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Feature-level Ensemble Knowledge Distillation for
Aggregating Knowledge from Multiple Networks
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Abstract. Knowledge Distillation (KD) aims to transfer knowledge
in a teacher-student framework, by providing the predictions of the
teacher network to the student network in the training stage to help
the student network generalize better. It can use either a teacher with
high capacity or an ensemble of multiple teachers. However, the lat-
ter is not convenient when one wants to use feature-map-based distil-
lation methods. In this paper, we empirically show that using several
non-linear transformation layer cope well with multiple-teacher set-
ting compared to other kinds of feature-map-level distillation meth-
ods. Comprehensively, this paper proposes a versatile and powerful
training algorithm named FEature-level Ensemble knowledge Distil-
lation (FEED), which aims to transfer the ensemble knowledge us-
ing multiple teacher networks. In this study, we introduce a couple
of training algorithms that transfer ensemble knowledge to the stu-
dent at the feature-map-level. Among the feature-map-level distilla-
tion methods, using several non-linear transformations in parallel for
transferring the knowledge of the multiple teachers helps the student
find more generalized solutions. We name this method as parallel
FEED, and experimental results on CIFAR-100 and ImageNet show
that our method has clear performance enhancements, without intro-
ducing any additional parameters or computations at test time. We
also show the experimental results of sequentially feeding teacher’s
information to the student, hence the name sequential FEED, and
discuss the lessons obtained. Additionally, the empirical results on
measuring the reconstruction errors at the feature map give hints for
the enhancements.

1 Introduction

Recent successes of convolutional neural networks (CNNs) have led
to the use of deep learning in real-world applications. In order to
manipulate these deep learning models, deep CNNs are trained us-
ing multi-class datasets to find manifolds separating different classes
well. To meet this need, deep and parameter-rich networks have
emerged that have the power to find manifolds for a large number
of classes. However, these deep CNNs suffer from the problem of
overfitting due to their great depth and complexity, which results in
a drop of performance at the test time. In fact, even a small ResNet
applied for a dataset such as CIFAR-100 [14] will easily overfit with
the converged train losses, whereas the test accuracy is significantly
lower. These phenomena have led to the need for learning DNN mod-
els with appropriate regularization to allow them to generalize better.
Regularizing a model to achieve high performance for new inputs is a
technique that has been used since the era of early machine learning.

L Seoul National University, South Korea, swpark0703 @snu.ac.kr
2 Seoul National University, South Korea, nojunk @snu.ac.kr

image |—> label

ensemble

Student

image |—> feature

Student

|——> feature

Figure 1. Our problem formulation. The figure at the top shows how the
KD is trained using ensemble of networks as the teacher. The figure at the
bottom shows that a problem arises when we want to distill ensemble
information directly in feature level rather than using label information.

Model ensemble [4] is one of the popular regularization methods,
which has been used as a way of alleviating the problem of overfit-
ting in a single model. However, it has drawbacks in that it requires
multiple models and inputs should be fed to each of them at the test
time. Many studies proposed ideas to transfer knowledge of a teacher
to a compact student [1, 3, 22, 26]. For a solution to this problem,
[11] proposed Knowledge Distillation (KD), which trains a student
network using soft labels from an ensemble of multiple models or
a teacher network with high capacity. They obtained meaningful re-
sults in the speech recognition problem, and KD has become one of
the representative methods of knowledge transfer. They aim perfor-
mance improvements of a weak student network by giving various
forms of knowledge of expert teacher networks. It is also categorized
as one family of model compression since it helps the student net-
work achieve higher accuracy with a fixed number of parameters.

The recent knowledge transfer algorithms can be approximately
categorized in two viewpoints. The first is whether to use an ensem-
ble model or a single high-capacity model as a teacher. The second
is whether the teacher delivers predicted labels or the information
from feature maps. Whereas the methods that use teacher’s predic-
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tion can use both types of teachers, to the best of our knowledge,
methods using feature-map-level information can only use a single
high-capacity model as a teacher. For example, studies of Factor
Transfer (FT) [13], Attention Transfer (AT) [31], and Neuron Selec-
tivity Transfer (NST) [12] set the student network as a shallow one
with a small number of parameters, and set the teacher network as a
deeper and more powerful one instead of an ensemble expert. One of
the drawbacks of methods with a high-capacity teacher model is that
high-capacity model may be hard to obtain [15].

