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Abstract. In this paper, we address the fashion landmark
detection task by enforcing structural fashion layout relation-
ships among landmarks based on Graph Convolutional Net-
works (GCNs). Unlike previous works that detect each fash-
ion landmark separately and ignore the rich semantic lay-
out relation among different landmarks, we propose an Adap-
tive Graph Reasoning Network (AGRNet) to integrate the
convolutional features with the human commonsense knowl-
edge and make detected fashion landmarks be coherent with
clothes layouts from a global perspective. Specifically, we de-
sign the Adaptive Graph Reasoning (AGR) module and stack
it on top of Fully Convolutional Networks (FCNs), which en-
forces fashion layout constraints and semantic relations of
fashion landmarks on deep representations. AGR maps the
convolutional features into structural graph node representa-
tions and performs adaptive reasoning according to the corre-
lation matrix, which is adaptively generated from defined ba-
sic fashion layout and confidence maps of all landmarks. The
graph-based reasoning evolves the cloth node representations
to achieve global layout coherency and then the evolved graph
nodes are mapped back to enhance convolutional feature rep-
resentations. Furthermore, we design the Dual Attention Up-
sample (DAU) module on each decoder layer to emphasize
the spatial detailed and task-related features by modelling
the semantic interdependencies in spatial and channel dimen-
sions respectively. We achieve new state-of-the-art detection
performance on two challenging fashion landmark datasets,
i.e., Deepfashion and FLD dataset. In particular, a Normal-
ized Error (NE) score of 0.0297 on the Deepfashion test set is
achieved without any additional annotations.

1 INTRODUCTION

Detecting fashion landmarks from an RGB image is a funda-
mental and practical task, whose goal is to predict the po-
sitions of functional keypoints defined on the fashion items,
such as the corners of the neckline, hemline, and cuff. The
study of this task can be applied to comprehensive high-
level fashion applications, such as clothes category classifi-
cation [6, 24, 13, 1], recommendation [19, 16, 14] and re-
trieval [18, 21, 12]. With the release of large-scale fash-
ion datasets[24, 25, 11], convolutional neural networks based

1 Shanghai Engineering Research Center of AI & Robotics, Fu-
dan University, China, email: mingchen18@fudan.edu.cn. * Cor-
responding authors.

2 Engineering Research Center of AI & Robotics (Fudan Univer-
sity), Ministry of Education, China

3 Hangzhou Normal University, China

(a) full body. (b) upper body. (c) lower body.

Figure 1. The goal of fashion landmark detection is to
recognize and locate the functional key points defined on clothes,
such as the corners of neckline, hemline, and cuff. The arbitrary

appearances, diverse styles and occlusion of clothes make it
challenging to detect each landmark accurately.

models [24, 25, 30, 28, 22, 31] have achieved impressive detec-
tion performance. To accomplish the task of fashion landmark
detection effectively, we need to deal with arbitrary clothing
appearances, diverse styles, and part occlusion. For example,
clothes on people have arbitrary deformation, sleeves have
different lengths and styles, and the collars of clothes often
obscured by long hair. The local convolutional features may
lead to the detection results of ambiguous landmarks and un-
reasonable landmark layouts. Therefore, it is necessary to en-
dow the deep network with the capability of structure graph
reasoning for structure-consistent landmark detection.

Recent methods [24, 25, 30, 22] based on Fully Convolu-
tional Networks (FCNs) [26] extract the image features by a
deep convolutional network and then enlarge the resolution of
the feature maps by bilinear upsample or transposed convolu-
tion, finally estimate confidence maps for each landmark sep-
arately regarding the fashion landmark detection as an end-
to-end regression problem and ignoring the layout constraints
between different landmarks. Although the deep-stacked con-
volutions help to capture more semantic relations, it can not
leverage the relationship between landmarks in a global view,
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which is essential to fashion landmark detection.
Some state-of-the-art methods [28, 31] inject human com-

monsense knowledge into the detection model. For example,
Wang et al. [28] propose a fashion grammar model for vi-
sual fashion analysis and use a bidirectional recurrent neural
network for message passing over fashion grammar. Yu et al.
[31] define a complicated fashion layout-graph and propagate
the information between correlated landmarks to update the
feature representations. Intuitively, the information from in-
correct landmarks is not as important as information from
well-detected ones for landmark detection. The well-detected
landmarks could help the detection of other landmarks, the
incorrect landmarks instead may deteriorate. However, these
methods share information of different landmarks equally by
the fixed edges in the prior knowledge fashion grammar or
layout-graph regardless of whether or not the landmarks are
detected correctly.

