the environment down-
loads the chunk, updates the buffer occupancy, tracks the throughput
and returns the new states to the agent. Except for the perceptual qual-
ity, the stalling effect and adaptation effect are also considered in a
unified Quality-of-Experience (QoE) score. In the rate-distortion opti-
mization framework, the first objective is to maximize the overall QoE
and the second one is to minimize the average bitrate consumption.
Since the environment in this problem is non-Markovian, RNNs are
used to handle temporal information. Consequently, during learning
MPSAC models, a complete experience sequence is treated as the
storing/retrieving unit.

Implementation Details. The dataset includes 5 source videos and
300 network traces. The videos are encoded by H.264 video encoder
as 13 representations. We only consider Phone as the viewing device.
The same videos are used during training, validation and testing. Net-
work traces are equally split into a training set, a validation set and a
testing set. Both the policy network and Q-network are constructed
by two GRU layers and one linear layer. All hidden layers consist
of 128 neurons. The activation function is ReLU. A softmax layer is
on the top of the policy network. At the first stage, the model learns
1, 000 epochs, each of which includes 100 sampling iterations and 20
training iterations. The model simultaneously learns five policies by
25 agents. The scalarization weights are (1.0, 0.0), (1.0, 0.0025),
(1.0, 0.0050), (1.0, 0.0075) and (1.0, 0.01). Each mini batch in-
cludes 100 samples from each agent. The learning rate is 0.0003.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



Table 2. Experimental results of Adaptive Streaming. HI denotes hypervolume indicator. The number of iterations of our algorithm includes two parts since the
method has two stages, thus “+” is used to separate two numbers.

HI Iterations Wall-Clock Time Parameters
HB 61.252± 0.134 50, 000 3.35× 105s 9.06× 106

RA 73.140± 0.058 50, 000 1.25× 106s 8.97× 106

PFA 73.115± 0.073 16, 000 4× 105s 8.97× 106

Ours 73.460± 0.048 1, 000 + 2, 00 2.66× 105s 2.62× 105

Figure 1. Approximation of the Pareto frontier in Adaptive Streaming
problem.

At the second stage, the number of individuals is 50. Since the lowest
QoE score is 0 and the highest bitrate is 16800, the reference point
(0,−16800) and normalizing factor (10, 1680) are utilized in the
objective space for calculating hypervolume indicator.

Experimental Results. Table 2 shows the experimental results of
Adaptive Streaming. Similar to the results of Deep Sea Treasure, HB
achieves lowest hypervolume indicator due to the poor diversity. RA
outperforms PFA and our proposed algorithm achieved the highest
hypervolume indicator and stability. Our algorithm has lower time and
space complexity comparing with the comparative methods. Specif-
ically, RA method needs the longest training time. PFA method is
more efficient on time complexity while it is still redundant for model
representation. Therefore, our algorithm is efficient in both ways.

Furthermore, the estimated Pareto frontiers of RA, PFA and our
method are shown in Figure 1. Our method achieves more smooth
frontier than RA and PFA. As for the quantitive evidence, the smooth
measure of RA, PFA and our method is 0.042, 0.035 and 0.012
respectively. Considering the region of the highest QoE, our method
uses fewer bitrates than the other methods.

4.5 Ablation Study

The ablation studies are conducted on Adaptive Streaming.
Which data sharing strategy is better? To reveal the sampling

efficiency of MPSAC, we investigate three different data sharing strate-
gies: global sharing, no sharing and neighbor sharing. These three
methods are named as MPSAC.A, MPSAC.O and MPSAC.N respec-
tively, which means that each policy attains all samples, own samples
and neighbor samples. For comparison, the result of SAC is achieved
from five independent repetitions. Each run is related to a specific

Figure 2. Training curves showing sampling efficiency of MPSAC.

preference. Table 3 shows the results of different data sharing strate-
gies. All three strategies outperform the baseline method with less
computational redundancy. MPSAC.O outperforms SAC, which re-
veals the advantage from sharing the low-level parameters. MPSAC.A
and MPSAC.N exceed MPSAC.O, which shows the advantage of data
sharing. MPSAC.A outperforms MPSAC.N, which reveals that all
sharing is a better data sharing strategy. Furthermore, Figure 2 shows
the training curves of SAC and MPSAC.A. Our method approaches
higher performance and higher stability. And our method needs fewer
training samples to achieve the same hypervolume indicator, which
reveals the exploration efficiency introduced by collaborative learning.

Is representation learning important? To answer this question,
the model learning at the first stage is modulated by investigating the
number of learned policies. We fix the number of learning epoches
but change the number of learned policies to 1, 5, 10, 15, 20, and 25,
respectively. The comparative results in Table 4 show that the final
performance improves through adding the number of learned policies
at the first stage. This ablation study shows the importance of the
representation learning at the first stage.