On the contrary, the ones which use an ensemble of networks can
transfer ensemble knowledge and also have advantages of the peer-
teaching framework [7, 11, 15]. Also, [33] showed that using the
same type of network for transferring output-level knowledge can
improve the performance of a network. However, the methods that
deliver knowledge at the feature-map level also have advantages that
they can give more specific information to the student compared to
the methods that only rely on the output predictions of the teacher.

To make full advantages of both the ensemble teacher method and
the feature map transfer method, we propose a new framework that
delivers knowledge of multiple networks at the feature-map-level
(See Fig. 1). In this paper, we train a new student network using
multiple teachers that share the same architecture with the student
network, named parallel FEED. We also explore a variant, named
sequential FEED, which recursively trains a new teacher. Compar-
isons with other algorithms are provided with analysis that provides
lessons. Our main contributions are threefold:

e In various settings, we empirically show that for high-capacity stu-
dent, feature-map-based methods that give more specific knowl-
edge are stronger than label-based methods, which give more ab-
stract knowledge.

e We propose parallel FEED, a method that allows multiple teacher
networks to be used for knowledge distillation at the feature-map
level with non-linear transformations.

e For qualitative analysis, by utilizing the autoencoder reconstruc-
tion losses, we provide hints for the performance enhancements of
our FEED.

The paper is organized as follows. First, we briefly explain the
related works in the area of knowledge distillation. Then our main
proposed method is described and a variant version implemented to
compare with other methods is proposed. Next, we verify our pro-
posed methods with experiments. Experimental results from our pro-
posed training methods are compared with AT, KD, FT, BAN (Born
Again Neural Network)[7] on CIFAR-100. The ImageNet dataset is
also used to check the feasibility of our method on a large-scale
dataset. Qualitative analysis is also provided, which is followed by
discussion and conclusion.

2 Related Works

Many researchers studied the ways to train models other than using
a purely supervised loss. In the early times of these studies, Model
Compression [3] studied the ways to compress information from en-
semble models in one network. Ba [1] showed that shallow feed-
forward nets can learn the complex functions previously learned by
deep neural nets, by minimizing L2 loss between logits.

More recently, Hinton [11] proposed Knowledge Distillation
(KD), which uses softened softmax labels from teacher networks in
training the student network by minimizing the following loss:

Lip=(1—a)ler(y,o(s) +aT* Lz (‘7<;)7‘7(;))’ @)

where the o (-) is the softmax function, 7" is a temperature value that
controls the softened logit. « is hyper-parameter that controls the
weight between two terms. The vectors s and t are predicted output
logits of the student network and the teacher network, respectively,
and y is the ground-truth label. Lc g is the cross-entropy loss that is
commonly used in classification problems, and £k 1, is the Kullback-
Leibler divergence loss.

This motivated researchers to develop many variants of it to vari-

ous domains, and many researchers studied ways to better teach the
student [6, 18, 19, 24, 25]. We introduce some recent research works
that are potentially related to our proposed method.
Peer teaching framework: Rather recently, many papers adapt peer-
teaching framework that use the same kind of network for both the
teacher and the student. Geras [8] try to transfer knowledge between
two networks that have almost the same number of parameters. BAN
[7] shows that using the exact same architecture for the teacher and
the student boosts the performance of the student network even with-
out softening the labels. BAN uses a simpler loss term without soft-
ening both logits, which KD does, and does not even assign weights
to the two terms as follows:

Lpan = LcE (y7 U(S)) + Lk (a(t), O'(S)). )

They train the student recursively to enhance the performance fur-
ther. The n'" student network becomes the (n 4 1)** teacher net-
work to train the next student network. The better teacher network
will teach the student network better.

Also, studies such as DML [33] and ONE [15] use the same kind

of network for on-line training of peer networks with mutual KL-
divergence losses.
Feature-map-based methods for knowledge transfer: Contrary to
the methods that try to use labels from the teacher network, there
exist studies that distill useful information directly from feature maps
in various forms.

