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Abstract. In Domain Adaptation (DA), how to reduce the distri-
butional differences across domains and preserve the data structures
are two critical issues to obtain domain-invariant features. Existing
DA methods either preserve the Local Manifold Structure (LMS)
or the Global Discriminative Consistency (GDC), while fail to take
those two metrics into account simultaneously. Therefore, the ex-
tracted features are either short of discriminative ability or sensitive
to the multimodally distributed data. Moreover, the local neighbored
relationships among data points are mostly established in original
data space, which is unreliable, especially for data with large noises.
Therefore, this paper proposes a novel DA approach, i.e., Adap-
tive Local Neighbors for Transfer Discriminative Feature Learning,
to leverage LMS and GDC into a unified transfer feature learning
model, where we only focus on the GDC between the local neigh-
bors, so that the extracted features are more discriminative and ro-
bust to the multimodally distributed data. Moreover, the data points’
local neighbors are revealed adaptively in the learned subspace so
that it is insensitive to the data noises. Compared with the state-of-
the-art methods, the proposed approach achieves higher performance
for different cross-domain image classification tasks, especially 3.0%
improved for Office10+Caltech10 dataset.

1 Introduction
Transfer Learning (TL) targets at transferring knowledge from a re-
lated source domain to the target domain, where rich source labels
are available while there are few or no labels in the target domain.
Recently, TL has made remarkable applications in cross-domain im-
age classification [30, 11, 19], person re-identification [38, 4, 1], se-
mantic segmentation [17, 34, 36], etc. Different from traditional ma-
chine learning, TL usually assumes that the source and target data are
sampled from different distributions [5, 14]. Therefore, a major chal-
lenge of TL is to reduce the distributional differences across domains
[28, 7]. One effective technique in TL is to learn the domain-invariant
features, which specifically integrates with certain dimensionality re-
duction methods for discovering a projection to map different do-
mains data into a common feature subspace, where the distributional
differences across domains could be minimized [25].

Apart from the distributional alignment, it is also essential to pre-
serve data structures hidden in original space. Recently, Transfer
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Figure 1. The images of 10 categories in Webcam dataset (denoted by
different colors). (1) In real world applications, the data may be

multimodally distributed, i.e., the data points of some classes are located in
more than one group (inside the black dashed boxes); (2) Some noises inside

the red dashed boxes, are fairly closer to intrinsically dissimilar points.

Discriminative Feature Learning (TDFL) has aroused great interest
in either shallow or deep works, since it could enable the domain-
invariant features more discriminative. For example, VDL [12], VDA
[32], JGSA [39], SCA [6] and DICD [15] were proposed to max-
imize the inter-class dispersion and minimize the intra-class scat-
ter, so that the class discriminative consistency could be respected.
Long et al. revealed an unexpected deterioration of the discriminabil-
ity while learning transferable features adversarially, and proposed a
general approach to boost the feature discriminability [3]. However,
they usually assume that the input data from the same class obey
the unimodal distribution globally, and fail to deal with the multi-
modally distributed data since this kind of constraint (Global Dis-
criminative Consistency, GDC) is too strong. As shown in Fig. 1,
most data points from one class are located in more than one group,
thus it will damage the local data structure if we enable those data
points closer by force, then the feature transferability is degraded
since it might also interfere the shared projection learning.

Therefore, it is imperative to capture the Local Manifold Structure
(LMS) hidden in original space, since it does not require the data
points from the same class to draw closer globally, and it is insen-
sitive to the multimodally distributed data. In this regard, TSC [22],
GTL [24], TRSC-GJDA [42], ARTL [23] and MEDA [35] were pro-
posed to respect the LMS so that the embedded representations of
two data points are closer if they are k-nearest neighbors to each
other. Although LMS could compensate for the multimodally dis-
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tributed data, the extracted features are short of discriminative abil-
ity. Intuitively, we should take both advantages of the LMS and GDC
to refine more effective domain-invariant features, while the LMS-
wise DA methods usually find the points’ neighbors based on their
distances in original data space, which is unreliable [27]. As shown
in Fig. 1, closer points in the original space may be intrinsically dis-
similar, especially for data with large noises (the data points inside
the red dashed boxes). Moreover, it is nontrivial to obtain a unified
framework, and optimize each variable quantity effectively, so that
both LMS and GDC are respected elegantly.

Different from previous work, this paper proposes to conduct the
transfer discriminative feature learning based on the adaptive local
neighbors. Specifically, we construct a similarity weight matrix for
each class, and the weight between two data points is larger if they
are closer than anyone else, where all data points are from the same
class. With this local information, the strong constraint of global
discriminative consistency could be relaxed, since only the similar
points from the same class are required to drawn closer. Therefore,
the model could enable the extracted features more discriminative,
and respect the LMS to deal with the multimodally distributed data
simultaneously. On the other hand, the similarity weight matrix is ex-
ploited adaptively in the learned subspace instead of the original data
space. Therefore, the effect of data noises in original space could be
further mitigated. In order to verify the proposed approach is insen-
sitive to data noises, we randomly corrupt the input features on the
Office10+Caltach10 dataset, then compare the performance of ALN-
TDFL with TDFL. Finally, the shared projection, and the points’ lo-
cal neighbors are optimized effectively by an efficient optimization
strategy. The main contributions of our work are three-folds:

• We take both advantages of LMS and GDC metrics, so that the
model could deal with the challenge of multimodally distributed
data, and enable the extracted features more discriminative.