To address the above problems, we propose a novel frame-
work, called Adaptive Graph Reasoning Network (AGRNet),
for fashion landmark detection. It introduces graph-based
reasoning to adaptive enforce structural layout constraints
among landmarks on the deep representations. We define a
basic fashion layout that encodes the human commonsense
knowledge (e.g. symmetry relations, kinematics relations) and
constructs graph node representations for all landmarks from
convolutional features. To propagate the information and per-
form structural graph reasoning among landmarks, we need
to generate a correlation matrix of the layout graph nodes.
Instead of using a fixed correlation matrix, we introduce an
adaptive way to generate the correlation matrix for each im-
age which may face different deformation and occlusion. The
positions which have the highest responses in confidence maps
are considered as the detected landmarks since the values
of each position represent the occurrence possibility of land-
marks. Inspired by this, we generate a weight vector from the
basic confidence maps and then operate a recalibration on the
basic correlation matrix by the guidance of the weight vector
to generate the adaptive correlation matrix. In this way, the
information from landmarks that have high confidences will
be shared extensively for aiding the detection of other land-
marks and the information from landmarks that have low
confidences will be suppressed. Given the graph nodes rep-
resentations of fashion landmarks and correlation matrix, we
update the node representations by propagating the informa-
tion between connected nodes based on Graph Convolutional
Networks (GCNs). GCNs perform graph layout reasoning to
make detected fashion landmarks be coherent with clothes
layouts from a global perspective. Then the evolved graph
node representations are mapped back to enhance the convo-
lutional features.

Moreover, the Dual Attention Upsample (DAU) module on
each decoder layer is proposed to further enhance feature rep-
resentations, which emphasizes the spatial detailed and task-
related features by modelling the semantic interdependencies
in spatial and channel dimensions respectively. Spatial At-
tention (SA) block captures the interesting spatial details in
low-level feature maps by the guidance of high-level ones.
Meanwhile, Channel Attention (CA) block emphasizes the
task-related features and suppresses useless ones by capturing
channel dependencies between any two channel maps.

We empirically show the performance of the proposed

method on two fashion landmark detection datasets. Addi-
tionally, ablation studies indicate the effectiveness of our pro-
posed modules. In summary, our main contributions are three-
fold as follows: i) We propose an Adaptive Graph Reasoning
Network (AGRNet) to enforces fashion layout constraints and
semantic relations of fashion landmarks for fashion landmark
detection. ii) We design a Dual Attention Upsample (DAU)
module on each decoder layer to further enhance the feature
representations by emphasizing the spatial detailed and task-
related features. iii) Combining graph reasoning and attention
upsample, we achieve new state-of-the-art results on Deep-
fashion and FLD benchmarks.

2 RELATED WORK

2.1 Fashion Landmark Detection

Extensive research efforts have been devoted to fashion land-
mark detection and achieved excellent performances. Liu et
al. [24] first introduce the neural network to the task of fash-
ion landmark detection. They formulate the detection as a
regression task and design FashionNet to regress landmark
coordinates directly. Liu et al. [25] design pseudo-labels to en-
hance in-variability of fashion landmark. Yan et al. [30] com-
bine selective dilated convolution and recurrent spatial trans-
former for localizing cloth landmarks in unconstrained scenes.
The methods mentioned above almost estimate landmarks for
each landmark separately and thus may detect ambiguous and
structure-inconsistent landmarks. Wang et al. [28] propose an
attentive grammar network with high-level human knowledge
to predict the positions of landmarks globally. Simultaneously,
Wang et al. [28] indicate that the regression of the fashion
landmark is highly non-linear and very difficult to learn di-
rectly. Therefore, they learn to predict a confidence map of
positional distribution for each landmark. The more current
method [31] define a complicated fashion layout-graph and
propose to model the structural layout relationships among
landmarks. However, they propagate the information accord-
ing to a fixed layout-graph and cannot deal with the diverse
deformation or occlusion. Furthermore, all the works suffer
from loss of image detailed information and can only locate
the fashion landmarks roughly.