AT [31] tried to transfer the attention map of the teacher network to
the student network, and got meaningful results in knowledge trans-
fer and transfer learning tasks. Their loss term is:
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where  is a hyperparameter that depends on the number of elements,
and [ denotes the I*" group [29] in the network. A!, AS are attention
maps obtained from the teacher network and the student network,

and f(A) = (1/N) Ei;l a2, where N is the number of channels,
th

llz, (3)
2

and a,, is the spatial map from the n"" channel.

Yim [28] introduced another knowledge transfer technique for
faster optimization and applied it also to transfer learning. Shen[23]
tried to combine knowledge trained from different domains, and You
[30] utilized ensemble of orderings of samples to teach the student
network, which is very novel. Huang [12] tried to match the features
of the student and teacher networks by devising a loss term MMD
(Maximum Mean Discrepancy).

FT [13] uses additional paraphraser and translator networks,
which help training the student network and got meaningful results.
Their loss terms are:

Lyce = ||z — P(x)||3, (for the paraphraser) 4)
Fr Fs
-l ®)
[Frll2 [[Fsll2
where P(-) is the autoencoder-based paraphraser network and z is
the input feature map for the paraphraser. Frr and Fg are the output
of the paraphraser and the translator, respectively.

Lstudent = LCE (y7 U(S)) + ﬂ ||
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3 Proposed Training Algorithm

In deep CNNs, mainly due to the curse of dimensionality, the data
points that lie on the data space are very sparse. For example, CIFAR
datasets that contains the number of 50,000 training images and has
3,072 dimensions, so distances between each samples are very far.
Necessarily, decision boundaries that determine the borders dividing
classes are multitudinous, because finding boundaries that fit well
to a training dataset is relatively an easy task. Even if the networks
with the same architecture are trained, the learned decision bound-
aries cannot be the same. This is why ensemble methods usually
perform better than a single model despite their structural equality.
Goodfellow [9] also state that different models will not make all the
same errors on the test dataset.

Consider the conditions that determine the training procedure of
CNNs. They include the structure of the CNN and the choice of an
optimizer, the seed of random initialization, the sequence of mini-
batches, and the types of data augmentations. If one makes the same
conditions for two different CNNS, their training procedure will be
identical. However, we usually determine only the structure of the
CNN, usually keeping others to be random. Consequently, two net-
works with the same structure are highly unlikely to learn the same
decision boundaries.

Additionally, Kim [13] state that they resolve the ‘inherent differ-
ence’ between two networks. Among the inherent differences, mini-
mizing the differences in the structure of CNNs can help better learn
the knowledge of the teacher network. This has a thread of connec-
tion with that of BAN [7], which shows that using the same archi-
tecture for both the student and the teacher is actually beneficial.
This motivation provides us chances to produce several modified ver-
sions of existing methods. In this section, we explain the feature-level
ensemble training algorithms that are used for boosting the perfor-
mance of a student network without introducing any additional cal-
culations at the test time. The proposed method is named as FEED
which is an abbreviation for the FEature-level Ensemble knowledge
Distillation. We propose pFEED (parallel FEED), which we handle
as our main method, that use non-linear transformation layers to dis-
till ensemble knowledge into the student network. We also introduce
SFEED (sequential FEED), motivated by BAN [7], which adapts the
sequential training with the use of nonlinear transformations. The use
of the nonlinear layers, rather than using a simple distance metric,
had been explored previously in FitNet [20] and FT [13].

3.1 Parallel FEED

Assuming that distilling knowledge at the feature map level and dis-
tilling knowledge from an ensemble of multiple networks both have
their advantages, we wanted to make cooperation of these two kinds
of methods. Tackling this problem, we propose a training structure
named pFEED to transfer the ensemble knowledge at the feature
map level. Let us denote the number of the teacher network as N.
We use different non-linear transformation layers for each teacher,
which means that if there are N teachers, there are NV different non-
linear layers. The final feature map of the student network is fed into
the non-linear layers and its output is trained to mimic the final fea-
ture map of the teacher network. In this way, we take advantages of
both the ensemble model and the feature-based method. Our method
is illustrated in Figure 2. If we use NV different teachers, the loss term
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Figure 2. Illustration of our proposed method, parallel FEED. NTL is an

abbreviation of Nonlinear Transformation Layer, and one NTL is allocated

to each teacher network. All teacher networks are fixed during the training,
and the student network and NTL networks are trained simultaneously.