• We further mitigate the effect of data noises, and adaptively ex-
ploit the points’ neighbors in the desired subspace so that the local
manifold structure could be revealed correctly.

• Finally, we develop an efficient optimization strategy to learn the
shared projection, and the points’ local neighbors automatically.

2 Related Work

Existing feature-wise DA methods are devoted to exploit a shared
feature subspace, where the distributional differences across domains
are reduced and the data properties hidden in original space preserved
[6, 12, 15, 39]. Specifically, the difference in marginal distribution
across domains can be reduced by explicitly minimizing predefined
distance measures, e.g., Bregman Divergence [31], Geodestic Dis-
tance [8] and Maximum Mean Discrepancy (MMD) [9]. The most
widely used formulation is MMD due to its compactness and solid
theoretical foundations. Furthermore, in order to adapt conditional
distribution across domains, Long et al. proposed to exploit the true
source and pseudo target labels for computing class-wise MMD [25].
This paper utilizes the MMD and class-wise MMD to jointly align
the marginal and conditional distributions across domains.

In order to maintain the data properties hidden in original space,
transfer discriminative feature learning aims to not only learn the
domain-invariant features, but also preserve label consistency, where
distances of the embedded representations from the same class are
smaller while distances of the embedded representations from differ-
ent classes are greater, which is essential for the classification task.
For example, VDL [12] and VDA [32] were proposed to minimize

the intra-class distance of source domain, while JGSA [39], SCA [6]
simultaneously minimize the intra-class distance and maximize the
inter-class distance of source domain. Furthermore, DICD [15] takes
into account those two discriminative information in both domains.
This paper only aims to boost the intra-class compactness of both
domains for model simplicity, while the performance is not affected
since the variance is maximized. As proved by [16], maximizing the
inter-class distance is equivalent to the variance maximization.

However, the class discriminative consistency just emphasizes the
global relationships of data points, which makes it unable to deal
with the multimodally distributed data. In contrast, TSC [22] and
TRSC-GJDA [42] proposed to respect the local manifold structure
of data based on the instance graph regularization, GTL [24] fur-
ther constructed the feature graph regularization to preserve the local
manifold structure on the feature side. ARTL [23] and MEDA [35]
utilized the Representer theorem in the reproducing kernel Hilbert
space to exploit local manifold structure in the label space. In order
to highlight the contributions in this paper, our goal is only to exploit
the local neighbored relationships between the data instances.

Although these methods could respect the LMS or GDC proper-
ties during the transfer feature learning process, their integration is
under insufficient exploration so far. Therefore, their result domain-
invariant features are either short of discriminative ability, or sensi-
tive to the multimodally distributed data. Moreover, a shortcoming
shared by LMS-wise DA methods is that the neighbors leveraged in
original data space are not reliable to reveal the intrinsic local struc-
ture, especially when the data noises are large. In contrast, this paper
takes advantages of both the LMS and GDC, and proposes a novel
approach, referred to as Adaptive Local Neighbors for Transfer Dis-
criminative Feature Learning (ALN-TDFL), where the data points’
neighbors are revealed adaptively in the desired subspace.

3 Proposed Model

3.1 Notations

In this paper, the bold-italic lowercase letter denotes a vector (e.g.,
x) and bold-italic uppercase letter denotes a matrix (e.g., X). The
samples from c-th class in source or target domains are defined by
X(s/t,c). The superscript> denotes transpose operator, tr(•) denotes
matrix trace operator. I denotes identity matrix and 1 denotes a ma-
trix whose elements are all 1. H = In − 1

n
1n×n is the centering

matrix. || • ||F and || • ||2 denote lF -norm and l2-norm. Xi• denotes
the i-th row and Xij denotes the element from i-th row and j-th col-
umn.
Domain: A domain D consists of a feature space Ω and a marginal
distribution P (x), and can be formulated as D = {Ω, P (x)}, x ∈ Ω.
Task: Given a specific D, a task consists of a label space Υ and a la-
beling function f(x). From the probabilistic viewpoint, f(x) can be
interpreted as the conditional distribution Q(y|x). Thus, a task can
be formulated as T = {Υ, Q(y|x)}, y ∈ Υ.
Feature-wise Domain Adaptation: Given a labeled source domain
D(s) but an unlabeled target domain D(t), assuming that the feature
space Ω(s) = Ω(t) and label space Υ(s) = Υ(t) while the marginal
distribution P (s)(x(s)) 6= P (t)(x(t)) and conditional distribution
Q(s)(y(s)|x(s)) 6= Q(t)(y(t)|x(t)), feature-wise domain adaptation
aims to find a projection A to map D(s), D(t) into a shared subspace
where their marginal and conditional distribution differences across
domains are explicitly reduced.
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3.2 Adaptive Local Neighbors for Transfer
Discriminative Feature Learning