2.2 Graph-based Reasoning

Graph-based methods have been very popular in recent years
and shown to be an efficient way of relation reasoning. CRFs
[5] and random walk networks [2] are proposed based on
the graph model for effective image segmentation. Recently,
Graph Convolution Networks (GCNs) [20] are proposed for
semi-supervised classification, and Chen et.al [8] propose to
use GCNs to capture relations between objects in the large-
scale object detection task, which poses severe challenges due
to long-tail data distributions, heavy occlusions, and class
ambiguities. Reddy et.al. [27] predict 2D and 3D locations
of occluded key points for objects using graph reasoning in a
largely self-supervised manner. We adopt the reasoning power
of graph convolutions to build a global reasoning module for
reasoning between correlated fashion landmarks.
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Figure 2. Illustration of our model that incorporates basic convolutional network for features extraction, Adaptive Graph Reasoning
(AGR) module for adaptive structural layout reasoning and stacked Dual Attention Upsample (DAU) modules for attentive feature
enhancement. AGR module enforces fashion layout constraints and semantic relations of fashion landmarks on deep representations.

DAU module generates spatial attention matrix and channel attention matrix as the guidance to adaptively enhance spatial detailed and
task-related channel features respectively.

2.3 Attention Mechanism

The attention mechanisms have achieved excellent perfor-
mance in the many computer vision tasks [3, 7, 9, 10]. In
these applications, attention mechanisms act the role of en-
abling the neural network to focus more on useful information
and ignore the useless parts. Especially, Hu et al. [17] through
the Squeeze and Excitation (SE) mechanism to learn global
information among the feature channels and perform feature
recalibration. Wang et al. [29] propose a generic Non-Local
(NL) block that can capture long-range dependencies directly
between two distance-independent image or video positions.
Cao et al. [4] simplify the NL block and propose a global con-
text block combining the simplified NL block with SE block
[17], which is more lightweight and effective. In the paper, we
design a novel attention block, which combines the advantages
of these attention mechanisms and further performs feature
refinement across the multi-scale feature maps.

3 METHODS

3.1 Landmark Detection Framework

The task of fashion landmark detection aims at predicting
the locations of n functional key points from an RGB image
(H ×W × 3), such as the corners of the neckline, hemline,
and cuff. We learn to estimate n key points confidence maps
(heatmaps) for n landmarks labelled in the datasets and then
choose the coordinates with the highest values as the loca-
tions of predicted key points. As shown in Figure 2, we build
the fashion landmark detection network following the intu-
ition of the Feature Pyramid Network (FPN) [23]. First, we
use the ResNet [15] to capture multi-scale feature maps of the
input image and generate the basic confidence maps of land-
marks. We use the Adaptive Graph Reasoning (AGR) module
on the top of ResNet to model the dependencies of different
landmarks and enforce the detected fashion landmarks to be
coherent with structural fashion layouts from a global per-
spective. Then, we upsample the feature maps and fuse the
multi-scale feature maps. Furthermore, to strengthen the spa-
tial detailed and task-related features globally, we design the
Dual Attention Upsample (DAU) module which emphasizes

Figure 3. Illustration of Adaptive Graph Reasoning (AGR)
module, where blue circles indicate reasonable landmarks and red

circles indicate unreasonable landmarks.

the informative features through modelling long-range depen-
dencies in the spatial and channel dimensions. Finally, a 1×1
convolution with a sigmoid activation function is utilized to
estimate final landmark confidence maps.

3.2 Adaptive Graph Reasoning Module

The AGR module aims to enhance convolutional features by
adaptive graph reasoning among landmarks. As shown in Fig-
ure 3, through propagating information between correlated
fashion landmarks guided by high-level human commonsense
knowledge, AGR enforces fashion layout constraints and se-
mantic relations of fashion landmarks on deep representations
and make the detected fashion landmarks be coherent with
structural fashion layouts.

3.2.1 Fashion Layout Definition

For mining semantic correlations and constraints among dif-
ferent fashion landmarks, we first define the general fashion
layout that reflects prior knowledge of clothes (e.g. the bi-
lateral symmetric property of clothes, the constraints among
kinematically connected clothing parts). Specifically, we de-
fine the fashion layout constructed by graph nodes character-
izing landmark categories and graph edges representing prior
knowledge, which is denoted as G = (V,E). We define the
fashion landmark representations as X ∈ Rn×d, which is gen-
erated from convolutional feature maps. The basic landmark
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(a) full body. (b) upper body. (c) lower body.