is as follows:

N
Lstudent = Lce(y,o(s)) + 8 Z LFEED,,, (6)
n=1
T NTL,(z°
Lrepp, = |2 @) .. @)
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Here, Lc g is the cross-entropy loss, y is the ground-truth label, s is
the predicted logits, and o (-) denotes the softmax function. Lrggp,,
is the FEED loss from the n'" teacher network, = is the output
feature map obtained from the n'" teacher network, and x° is the
output feature map obtained from the student network. NT'Ly(-) is
the n'* nonlinear transformation layer used for adapting the student
with the nt" teacher network. Each NT'L(-) is composed of three
convolution layers with the kernel size of 3 to expand the size of
receptive field, so that the student can flexibly merge the knowledge
attained from different teachers. The feature maps are normalized by
its own size as in (7). This normalizing term was previously used in
AT. [ is used to scale the £ distance loss to match the scale of Lok,
as also described in AT.

3.2 Sequential FEED

BAN [7] used cross-entropy loss combined with KD loss without
softening the softmax logits. They use a trained student network as a
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Figure 3. The sequential FEED. We adapted the setting of BANs where
the teacher network and the student network have the same architecture.The
trained student network is used as a teacher network for the next stage. Dots

mean that we repeat this procedure.

new teacher, which is used to train a new student and do this recur-
sively. We take this architectural advantage of using the same type
of network recursively because it is a suitable model for accumulat-
ing and assembling knowledge. By performing knowledge transfer
several times recursively, it may also ensemble knowledge of many
training sequences. We applied the FEED recursively and named this
framework as sSFEED (sequential FEED). The training procedure of
sFEED is illustrated in Figure 3.

If the student network is trained standalone, it would perform sim-
ilarly to the teacher network. However, from the view of knowledge
ensemble, since the teacher network delivers feature-level knowledge
different from that of the student network, the student network will
benefit from it.

4 Experiments

Focus: Here, we make an assumption that labels are very abstract
information, whereas feature-maps are more detailed information.
For low-capacity student, giving more abstract knowledge is ben-
eficial, since it lacks capability. However, for high-capacity giving
more detailed knowledge is beneficial, since the student has enough
capability. We will show with experiments that the results match our
assumption.

Firstly, we want to briefly show with experiments that using non-
linear transformations for the output feature map with a distance met-
ric is helpful for teaching the student network, rather than just using
a simple distance metric without any adaptation layer. Next, we will
report the score of pFEED, which use multiple pairs of nonlinear
transformation layers with each teacher networks, and will compare
ours with KD and AT in a similar setting. Finally, sSFEED will be
compared with FT, KD, and BAN. The algorithms will be experi-
mented following the BAN’s sequential training schedules.

We show the classification results on CIFAR-100 [14] on which
many networks show lower test accuracy than train accuracy, so that
many studies do experiments on it to show their regularization power.
On this dataset, our results are compared with feature map based
methods and label based methods with corresponding settings. Sec-
ond, we explore the feasibility of our algorithm on Imagenet [21], a
commonly used large dataset and analyze the results quantitatively.
In the remaining section, we show some analysis of our algorithm.
The implementation details are on the supplementary material.

We chose three types of CNNs to check the applicability of our
algorithms on CIFAR-100: ResNet [10], Wide ResNet [32], and
ResNext [27]. For ResNets, we chose ResNet-56 and ResNet-110
which have fewer number of parameters compared to recent CNNs.

WRN28-10 is a model that controls the widen factor, with much
more number of parameters. WRN28-10 achieves the best classifica-
tion accuracy on CIFAR-100 among the WRNs reported in [32]. The
ResNext29-16x64d also achieves the best classification accuracy on
CIFAR-100 in [27]. This type of CNNs controls the cardinality of
CNN:ss, and it has much more parameters compared to other models.
For ImageNet, we used ResNet-34 to confirm the feasibility of our
method on large scale datasets.