In this section, we first introduce how to align the cross-domain fea-
tures as JDA did [25]. Then the transfer discriminative feature learn-
ing (TDFL) is elaborated, which aims to exploit the domain-invariant
and discriminative features. Finally, the deficiency of TDFL in mul-
timodally distributed data is discussed, and a novel DA approach to
address this challenge is proposed. Most importantly, the neighbored
relationships between data points are revealed adaptively in the de-
sired subspace, so that the model is insensitive to the data noises.

3.2.1 Cross-Domain Feature Alignment Revisit

First of all, we represent the source and target data as a data ma-
trix respectively, i.e., X(s) ∈ Rm×n(s)

,X(t) ∈ Rm×n(t)

, where
m is the feature dimension and n(s), n(t) are the number of sam-
ples. The whole data matrix is X = [X(s),X(t)] ∈ Rm×n, where
n = n(s) +n(t). For leveraging a shared subspace between domains,
we define a projection A ∈ Rm×k, then the new data representation
Z = A>X,Z ∈ Rk×n, and dimension is k(k � m).

This paper conducts the cross-domain feature alignment by jointly
reducing the marginal and conditional distributions across domains.
The objective function is defined as follows:

min
A

LMMD + β||A||2F s.t. A>XHX>A = Ik, (1)

where β is the trade-off parameter, and the constraint A>XHX>A =
Ik enables the data on the subspace are statistically uncorrelated, and
||A||2F controls the scale of A. Now we present the definitions of
each term in Eq. 1 in detail. Similar to previous work [25], it uti-
lizes the MMD and class-wise MMD to measure distributional dis-
tances across domains. Thus, the distributional differences reduction
are equivalent to MMD and class-wise MMD terms minimization.
Specifically, MMD is utilized to measure the marginal distribution
distance across domains (i.e., P(s)(x(s)),P(t)(x(t))) and it computes
the deviation between the means of their embedded data as follows:

|| 1

n(s)

∑n(s)

i=1
A>xi − 1

n(t)

∑n(t)

j=1
A>xj ||22 = tr(A>XM0X>A),

(2)
where M0 is the MMD matrix, and it is computed as follows:

(M0)ij =


1

n(s)n(s) , (xi, xj ∈ D(s))
1

n(t)n(t) , (xi, xj ∈ D(t))

− 1

n(s)n(t) , (otherwise).

(3)

Furthermore, the class-wise MMD is utilized to compute the
conditional distribution distance across domains as follows (i.e.,
Q(s)(y(s)|x(s)),Q(t)(y(t)|x(t))):∑C

c=1
|| 1

n(s,c)

∑n(s,c)

i=1
A>xi − 1

n(t,c)

∑n(t,c)

j=1
A>xj ||22

=
∑C

c=1
tr(A>XMcX>A),

(4)

where n(s,c) and n(t,c) are the numbers of data samples belonging
to class c in the source and target domains (i.e., D(s,c),D(t,c),c ∈
1, ..., C), and the class-wise Mc is computed as follows:

(Mc)ij =


1

n(s,c)n(s,c) , (xi, xj ∈ D(s,c))
1

n(t,c)n(t,c) , (xi, xj ∈ D(t,c))

− 1

n(s,c)n(t,c) ,

{
xi ∈ D(s,c), xj ∈ D(t,c)

xj ∈ D(s,c), xi ∈ D(t,c)

0, (otherwise).
(5)

Then,

LMMD = tr(A>XM0X>A) +
∑C

c=1
tr(A>XMcX>A). (6)

3.2.2 Adaptive Local Neighbors for Transfer
Discriminative Feature Learning

To establish an effective loss term to further prompt the discrimi-
native power of the learned domain-invariant features, we expect to
strengthen the inter-class dispersion in both domains, where the dis-
tances between the same class instances should be smaller. The for-
mulation is as follows:

L(s/t)
same =

∑C

c=1
1

n(s/t,c)

∑n(s/t,c)

i,j=1
||A>xi − A>xj ||22

= tr(A>X(s/t)G(s/t)X(s/t)>A),
(7)

where G(s/t) ∈ Rn(s/t)×n(s/t)

is a Laplacian matrix and V(s/t) is
computed as follows:

V(s/t)
ij =

{
1

n(s/t,c) , (y(s/t)i = y(s/t)j = c)

0, (otherwise).
(8)

Define di =
∑

j
V(s/t)

ij , D(s/t) = diag(d1, ..., dn(s/t)), thus

G(s/t) = D(s/t) − V(s/t). Then the objective function for transfer
discriminative feature learning (TDFL) is defined as follows:

min
A

LMMD + α(L(s)
same + L(t)

same) + β||A||2F
s.t. A>XHX>A = Ik.