Figure 4. Illustration of our fashion layout, where red circles
indicate ground-truth cloth landmarks, black lines indicates the

correlations between landmark points.

adjacency weight matrixA ∈ {0, 1}n×n is initialized according
to the edge connections in E as shown in Figure 4. n means
the number of fashion landmarks and d means the feature
dimension of each landmark.

3.2.2 Fashion Graph Node Construction

To reasoning fashion layout in the graph space, we need to
map the convolutional feature maps to graph node repre-
sentations. Given the input convolutional feature maps F ∈
RH×W×C , where H, W and C denote the height, weight, and
channel, we first operate a dimension transformation on it,
then we get the F ∈ RHW×C . The graph node representa-
tions X ∈ Rn×d for all n landmarks can be obtained by:

X = σ(Φ(FWm)TFWt). (1)

where Wm ∈ RC×n and Wt ∈ RC×d are trainable sampling
matrices. The Φ denotes normalized function softmax to sum
all rows to one, and the σ denotes non-linear function Relu.

3.2.3 Adaptive Layout Reasoning

After creating the graph node representations X ∈ Rn×d for
all the n landmarks, it is natural to propagate the connected
landmarks ofX by the edgesA ∈ {0, 1}n×n in the prior knowl-
edge graph G. However, we observed that the information
propagation may even deteriorate the detection performance
when most of the landmarks of a cloth item are not detected
correctly.

Intuitively, the information from inaccurate landmarks
should be suppressed and the information from well-detected
landmarks should be propagated to aid the poor detection of
other landmarks. Thus, we attempt to weight the information
from different landmarks. We introduce a simple way to gen-
erate the weights of fashion nodes to share information better.
The positions which have the highest responses in each chan-
nel of the confidence map H ∈ RH×W×n are considered as the
detected landmarks since the values of each position represent
the occurrence possibility of landmarks. The inaccurate land-
marks always have low response scores. We use the response
scores S ∈ Rn of n landmarks to weight the graph edges. The
adaptive adjacency matrix Â ∈ Rn×n can be generated by:

Â = Φ((1⊕ S)⊗A), (2)

where the Φ denotes normalized function softmax to sum all
rows to one, ⊕ denotes broadcast element-wise addition, and
⊗ denotes broadcast element-wise multiplication. Note that
the adaptive adjacency matrix Â is asymmetric.

Given the graph node representations of fashion landmarks
X ∈ Rn×d and adaptive adjacency matrix Â ∈ Rn×n. We
update the node representations by propagating information
between connected nodes based on Graph Convolutional Net-
work (GCN).

Unlike standard convolutions that operate on local Eu-
clidean structures in an image, the goal of GCN is to learn a
function f(·, ·) on a graph G, which takes feature representa-
tions Xl ∈ RN×D and the corresponding correlation matrix
A ∈ RN×N as inputs (where D denotes the number of nodes
and D indicates the dimensionality of node features), and up-

dates the node features as Xl+1 ∈ RN×D′
. Every GCN layer

can be written as a non-linear function by

Xl+1 = f(Xl, A). (3)

After employing the convolutional operation of [20], f(·, ·) can
be represented as

Xl+1 = h(AXlW l), (4)

where W l ∈ RD×D′
is a transformation matrix to be learned

and A ∈ RN×N is the correlation matrix, and h(·) denotes a
non-linear operation.

Thus, after employing the GCNs on the fashion graph
nodes X and adaptive correlation matrix Â, the information
is shared and propagate globally across all n landmarks ac-
cording to the designed layout constraint by stacking multiple
GCN layers.

3.2.4 Feature Enhanced via Graph Reasoning

To enhance convolutional features via reasoning between
landmarks, we map evolved graph node representations back
into convolutional features. Given the input convolutional fea-
tures F and evolved node representations X, we first per-
form the dimension transformation for F ∈ RHW×C → F ∈
RHW×n×C and X ∈ Rn×d → X ∈ RHW×n×C . Then we con-
catenated F and X to Xs ∈ RHW×n×(C+d) for richer feature
representations. We can get the enhanced convolutional fea-
ture representations Fr ∈ RHW×C by:

Fr = σ(Φ(XaWm′))σ(XWt′), (5)

where Wm′ ∈ RC+d is a vector with C + d dimension and
Wt′ ∈ Rd×C is a trainable sampling matrix.

3.3 Dual Attention Upsample Module

The DAU module is designed to compensate for the loss of
spatial details and emphasizes task-related features on the
upsample layers. DAU mainly contains two crucial blocks,
Spatial Attention (SA) block, and Channel Attention (CA)
block, which strengthen the feature representations by mod-
elling long-range interdependencies in spatial and channel di-
mensions separately.
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(a) Spatial Attention. (b) Channel Attention.