4.1 Effectiveness of standalone feature-map-level
distillation losses

We compare the classification results using our FEED loss and two
other kinds of loss terms, AT and simple £; loss, in training the
student at the feature map level. The results are shown in Table 1.
The £1 means we simply use £; loss at the final feature maps. AT
use attention maps attained from feature maps to give information.
From these results, we can see that using nonlinear transformation
layers are helpful in delivering information at the feature-map level.
Interestingly, AT and £, beats a single FEED model in ResNext29-
16x64d model.

Table 1. Test classification error on Cifar-100 dataset. The numbers on the
scratch column are the baseline errors of each network, trained by the pure
cross-entropy loss, which are the scores of the teachers. The numbers on
scratch* columns are the reported errors on their original papers.

Model Type scratch*  scratch Ly AT FEED
ResNet-56 - 28.18 | 27.16  26.60  26.02
ResNet-110 - 2697 | 2542 2570 2525
WRN28-10 19.25 19.09 1794 1786  17.68
ResNext29-16x64d 17.31 17.32 16.46 1651  16.80

4.2 Parallel FEED

In this experiment on pFEED, our main experiment, we used the
same type of networks that were used on previous experiments. For
all four types of CNNs, we compared the classification results with
the result of KD because we designed our training algorithm with the
intention of distilling more ensemble-like knowledge from multiple
teachers. We also experimented AT to empirically show that it would
not be easy for a feature-map-based knowledge transfer methods to
fully utilize multiple teacher networks. We modulated AT to use mul-
tiple teachers, by simply incrementally adding same loss terms for
each teacher network. We did not change the 3 values for weights of
each loss terms, similar to pFEED.

The results are in Table 2. The ‘Scratch’ column shows the perfor-
mance of the base networks, which are used in KD for model ensem-
ble, and also used as teachers in pFEED and AT. For all experiments,
pFEED consistently got higher accuracy compared with both KD and
AT and produces the closest results to those of the network ensemble.

Comparison with KD: It is worth noting that the performance of
KD is almost equivalent to pFEED for small networks, because giv-
ing abstract knowledge performs well with smaller networks. How-
ever, when it comes to the networks with a larger number of param-
eters, pFEED shows better accuracy compared to KD. This result
matches the assumption that distilling in the feature-map level will
provide more detailed information to the student. In contrast, KD
works quite well for small networks, because it gives ensemble la-
bels, which are rather abstract. These labels are useful for small net-
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Table 2. Test classification error (%) on CIFAR-100 dataset. All scores of other methods are our reproduction. In the 5x£1, SXAT and 5xFT columns, we
used five £, AT and FT losses each for training one student. The scores of the Ens column are the performance of label ensemble of 5 scratch models. We
trained pFEED 5 times and averaged the results.

Model Type Scratch (5 mean) KD 5xL; 5xAT 5xFT  5xRegressor pFEED Ens  Parameters
ResNet-56 28.18 (£ 0.17) | 24.69 2729 27.02 2541 25.00 2474 (£ 0.12) 2245 0.85M
ResNet-110 2697 (£ 0.16) | 23.50 28.94 2523 23.81 23.18 2298 (£ 0.20) 21.20 1.73M
WRN28-10 19.09 (£ 0.13) 18.30 2375 17.73 17.30 17.26 16.86 (= 0.14) 16.59 36.5M
ResNext29-16x64d | 17.32 (4 0.08) 16.64 1631 1742 16.30 16.17 15.70 (£ 0.08) 15.66 68.1M

works that should focus on key information for accuracy improve-
ment.

Comparison with feature-map-based methods: Compare the re-
sults on Table 2 with Table 1. As shown by the scores of £ and AT,
using multiple teachers with these methods did not make a meaning-
ful difference compared to the case when a single teacher network
was used. This is an example of our statement, that it is not easy for
existing feature-map-based knowledge transfer methods to fully uti-
lize multiple teachers to boost the performance of a single student
network.

Comparison with 5 regressors: Here, we compose an experi-
ments of using 5 regressors from FitNets, which use single 1x1
convolution layer for the regressor, which is proposed to adapt the
channel size. Since the student and teacher have the same channel
sizes, following the FitNet, one can omit the regressors, which be-
comes the setting of 5xL;. However, as the result shows, Regressors
which have non-linearity boosts the ensemble-feature distillation per-
formance. Furthermore, with stacking more of this non-linearity for
increasing receptive field size is beneficial, which can be found with
the result of pFEED.