(9)

However, it can be clearly seen from Eq. 7 that TDFL just em-
phasizes the global relationship of data, which makes it unable to
discover the local manifold structure, thus fails to deal with the mul-
timodally distributed data. In order to address this drawback, we pro-
pose to incorporate the local manifold structure into the process of
transfer discriminative feature learning.

Our motivation is to pull the similar points as closer as possible
from the same class. The new loss term of Eq. 7 is defined as:

L(s/t)∗
same =

∑C

c=1
n(s/t,c)

∑n(s/t,c)

i,j=1
W(s/t,c)2

ij ||A>xi − A>xj ||22
= tr(A>X(s/t)G(s/t)∗X(s/t)>A),

(10)
where the matrix W(s/t) ∈ Rn(s/t)×n(s/t)

is introduced to cap-
ture the local relationship between data points, and W(s/t,c)

ij = 0

if y(s/t)i 6= y(s/t)j . Likewise, G(s/t)∗ = D(s/t)∗ − V(s/t)∗, where
V(s/t)∗ is computed as follows:

V(s/t)∗
ij =

{
n(s/t,c)W(s/t,c)2

ij , (y(s/t)i = y(s/t)j = c)

0, (otherwise).
(11)

3.2.3 Overall Objective Function

Then the proposed ALN-TDFL is defined as follows:

min
A,W(s/t)

LMMD + α(L(s)∗
same + L(t)∗

same) + β||A||2F

s.t. ∀i,W(s/t) � 0,
∑

j
W(s/t)

ij = 1,A>XHX>A = Ik,
(12)

where the constraints on W(s/t) avoid the case that some rows are
all zeros. It is noteworthy that the TDFL is a special case of ALN-
TDFL, since the Eq. 11 would be degenerated to the Eq. 8 if elements
W(s/t,c)

ij (y(s/t)i = y(s/t)j ) all equal to 1/n(s/t,c).
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Supposing the projection A is already obtained, then the weight
W(s/t,c)

ij would be large if the transformed distances between Axi

and Axj from the class c are small, which means they are more sim-
ilar than other data points in the learned subspace. In a later step,
if we fix the weight matrix and exploit projection matrix A again,
the aim is to emphasize the similar points in the previously learned
subspace. Therefore, the points’ relationships can be revealed in the
desired subspace and it is insensitive to the data noises. Moreover,
the challenge of multimodally distributed data in TDFL can be mit-
igated, since we only focus on the class discriminative consistency
among the points’ local neighbors.

3.3 Optimization Strategy
Here an adaptive learning strategy is presented to solve the Eq. 12.
As for the weight matrix W(s/t), the weight of the points in the class
c is initialized as 1/n(i,c), while the weight of points from different
classes is set to 0. Then the optimal solution can be computed by
solving A, W(s/t) iteratively.
Domain-invariant feature learning:
When W(s/t) is fixed, then Eq. 12 becomes:

min
A

tr(A>(X
∑C

c=0
McX> + αX(s)G(s)∗X(s)>+

αX(t)G(t)∗X(t)>)A) + β||A||2F s.t. A>XHX>A = Ik.
(13)

The Eq. 13 is equivalent to a generalised eigen-decomposition prob-
lem as follows:

(X
∑C

c=0
McX> + αX(s)G(s)∗X(s)>+

αX(t)G(t)∗X(t)>) + βIm)A = XHX>AΘ,
(14)

where Θ ∈ Rk×k is a diagonal matrix with Lagrange Multipliers.
The Eq. 14 can be effectively and efficiently solved by calculating
the eigenvectors corresponding to the k-smallest eigenvalues.
Adaptive Local Neighbors Learning:
When A and W(t) are fixed, then Eq. 12 becomes:

min
W(s)

∑C

c=1
n(s,c)

∑n(s,c)

i,j=1
W(s,c)2

ij ||A>xi − A>xj ||22

s.t. ∀i, W(s) � 0,
∑

j
W(s)

ij = 1.
(15)

Note that the problem Eq. 15 is independent between different c and
i, so we can solve the following problem individually:

min
W(s,c)

i•

∑n(s,c)

j=1
W(s,c)2

ij ||A>xi − A>xj ||22

s.t. ∀j, W(s,c)
ij ≥ 0,

∑
j

W(s,c)
ij = 1.

(16)

According to [16], the optimal solution to the Eq. 16 is as follows:

W(s,c)
ij = 1

||A>xi−A>xj ||22
× (
∑n(s,c)

t=1
1

||A>xi−A>xt||22
)−1.

(17)
Similarly, the optimal solution to W(t,c)

ij is as follows:

W(t,c)
ij = 1

||A>xi−A>xj ||22
× (
∑n(t,c)

t=1
1

||A>xi−A>xt||22
)−1.