Figure 5. Illustration of Spatial Attention (SA) and Channel
Attention (CA) blocks in Dual Attention Upsample (DAU)

module. Through modelling interdependencies in spatial and
channel dimensions, SA enriches the spatial details and CA

emphasize the task-related features.

3.3.1 Spatial Attention Block

The spatial details are critical to determining the final lo-
cation since the rough area of the landmark is detected. We
design the SA block to enrich the spatial details on the upsam-
ple layers. SA integrates the low-level details into final feature
maps, which are from shallow layers in the feature extraction
network. Moreover, it utilizes the high-level feature maps to
generate spatial attention maps through computing the re-
sponse at a position as the importance of each spatial detail,
the attention maps further help to select informative spatial
details and filter out useless parts. Specifically, we define the
feature map extracted by the network as Xh ∈ RC×H×W , and
Xl ∈ RC′×2H×2W is the corresponding low-level feature map
in the backbone network. The spatial attention map Ms is
generated by a 1 × 1 convolutional operation C1 followed by
a sigmoid function:

Ms = Sigmoid((Ub(C1Xh)), (6)

where Ub(·) denotes bilinear upsample operation. Then we
fuse the high-level and selected low-level features to generate
the enhanced feature map X̃ ∈ RC×H′×W ′

. The output of the
SA block X̃ can be expressed as:

X̃ = Ut(Xh)⊕ (Ms ⊗ C2Xl), (7)

where C2 is a 1 × 1 convolutional operation, Ut(·) de-
notes transposed convolution operation, ⊕ denotes broadcast
element-wise addition and ⊗ denotes element-wise broadcast
multiplication.

3.3.2 Channel Attention Block

The CA block is designed to emphasize task-related fea-
tures and suppress useless ones in the dense feature maps. In
this way, the network pays more attention to useful informa-
tion and improves the utilization of computational resources.
Specifically, for the feature map after SA operation, we de-
fine it as X = {xi}Ci=1, where C is the channel number and
xi ∈ RH×W is a feature slice. We use a global average pooling
to aggregate the global feature in every feature slice together.
The aggregated feature Z ∈ RC×1×1 is calculated by:

zc =
1

H ×W

H∑
i=1

W∑
j=1

xc(i, j), (8)

where zc and xc are the c-th element of Z and X.
To compute the importance coefficient for each channel,

we adopt one 1 × 1 convolutions C1, one ReLU , one 1 × 1
convolutions C2 sequentially, the channel-wise attention map
Mc ∈ RC×1×1 can be expressed as:

Mc = C2ReLU(C1Z). (9)

Given the channel-wise attention map, the enhanced fea-
ture map X̃ ∈ RC×H×W is calculated by:

X̃ = (1⊕Mc)⊗X, (10)

where ⊕ denotes broadcast element-wise addition and ⊗ de-
notes element-wise broadcast multiplication.

4 EXPERIMENTS

4.1 Datasets and Evaluation Metric

4.1.1 Deepfashion

Deepfashion [24] is a large-scale cloth dataset with compre-
hensive annotations. It offers 289222 fashion images, which
are richly annotated with category, attribute, bounding box,
landmarks and correspondence of image taken under different
scenarios including store, street snapshot, and consumer. For
fashion landmark detection, each image is labelled with up to
8 fashion landmarks including left/right collar end, left/right
sleeve end, left/right hem and left/right waistline.

4.1.2 FLD

FLD [25] is a fashion landmark dataset with more diverse
variations (e.g. pose, scale, background). It contains 123026
images and is divided into five subsets according to the posi-
tions and visibility of their ground truth landmarks. For each
image, the annotations for 8 landmarks are offered.

4.1.3 Evaluation Metric

We employ the Normalized Error (NE) to estimate our model,
which is a comprehensive metric in the task of fashion land-
mark detection. The NE is defined as the l2 distance between
predicted landmarks and ground truth landmarks in the nor-
malized space. The calculation formula is

NE =

∑
k

{
dk
sk
δ(vk = 1)

}
∑

k {δ(vk = 1)} × 100% (11)

where dk is the distance between predicted landmark and
ground truth landmark, sk is the size of the image, vk is the
visibility of the landmark, which values 1 when the corre-
sponding landmark is visible. The smaller values of NE indi-
cate better results.
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Table 1. Quantitative results for fashion landmark detection on Deepfashion dataset and FLD dataset with NE metric. Lower values
are better. The best results are marked in bold.