Imagenet: The results of pFEED for ImageNet is on Table 3. We
also find some accuracy improvements on ImageNet dataset, but did
not have enough resources to train models with larger parameters, nor
did we could experiment on larger models or other methods. Though
we reported scores of five scratch models, only the first three teacher
networks had been used for training of the student. We could get
decent results, but interestingly, improvements are not as strong as
those of SFEED on ImageNet that will be shown later.

Table 3. Validation classification error (%) of pFEED on Imagenet dataset.

Model Type Scratch (5 runs) pFEED
ResNet-34(Top-1) | 2645 2659 2640 2677 26.64 25.27
ResNet-34(Top-5) | 8.54 8.72 8.63 8.68 8.61 7.79

4.3 Sequential FEED

This section contains results of 4 types of methods (FT, KD, BAN,
and sFEED) experimented in small and large capacity networks.
Note that the pFEED is our main proposed method for good per-
formance, and the purpose of this subsection is to further delve into
each method to speculate the characteristics and differences of each
method. The classification results of different methods on CIFAR-
100 can be found in Table 4.3. The word ‘Stack’ in Table 4.3 is the
number of recursions that the student model is trained. We only ex-
perimented up to 5 times since all of them achieve fairly good enough
accuracy compared to baseline models. We reported the performance
of sSFEED because it has a more similar framework to BANs, though
the pFEED, our main proposed method, outperforms SFEED. The

BAN-N in [7] would be the identical setting to the Stack-(N-1) in Ta-
ble 4.3. We additionally experimented FT with the identically struc-
tured teacher and student networks. FT basically uses a large teacher
network with a paraphraser, which is trained as an autoencoder. It
is trained to extract key information called ‘factor’ from the teacher
network in an unsupervised manner, so it gives more abstract infor-
mation.

Comparison of Label-based-methods and Feature-map-based
methods: For the smaller networks such as ResNet-56 and ResNet
110, methods using labels performed better than the feature-map-
based methods, but for networks with larger sizes, feature-map-based
methods showed higher accuracy. FT uses more abstract knowledge
(using paraphraser) compared to sFEED, so it did not perform well
as SFEED for larger networks. However, it performed better for
smaller-sized networks. KD uses more abstract knowledge compared
to BAN, because KD softens the labels, and it achieves higher ac-
curacy for smaller networks, but BAN showed better accuracy for
ResNext.

The results of sFEED for ImageNet is on Table 5. For the base
model, we simply used the pre-trained model that Pytorch supplies,
and could achieve the desired result that the performance of Top-1
and Top-5 accuracy improves at each Stack. The sFEED with Stack-
5 achieves better performance compared to pFEED. The performance
of pFEED in Table 3 trained with only three teachers is close to that
of sSFEED with Stack-3, which is a reasonable comparison.

4.4 Qualitative Analysis

Reconstruction Loss: Suppose that the reason for the accuracy gains
shown in the previous tables is that the student learns the ensemble
knowledge that contains information with high complexity. But how
can one actually distinguish whether the networks learn complex in-
formation or not? Here, we adopt a convolutional autoencoder. The
convolutional autoencoders uses 3 convolution and 3 transposed con-
volution layers, and trained with a £, reconstruction loss (for pFEED
with WRN and ResNext, we use mse loss to cope with the gradient
explosions that occur by the high reconstruction loss). Then the code
layer can be interpreted as a latent vector z.

Let us denote the input of autoencoder as x. The increase in the
complexity of feature representation is equivalent to the increase in
the complexity of z. Since the number of parameters in the autoen-
coder is fixed, the size of z also should be fixed. Consequently, as the
complexity of x increases, p(z|z) decreases, resulting in an increase
of the reconstruction loss. Reconstruction errors were used as a cri-
terion for feature selection or PCAs in [2, 5, 16, 17], where they use
linear models. In our experiment, we use an arbitrary autoencoder
composed of convolution layers with nonlinear activation.