(18)
By optimizing A and W(s/t) iteratively, the proposed approach

is capable of reducing the distributional differences across domains,
prompting the domain-invariant features more discriminative and
quantifying the data points’ local relationship in the desired sub-
space. Unlike existing TDFL algorithms, our method integrates the

local manifold structure into the TDFL framework, so that it is ro-
bust to the multimodally distributed data and insensitive to the data
noises. In addition, the proposed objective could monotonically de-
crease in each iteration, and converge to the lower bound accordingly.
A complete procedure of ALN-TDFL is summarized in Algorithm 1.

Algorithm 1: ALN-TDFL

Input: Source data X(s), target data X(t), source labels Y(s),
subspace dimensions k, regularized parameters α, β,
iterations T

Output: Target labels Y(t)

Begin
Initialization
Line 1: Predict Y(t) by some base classifier
Line 2: Compute M0 by Eq. 3
Line 3: Initialize W(s/t) and compute G(s/t)∗ by Eq. 10
For t=1 to T do
Line 4: Update

∑C

c=1
Mc by Eq. 5

Line 5: Update the projection A by Eq. 14 and the transferred
features Z(s) = A>X(s), Z(t) = A>X(t)

Line 6: Update W(s/t) by Eq. 17 and 18
Line 7: Update G(s/t)∗ by Eq. 10
Line 8: The classifier trained on Z(s), then predict Z(t)

and update Y(t)

End repeat
Return Target labels Y(t)

3.4 Computational Complexity
We analyze the computational complexity of Algorithm 1 using the
O notation. We denote T as the number of iterations. The com-
putational cost is detailed as follows: O(TCn2) for constructing
the Mc matrix, i.e., Line 4; O(Tkm2) for solving the general-
ized eigen-decomposition problem, i.e., Line 5; O(T (

∑
c
n(s,c)2 +∑

c
n(t,c)2)) for updating W(s/t) i.e., Line 6; In summary, the over-

all computational complexity of Algorithm 1 isO(TCn2 +Tkm2 +

T (
∑

c
n(s,c)2 +

∑
c
n(t,c)2)). Moreover, the value of k is not greater

than 200, and T is not larger than 20, thus k, T � min(m,n). Con-
sequently, Algorithm 1 can be solved in polynomial time concerning
the number of samples n.

4 Experiments
4.1 Datasets and Experimental Settings
We adopted the benchmark datasets Office10+Caltech10, Office-
Home, Office31, and Image-CLEF-DA in cross-domain image clas-
sification to validate the effectiveness of the proposed approach. Fig.
2 and Fig. 3 illustrate some sample images from Office10+Caltech10
and Office-Home datasets, and they follow very different distribu-
tions. The dataset descriptions are introduced as follows:

Office10+Caltech10: It contains 2533 images from 10 categories,
that forms 4 domains: (A) Amazon, (D) Dslr, (W) Webcam, and (C)
Caltech. Then 4 × 3 = 12 DA tasks could be constructed, namely
A → W , C → D and so on. Note that the arrow ”→” in this pa-
per is the direction from source to target. For instance, W → D
means Webcam is the labeled source while Dslr is the unlabeled tar-
get. Moreover, the Surf features with 800 dimensions [8] and deep
feature with 4096 dimensions are adopted, where the deep features
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Table 1. Accuracy (%) on the Office10+Caltech10 dataset with Surf and Fc6 features

Surf features
Source C A W D

Target A W D C W D C A D C A W Avg.

JDA [25] 43.1 39.3 49.0 40.9 38.0 42.0 33.0 29.8 92.4 31.2 33.4 89.2 46.8
ARTL [23] 44.1 31.5 39.5 36.1 33.6 36.9 29.7 38.3 87.9 30.5 34.9 88.5 44.3
MEDA [35] 56.5 53.9 50.3 43.9 53.2 45.9 34.0 42.7 88.5 34.9 41.2 87.5 52.7
VDL [12] 51.0 42.2 45.1 41.5 40.0 38.9 34.2 38.6 82.6 36.4 38.4 82.4 47.6
VDA [32] 46.1 46.1 51.6 42.2 51.2 48.4 27.6 26.1 89.2 31.3 37.7 90.9 49.0
SCA [6] 45.6 40.0 47.1 39.7 34.9 39.5 31.1 30.0 87.3 30.7 31.6 84.4 45.2
JGSA [39] 51.5 45.4 45.9 41.5 45.8 47.1 33.2 39.9 90.5 29.9 38.0 91.9 50.1
DICD [15] 47.3 46.4 49.7 42.4 45.1 38.9 33.6 34.1 89.8 34.6 34.5 91.2 49.0
ALN-TDFL 59.7 57.3 56.1 47.6 54.6 47.1 35.9 40.8 94.3 37.4 42.8 95.3 55.7