Deepfashion
Methods L.Collar R.Collar L.Sleeve R.Sleeve L.Waist R.Waist L.Hem R.Hem Avg.
FashionNet [24] .0854 .0902 .0973 .0935 .0854 .0845 .0812 .0823 .0872
DFA [25] .0628 .0637 .0658 .0621 .0726 .0702 .0658 .0663 .0660
DLAN [30] .0570 .0611 .0672 .0647 .0703 .0694 .0624 .0672 .0643
FPN [23] .0351 .0360 .0563 .0584 .0446 .0468 .0661 .0697 .0518
AFGN [28] .0415 .0404 .0496 .0449 .0502 .0523 .0537 .0551 .0484
SANL [22] .0277 .0282 .0391 .0394 .0297 .0299 .0395 .0401 .0342
LGR [31] .0270 .0116 .0286 .0347 .0307 .0435 .0160 .0162 .0336
Ours .0256 .0251 .0318 .0324 .0271 .0286 .0328 .0341 .0297

FLD
Methods L.Collar R.Collar L.Sleeve R.Sleeve L.Waist R.Waist L.Hem R.Hem Avg.
FashionNet [24] .0784 .0803 .0975 .0923 .0874 .0821 .0802 .0893 .0859
DFA [25] .048 .048 .091 .089 - - .071 .072 .068
DLAN [30] .0531 .0547 .0705 .0735 .0752 .0748 .0693 .0675 .0672
FPN [23] .0437 .0441 .0673 .0682 .0710 .0721 .0635 .0618 .0614
AFGN [28] .0463 .0471 .0627 .0614 .0635 .0692 .0635 .0527 .0583
SANL [22] .0296 .0298 .0489 .0471 .0402 .0413 .0546 .0580 .0437
LGR [31] .0423 .0152 .0502 .0735 .0195 .0512 .0452 .0393 .0419
Ours .0257 .0263 .0429 .0431 .0347 .0343 .0458 .0463 .0374

4.2 Implementation Details

Our fashion landmark model is built upon a ResNet-50 [15]
backbone with an AGR module and 3 DAU modules. We crop
input images using labelled bounding boxes and resize all the
cropped images into 224 × 224. Thus, our network generates
eight 56×56 confidence maps for fashion landmarks. We train
the model using stochastic gradient descent with a batch size
of 64 images, which is optimized by Adam optimizer with
an initial learning rate of 1e − 3 on 4 GTX 2080Ti GPUs.
On Deepfashion, we linearly decrease the learning rate by a
factor of 10 every 10 epochs. On FLD, we linearly decrease
the learning rate by a factor of 10 every 20 epochs. We set the
mean squared error (MSE) equation as an objective function
between final predicted confidence maps and ground-truth.
For the testing, we resize the cropped images in the same
way as training. Our model generates eight 56× 56 landmark
confidence maps for a single input image. The locations with
the highest values are regarded as the predicted positions.

4.3 Compare with State-of-the-art

AGRNet achieves a significant improvement over two stan-
dard fashion landmark detection benchmarks compared with
existing state-of-the-art methods (e.g. FashionNet [24], DFA
[25], AFGN [28], LGR [31]) . In Table 1, we provide the
quantitative evaluation results of our proposed method and
other methods. Our model outperforms the state-of-the-art at
0.0297 NE on Deepfashion and 0.0374 NE on FLD. Compared
with traditional FCN models [24, 25, 30, 23, 22], we enforce
structural layout constraints among landmarks on the deep
representations and generate more structure-constant land-
mark detection. Compared with AFGN [28] and LGR [31],
which define fixed correlation matrices for all samples, we per-
form adaptive graph reasoning among landmarks and would
be inclined to share the information from well-detected land-
marks. Thus, unlike LGR only decrease the NE in part of the
landmarks on Deepfashion but performs poorly in some hard
landmarks (e.g. 0.0347 NE in R.Sleeve, 0.0435 NE in R.Waist
), our model consistently decreases the NE and performs well

Figure 6. Qualitative results for VGG16, FPN [32] and Ours
over DeepFashion dataset.

in all landmarks on Deepfashion and FLD. Sampled landmark
detection results are presented in Figure 7.