Is the second-stage learning important? Further more, as shown
in Table 4, MPSAC(50) denotes the MPSAC algorithm learning 50
policies with 50 agents in the same time. By adopting the MO-CMA-
ES algorithm at the second learning stage, the performance improves
from 73.286 to 73.663, which shows a considerable performance
gain of the second-stage learning.

5 Discussion

The proposed MPSAC algorithm is similar to the bootstrapped
DQN [25], which is a deep version of the bootstrapped Thompson
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Table 3. Ablation study on three exploration strategies. Single-policy SAC is executed repeatedly for five times with different preferences on objectives.
MPSAC maintains five policies at the same time.

HI Iterations Wall-Clock Time
SAC 72.50± 0.18 5,000 1.25× 105s
MPSAC.A 72.97± 0.11 1,000 2.4× 104s
MPSAC.O 72.93± 0.16 1,000 2.35× 104s
MPSAC.N 72.85± 0.10 1,000 2.6× 104s

Table 4. Ablation study on the number of learned policies at the first stage.
MPSAC(m,n) denotes a first-stage model which learns m policies using n

agents by MPSAC. ES(m) denotes a second-stage model learning m policies
by MO-CMA-ES.

Models HI
MPSAC(1,25)+ES(50) 73.269
MPSAC(5,25)+ES(50) 73.460
MPSAC(10,25)+ES(50) 73.453
MPSAC(15,25)+ES(50) 73.463
MPSAC(20,25)+ES(50) 73.435
MPSAC(25,25)+ES(50) 73.489
MPSAC(50,50) 73.286
MPSAC(50,50)+ES(50) 73.663

sampling [27, 32]. Inspired from [28], the bootstrapped DQN utilizes
randomized value functions to improve sampling efficiency, rather
than models an intractable exact posterior estimate. The value func-
tions are represented by deep neural networks. This posterior sampling
method is adopted in [25, 26, 28] as well. Both bootstrapped DQN
and our method maintain more than one deep networks for Q-value
estimation. These networks share the same network structure. The
difference is that DQNs in [25] are optimized for the same objective,
thus DQNs utilize randomized initialization and independent training
samples to impel the randomness of model learning to improve explo-
ration efficiency. In our method, the policy networks pursue differently
scalarized objectives. Therefore, our method naturally sustains the
model randomness to improve sampling efficiency, since different
policies pursue different goals.

6 Related Work
Multi-objective reinforcement learning methods can be divided into
single-policy methods and multi-policy methods based on the number
of the learned policies in a single run.

Single-policy methods learn only one policy at each time. It needs
to be repeated many times to approximate the Pareto frontier. Com-
monly, scalarization methods are adopted to transfer multiple ob-
jectives into a single one. Then classical RL algorithms can be ap-
plied without any modification. The simplest scalarization method
is linear weighted scalarization [41, 42, 24]. The limitation of lin-
ear scalarization is demonstrated in [43] when the Pareto front is
concave. Chebyshev scalarization method [46] and thresholded scalar-
ization method [42, 24] are proposed to alleviate this limitation. Van
et. al. [45] extended Q-learning to a multi-policy method using hy-
pervolume metric as an action selection strategy. Instead of simple
repetition, Parisi et. al. [30] proposed Pareto path following algorithm
optimizing directly on the Pareto frontier.

Multi-policy methods learn more than one policy in a single run.
Beyond discrete solutions, some methods approach continuous ap-
proximation. Barrett et. al. [2, 17, 16, 3] introduced an approach
which learns the set of optimal policies for all weights through in-
volving linear weights to represent value functions. Parisi et. al. [29]

proposed a method, which utilizes a function to define a manifold in
the policy parameters space, then approximates the Pareto frontier
continuously by performing a single gradient ascent on the parameters
of the function.

Furthermore, some studies considered MORL problems from other
perspectives. Mannor and Shimkin [18] consider MORL problems
as a constrained optimization problem. In the constrained problem,
rather than optimize a single objective, the method drives the agent
to approach a target set. Wiering et. al. [48] proposed a model-based
MORL method through learning a multi-objective model of the envi-
ronment.

7 Conclusion
In this paper, we propose a two-stage algorithm to address the multi-
objective reinforcement learning problem. The first stage is a multi-
policy soft actor-critic algorithm learning multiple policies with dif-
ferent preferences on objectives collaboratively. The second stage is
a multi-objective evolution strategy algorithm to achieve a smooth
approximation of the Pareto frontier. Our method is efficient on data
exploration and model representation.
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