Fc6 features

JDA [25] 89.6 85.1 89.8 83.6 78.3 80.3 84.8 90.3 100.0 85.5 91.7 99.7 88.2
DMM [2] 92.4 87.5 90.4 84.8 84.7 92.4 81.7 86.5 98.7 83.3 90.7 99.3 89.4
ARTL [23] 92.4 87.8 86.6 87.4 88.5 85.4 88.2 92.3 100.0 87.3 92.7 100.0 90.7
MEDA [35] 93.4 95.6 91.1 87.4 88.1 88.1 93.2 99.4 99.4 87.5 93.2 97.6 92.8
VDA [32] 92.2 82.7 87.3 86.2 80.7 81.5 87.8 91.8 100.0 88.6 92.9 99.7 89.3
SCA [6] 89.5 85.4 87.9 78.8 75.9 85.4 74.8 86.1 100.0 78.1 90.0 98.6 85.9
JGSA [39] 91.4 86.8 93.6 84.9 81.0 88.5 85.0 90.7 100.0 86.2 92.0 99.7 90.0
DICD [15] 91.0 92.2 93.6 86.2 81.4 83.4 87.0 89.7 100.0 86.1 92.2 99.0 90.1
ALN-TDFL 93.2 93.9 96.2 88.7 92.2 90.5 88.3 92.4 100.0 88.3 93.5 99.3 93.0

Table 2. Accuracy (%) on the Office-Home dataset with ResNet-50 features

ResNet-50 features
Source Ar Cl Pr Rw
Target Cl Pr Rw Ar Pr Rw Ar Cl Rw Ar Cl Pr Avg.

JAN [26] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN [21] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
MDD [41] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
TADA [37] 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6
BSP [3] 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3
TAT [18] 51.6 69.5 75.4 59.4 69.5 68.6 59.5 50.5 76.8 70.9 56.6 81.6 65.8
ALN-TDFL 57.1 76.8 78.1 61.7 72.1 71.9 62.3 54.5 78.9 70.2 59.1 82.7 68.8

are pre-extracted from the AlexNet model (Fc6) [13], and pre-trained
on ImageNet.

Office-Home: It was released recently as a more challenging DA
dataset [33], crawled through several search engines and online im-
age directories. It consists of 4 different domains: (Ar) Artistic im-
ages, (Cl) Clipart images, (Pr) Product images, (Rw) Real-World im-
ages. Totally, there have 65 object categories for each domain and
15,500 images in the whole dataset. Likewise, 4× 3 = 12 DA tasks
can be constructed, and we adopted the deep features with 2048 di-
mensions, which pre-extracted from the ResNet-50 model [10] and
pre-trained on ImageNet.

Office31: It has 3 domains, namely (A) Amazon, (D) Dslr, (W)
Webcam, and contains 4,652 images from 31 categories. Similarly,
3 × 2 = 6 DA tasks could be constructed, and we also utilize the
ResNet-50 deep features.

ImageCLEF-DA: It has 1800 images organized by selecting the
12 common classes shared by 3 public domains: Caltech-256(C), Im-
ageNet ILSVRC 2012 (I), and Pascal VOC 2012 (P), where 6 DA

tasks can be created and ResNet-50 deep features are adopted.

4.2 Compared Methods
We compared the proposed approach ALN-TDFL with 17 state-of-
the-art DA methods for cross-domain image classification problems,
including 9 shallow DA methods (i.e., JDA [25], DMM [2], ARTL
[23], MEDA [35], VDL [12], VDA [32], JGSA [39], SCA [6], DICD
[15]) and 8 deep DA methods (i.e., JAN [26], CDAN [21], MDD
[41], TADA [37], BSP [3], TAT [18], CAN [40], MADA [29]).

The ALN-TDFL involves 4 parameters: α, β, k and T . In the next
sections, we provide empirical analysis on parameter sensitivity of
α, β and k, which verifies that ALN-TDFL can achieve stable per-
formance under a wide range of parameter values. Then we check
the convergence of ALN-TDFL w.r.t., T . In the comparative study,
we set k = 20, T = 10, α = 0.1, β = 0.05 for Office10+Caltech10
and ImageCLEF-DA datasets, and k = 100, T = 10, α = 0.5,
β = 0.1 for Office31 and Office-Home datasets since more cate-
gories are involved.
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Table 3. Accuracy (%) on the Office31 and ImageCLEF-DA datasets with ResNet-50 features

ResNet-50 features
Source A D W C I P
Target D W A W A D I P C P C I Avg.