4.4 Ablation Study

In this section, we perform an in-depth study of the proposed
modules in our detection network on Deepfashion dataset.

4.4.1 Effectiveness of Adaptive Graph Reasoning
Module

In the first list of Table 2, we explore the effectiveness of dif-
ferent numbers of GCN layers in Adaptive Graph Reasoning
(AGR) module. ResNet-50 with three transposed convolution
layers baseline achieves 0.0406 NE score, which is the worst
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Figure 7. Visualization results of our proposed fashion landmark detection approach. Images on the first row are the results on
DeepFashion-C test set, and results on FLD dataset are on the second row.

result in our experiments. Benefiting from graph reasoning,
AGR module with two GCN layers achieve the best perfor-
mance at 0.0335 NE score, with a 17% improvement over the
baseline. The performance tends to be destroyed with the
depth increasing of GCN layers. Thus, we select two layers
in our stand model and apply it to all extensive experiments.

In the second list of Table 2, we build an ablation study of
the different correlation matrices in the AGR module. When
the AGR module with fixed correlation matrix is used, we get
a slightly better detection performance at 0.0374 NE owing
to information propagation among landmarks. When we re-
place the fixed correlation matrix with the proposed adaptive
correlation matrix, the NE decreases by 14% achieving better
performance at 0.0335 NE. The adaptive correlation matrix
guides the GCNs to share information better.

Table 2. Ablation study on Deepfashion dataset. We present
the results generated by different numbers of GCN layers in AGR
module and compare the effectiveness of the different correlation

matrices in the AGR module. The best results are marked in
bold.

Different Numbers of GCN Layers
Method NE score ∆ NE score
baseline .0406 -
one layer .0383 .0023
two layers .0335 .0071
three layers .0397 .0009
four layers .0452 .0046

Different Correlation Matrices
Method NE score ∆ NE score
baseline .0406 -
fixed matrix .0374 .0032
adaptive matrix .0335 .0071

4.4.2 Effectiveness of Dual Attention Upsample
Module

In the first list of Table 3, we build an ablation study of differ-
ent stacked DAU modules. We use ResNet-50 with an AGR
module and three transposed convolution layers as our base-
line model, which achieves 0.0335 NE score. To demonstrate
the superior ability of the DAU module, we replace a tradi-
tional convolution layer with a DAU module one by one. The
performances get better with the number of DAU modules
increasing, DAU modules consistently strengthen the feature

representations on different scale decoder layers. When three
transposed convolution layers are all replaced with the DAU
modules, we get the best performance at 0.0297 NE score.
Thus, we select three stacks of DAU modules in our final
model and apply it to the following experiments.

In the second list of Table 3, we explore the effectiveness of
each block in the DAU module. With only Spatial Attention
(SA) blocks are used, we can achieve 0.0316 NE. SA blocks
enrich the spatial details in the feature maps, which bring
large performance improvement. With only Channel Atten-
tion (CA) blocks are used, we can achieve 0.0311 NE owing
to the emphasis on the informative features. With the com-
plete DAU modules are used, we can achieve 0.0297 NE. Both
feature enhancements in spatial and channel dimensions con-
tribute to improving the landmark detection performance.

Table 3. Ablation study of DAU module on Deepfashion. We
present the results generated by different stack numbers of DAU
modules and compare the effectiveness of the different blocks in

the DAU module. The best results are marked in bold.

Different Stack Numbers
Method NE score ∆ NE score
baseline .0335 -
one stack .0318 .0017
two stacks .0306 .0029
three stacks .0297 .0038

Different Components

Method
DAU

NE score
SA CA

baseline .0335
ours X .0316
ours X .0311
ours X X .0297

5 CONCLUSION

In this paper, we have presented an Adaptive Graph Reason-
ing Network (AGRNet) for fashion landmark detection, which
makes detected fashion landmarks be coherent with clothes
layouts from a global perspective. Specifically, we introduce
a graph adaptive reasoning module to propagate information
between graph node representations of correlated landmarks
by the guidance of human commonsense knowledge. More-
over, a dual attention upsample module is proposed to em-
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phasize the spatial detailed and task-related features to fur-
ther improve the detection performance. The ablation exper-
iments show that adaptive reasoning module helps to detect
structure-consistent landmarks and the attention upsample
module enhance the feature representations. Combining the
adaptive reasoning and attention upsample module, our net-
work achieves outstanding performance consistently on two
fashion landmark detection datasets.
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