For sFEED and pFEED, we recorded the average training recon-
struction losses of the autoencoders normalized by the size of the
autoencoder and plotted the curve on Figure 6. In Fig. 6, St1 through
St4 on sFEED are the autoencoders trained based on the student net-
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parameters are counted in Millions.

Model Type Scratch | Distillation Type | Algorithm | Stack-2  Stack-3  Stack-4  Stack-5
ResNet-56 28.03 Feature FT 2633 2570 2591 2518
SFEED | 2602 2600 2559  25.33

e | TN |z meromm o

caretoo | et 2714 Feature FT 2490 2450 2434 2413
SFEED | 2525 2433 2458  24.40

Label KD 1847 1843 1857  19.05

WRN28-10 19.00 Feature FT 1823 1805  18.14  17.84
SFEED | 1768 1750 1752  17.27

BAN 1659 1642 1643 1648

ResNext29-16:64d | 1731 Label KD 1687 1690  16.88 -
esNextz9-10x : Feature FT 1680 1676 1647  16.48
SFEED | 1680 1647 1622  15.94

Table 5. Validation classification error (%) of sSFEED on Imagenet dataset.
The model’s scores on the Scratch*® column are the same as the scores
reported on the Pytorch implementation.

Model Type Scratch*  Stack-2  Stack-3  Stack-4  Stack-5
ResNet-34(Top-1) 26.45 25.60 25.30 25.18 25.00
ResNet-34(Top-5) 8.54 8.08 7.86 7.73 7.83

works of Scratch (Stl) through Stack-4 (St4) in Table 4.3. The au-
toencoders of pFEED in Figure 6 are trained based on one of the
scratch teacher networks and following student network of pFEED
and KD in Table 2. As expected, as the knowledge is transferred, the
reconstruction loss becomes larger, which indicates that the student
network learns more difficult knowledge and thus the classifier accu-
racy increases. This trend matches the results on the tables. In Figure
6, the the trend of reconstruction losses reciprocally matches the ac-
curacy trend of results in Table 4.3 of sFEED. (Especially, Stack 2
and 3 have similar errors, and likewise, St2 and St3 are similar). The
big difference in reconstruction loss between ‘Scratch’ and ‘pFEED’
in Figure 6 also corresponds to the high performance increase in
ResNet-56 row of Table 2. A better teacher network would learn
more complex and detailed features because it has to contain pow-
ers to distinguish important but different details from each image to
form better decision boundaries. It is worth noting that the curves
for KD and pFEED shows opposite aspect, even though they both
succeed in enhancing their performance. Here, our assumptions also
holds: First, training the student with multiple teacher’s feature map
will help the student learn detailed features. Second, teacher’s labels
are abstract information, but will help the student learn key informa-
tion. Thus, the tendency of KD in Figure 6 is opposite to pFEED.
The curves for other type of networks also show consistent aspect,
and more examples are handled in the Table 6.

4.5 Implementation Details

CIFAR-100: In the student network training phase, we used {1 (p =
1) loss and the hyper-parameter S in FEED was set to 500 for
ResNets and 2,000 for WideResNet and ResNext. We tried to set
the training procedure to be the same as those of the original papers.
For ResNets, we set the initial learning rate to 0.1 and decayed the
learning rate with a rate of 0.1 at 80 and 120 epochs, and training

finished at 160 epochs. For WideResNets, we set the initial learning
rate to 0.1 and decayed the learning rate with a rate of 0.2 at 60, 120
and 160 epochs, and ended the training at 200 epochs. For ResNexts,
we set the initial learning rate to 0.1 and decayed the learning rate
with a rate of 0.1 at 150 and 225 epochs, and training finished at
300 epochs. For all the experiments, simple SGD is used as an opti-
mizer, with the momentum of 0.9 and weight decay of 5 x 1074, and
mini-batch size of 128. The ResNets and WideResNets were trained
on single Titan XP and the ResNexts were trained on four 1080 ti
GPUs. The same setting was applied for nonlinear transformation
layers with 3 convolutions, since they were trained jointly with the
student network.