JAN [26] 84.7 85.4 68.6 97.4 70.0 99.8 89.5 74.2 94.7 76.8 91.7 88.0 85.1
CDAN [21] 89.8 93.1 70.1 98.2 68.0 100.0 90.5 74.5 97.0 76.7 93.5 90.6 86.8
CAN [40] 85.5 81.5 65.9 98.2 63.4 99.7 89.5 75.8 94.2 78.2 89.2 87.5 84.1
MADA [29] 87.8 90.1 70.3 97.4 66.4 99.6 88.8 75.2 96.0 75.0 92.2 87.9 85.6
ALN-TDFL 90.6 88.3 74.5 98.6 74.3 99.8 92.0 78.0 95.2 79.5 95.3 91.2 88.1

Figure 2. Examplary images from (A) Amazon, (D) Dslr, (W) Webcam
and (C) Caltech datasets

Figure 3. Examplary images from (Ar) Art, (Cl) Clipart, (Pr) Product and
(Rw) Real-World datasets

4.3 Experimental Results

Comparing with the shallow DA methods, the results on the Of-
fice10+Caltech10 with Surf and Fc6 features are shown in Table. 1.
It can be seen that our approach outperforms state-of-the-art methods
on the most of 24 evaluations. The average classification accuracies
of our method are 55.7% and 93.0%, which have 3.0% and 0.2%
improvements compared with the best baseline MEDA.

JDA and DMM aim to exploit domain-invariant features by match-
ing the source and target distributions. However, the data structures
hidden in the original space are ignored. Therefore, ARTL, MEDA
were proposed to respect the local manifold structure (LMS), so that
the similar points in original space are closer in the shared subspace.

Figure 4. tSNE feature visualization of the task W→D with Surf features.
Different classes are denoted by different colors.

Moreover, VDL, VDA, SCA, JGSA, DICD were proposed to pre-
serve global discriminative consistency (GDC) in source or target, so
that the domain-invariant features more discriminative.

However, the LMS-wise DA methods are short of discriminative
ability, while the GDC-wise DA methods are sensitive to the mul-
timodally distributed data. In the next section, we will explore how
GDC damages the shared projection and local data structure. In con-
trast, we propose to integrate those two metrics for transfer feature
learning, thus ALN-TDFL could achieve best results among them.

To further evaluate the effectiveness of the proposed approach, we
also report the results of 11 end-to-end deep models. From the re-
sults in Tables. 2 and 3, it can be seen that ALN-TDFL also out-
performs the deep DA models. Specifically, our approach achieves
0.7% and 1.3% improvements against the best baselines MDD and
CDAN. Compared with traditional shallow DA methods, the deep
DA methods usually incorporate feature extraction and knowledge
transfer procedures into a mainstream deep network, thus promis-
ing results could be obtained. Although the deep network have been
proven effective and robust in domain adaptation, some representa-
tive approaches show that it is nontrivial to be implemented with
deep structure. For instance, the class-wise MMD could be easily re-
alized by matrix operations but it is very tricky in deep networks [15].
Additionally, the results on Office-Home evaluate that the proposed
approach could be applied to the large-scale dataset, and favorable
accuracy could be achieved accordingly. Furthermore, the proposed
approach belongs to shallow DA method, which generally runs faster
than deep ones since off-the-shelf features are adopted.

4.4 Ablation Study
In this section, we first verify that ALN-TDFL is insensitive to the
multimodally distributed data. Then we explore its robustness to the

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



Table 4. Accuracy (%) on the corrupted Office10+Caltech10 dataset with Surf features

Corrupted features
100 200 300 400 500 600 700

No Yes No Yes No Yes No Yes No Yes No Yes No Yes
C→A 57.2 57.1 55.7 56.9 51.8 52.8 48.2 48.5 40.9 41.9 39.0 38.7 28.8 30.2
C→W 52.2 53.2 55.6 54.9 45.4 49.8 44.8 46.8 36.3 41.7 31.5 29.5 27.1 28.1
C→D 51.6 51.6 49.0 51.6 47.1 49.7 48.4 47.1 39.5 40.1 34.4 37.6 22.9 22.9
A→C 43.8 44.7 43.4 44.1 41.1 41.1 39.0 39.0 34.7 35.0 30.7 30.5 24.1 23.3
A→W 46.1 52.9 46.8 53.6 44.8 46.4 32.5 38.0 34.6 34.9 29.2 28.8 24.8 23.7
A→D 42.0 45.2 48.4 49.0 45.2 47.8 36.9 37.6 37.6 37.6 26.8 27.4 22.3 22.9
W→C 34.1 33.6 32.1 33.9 32.6 32.4 32.1 31.6 28.1 27.9 24.4 23.9 20.8 20.9
W→A 38.5 40.0 41.1 40.7 37.2 38.2 33.8 34.9 33.7 33.6 30.7 31.2 26.6 26.0
W→D 93.0 93.6 89.8 90.5 82.2 81.5 74.5 73.9 70.7 70.7 51.0 54.1 37.6 40.8
D→C 37.2 38.2 37.4 38.4 32.9 35.1 31.1 32.6 28.1 28.5 23.9 23.9 20.3 20.5
D→A 39.1 40.6 40.3 42.4 34.2 34.9 31.0 31.5 30.0 27.7 22.3 22.7 23.6 23.5
D→W 90.5 92.5 85.1 86.8 84.1 85.1 74.2 76.6 64.4 69.2 48.1 47.8 31.2 30.2
Avg. 52.1 53.6 52.1 53.6 48.2 49.6 43.9 44.8 39.9 40.7 32.7 33.0 25.8 26.1

data noises. Finally, we inspect the distributional and intra-class dis-
tances of the leveraged features.