Nonlinear transformation layers: The nonlinear transformation
layers for FEED are very simple: just 3 X 3 convolution filters with
leaky-ReLU with the slope of 0.1. The strides are just 1 with padding
of 1, so the spatial size is fixed and the number of channels is also
fixed for all three convolutions.

Autoencoder: All the autoencoders Figure 6 are trained for 10
epochs, with a learning rate of 0.1. All autoencoders have 3 convo-
lution layers and 3 transposed convolutional layers for simple imple-
mentation.

ImageNet: The hyper-parameter 5 was set to 1,000. Following
the training schedule of the Pytorch framework, the train starts with
a learning rate of 0.1 and decays by the factor of 0.1 at 30 and 60
epochs, and finishes at 90 epoch, with a mini-batch size of 256. All
other conditions are set to be the same as the setting of CIFAR-100.

The setting of 3: For the ease of reproducing, the choice of 3 is
important. Supposing that we use Lrgrp with L1, the loss scale of
Lreep depends on the number of nodes. Empirically, if one of the
scales of either Lc g or the other is dominant, the accuracy dimin-
ishes compared to the even case. To deal with this, we approximately
adjusted the scale of different losses, resulting in different 3s in dif-
ferent networks. For AT, since it squeezes the feature map through
the channel dimension, the number of elements does not change with
B = 500.

Hyperparameters of KD: We set the Temperature 7" for softened
softmax to 4 and « for scaling as 0.9, following the setting of AT and
FT. The explanations for the two hyperparameters can be found in
KD [11].
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Table 6. Autoencoder reconstruction loss Ly.e.(training) for 4 networks on sFEED and pFEED.

FEED Type ResNet-56 ResNet-110 WRN28-10 ResNext29-16x64d
= g \\k\\\w\m : LS
sFEED : AN NN S ¢ Se~— =< 5 \\ 2 \
i — N —
= Scratch = pFEED KD = Scratch = pFEED KD = Scratch = pFEED KD = Scratch = pFEED KD
3 v \\\M ) : :\\/\M\lm . .
pFEED PN R i

5 Discussion

Comparing the results in Section 4.1 and 4.2 shows that the single
FEED loss is not greatly helpful, but with ensemble-teacher, pFEED
is advantageous. Experiment in Section 4.2 with pFEED shows that
allocating nonlinear transformations for each of teacher networks can
extract ensemble knowledge from multiple teachers. On the other
hand, AT and £;, which directly mimics the attention map, strug-
gles to learn from multiple teacher networks. The error of pFEED
comes closer to the actual model ensemble compared to KD, espe-
cially for the models with high capacity. Next, experiments in Section
4.3 compares sFEED with FT, KD, and BAN. Results give lessons to
the choice of the algorithm that would be useful depending on the
type of networks. The FT which extract key information from the
teacher network performs better than sequential FEED for smaller
networks and worse for larger networks. The KD and BANSs, using
labels which is even more abstract, perform better than sequential
FEED for smaller networks. However, the result shows that sSFEED
with nonlinear transformation layers are more useful for networks
with a larger capacity. Though not absolute, if one wants to use dis-
tillation for model compression with smaller networks, it would be
beneficial to seek ones that use abstract information like labels. If
one wants to use distillation for high performance where higher per-
formance is needed, distillation methods that can give more detailed
information can be useful. The analysis on the reconstruction error,
where we utilize convolutional autoencoders, would be helpful to
judge whether the network compactly learned its features.

6 Conclusion

In this work, we proposed a couple of new network training algo-
rithms referred to as FEature-level Ensemble for knowledge Distil-
lation (FEED). With FEEDs, we can improve the performance of a
network by trying to inject ensemble knowledge in the feature-map
level to the student network. The first one, parallel FEED trains the
student network using multiple teachers simultaneously. The second
one, sequential FEED recursively trains the student network and in-
crementally improves performance. The qualitative analysis with re-
construction loss gives hints about the cause of accuracy gains. The
main drawback is the training times needed for multiple teachers,
which is an inherent characteristics of any ensemble methods, and

pFEED causes bottleneck by feeding inputs to multiple teachers si-
multaneously. But, it does not affect the inference, which is benefi-
cial without trade-offs in the test time. Devising a more train-efficient
method will be our future work, together with an application to other
domains other than classification tasks.
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