4.4.1 Robust to Multimodally Distributed Data

Following the work in [20], we visualize the features learned by dif-
ferent methods on the task W→ D with Surf features. The results of
feature visualization for Original, TDFL, and ALN-TDFL are illus-
trated in Fig. 4. Comparing with the original features, TDFL behaves
better on the discriminative ability, while the local manifold structure
is neglected. As can be seen from Fig. 4(c), those subgroups from the
same class (inside the black dashed boxes) are distinguished better,
and assembled more tightly than TDFL, so that the local structure
could be respected perfectly. In addition, the strict constraint of GDC
is relaxed since the distances between those subgroups from the same
class are not required to be closer, so that the LMS could be respected
and the feature transferability unaffected.

4.4.2 Robust to Data Noises

In order to verify ALN-TDFL is robust to the data noises, we ran-
domly corrupt the features on the dataset of Office10-Caltech10 with
Surf features. Specifically, we construct n d-dimensions stochastic
vectors (d ∈ [100, 700]) whose elements are generated in the range
of 0 and 20 in random. Then we utilize them to randomly replace the
features of each sample in both domains, and the random selection is
repeated 10 times and average results are adopted.

As shown in Table. 4, ”No” represents TDFL which does not con-
sider the local manifold structure and no adaptive weight mechanism,
while ”Yes” is the ALN-TDFL. It can be seen that the classifica-
tion accuracies are gradually reduced with the data feature noises
increase. However, the ALN-TDFL outperforms the TDFL on most
evaluations. Therefore, the proposed approach not only respects the
local manifold structure during transfer discriminative feature learn-
ing, but also insensitive to data noises.

4.4.3 Distributional and Intra-Class Distances

We further explore how the global discriminative consistency in-
fluences the equality of learned projection. In this regard, the dis-
tributional and intra-class distances are estimated on the dataset of

Office10+Caltech10 with Surf features, and they are evaluated on
TDFL (”No”) and ALN-TDFL (”Yes”), respectively. As can be seen
from Table. 5, the distributional distance of TDFL is greater than
ALN-TDFL, since the GDC damages the learned projection so that
the domain-invariant features perform badly. Moreover, the intra-
class distance of ALN-TDFL is smaller that TDFL, since only the
local neighbors are taken into consideration.

Table 5. Distributional Distance (DD) and Intra-Class Distance (ICD) on
the dataset of Office10+Caltech10 dataset with Surf features

C→A C→W C→D

No Yes No Yes No Yes
DD 1.0412 1.0237 1.3988 1.3869 0.6964 0.6849
ICD 21.6163 18.4867 17.9555 16.0707 17.0910 15.4356

A→C A→W A→D
DD 1.6695 1.6108 1.4070 1.3340 0.8817 0.8459
ICD 21.4524 17.1677 16.4750 14.8471 15.5223 14.1853

W→C W→A W→D
DD 1.7077 1.5071 1.9153 1.6311 0.1565 0.1261
ICD 17.7229 11.9652 16.3777 11.2977 9.7296 8.7915

D→C D→A D→W
DD 0.9379 0.7752 1.0756 0.9589 0.1490 0.1152
ICD 16.8781 10.8613 15.4668 9.8988 9.7208 8.7271

4.5 Parameters Sensitivity and Convergence
As for the parameters k, β and α, we only report the results on A→C,
W→A and D→W with Surf features, while similar trends on all
other cross-domain tasks are not shown due to space limitations. We
run ALN-TDFL with varying values of one parameter after fixing the
others (i.e., k = 20, T = 10, β = 0.05, α = 0.1). We plot classi-
fication results w.r.t., their different values in Fig. 5(a), (c), (d), and
choose k ∈ [20, 200], β ∈ [0.01, 0.1], α ∈ [0.1, 1.0]. We notice that
the good performance of classification has a large range.

We also empirically check the convergence property of ALN-
TDFL. Fig. 5(b) shows that the objective values decrease steadily
with more iterations and converge within only 10 iterations.

5 Conclusion
In this paper, we introduce a novel DA approach, called the Adap-
tive Local Neighbors for Transfer Discriminative Feature Learning,
which not only leverages discriminative domain-invariant features,
but also addresses the challenge of multimodally distributed data by
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Figure 5. Parameter sensitivity, w.r.t., k, β, α and Convergence w.r.t., T

respecting the local manifold structure. Furthermore, the local neigh-
bors are revealed adaptively that is insensitive to data noises. Exten-
sive experiments show that the proposed approach not only signifi-
cantly outperforms several state-of-art DA methods, but also obtains
desirable results when the data noises exist.
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