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Abstract. Answer Selection is an important subtask of Question
Answering tasks. For this learning-to-rank problem, deep learning
methods have outperformed traditional methods. To train a high-
quality deep answer selection model, it often requires large amounts
of labeled data, which is a costly and noise-prone process. Active
learning and semi-supervised learning are usually applied in the
modelling training procedure to achieve optimal accuracy with fewer
labeled training samples. However, traditional active learning meth-
ods rely on good uncertainty estimates that are hard to obtain with
standard neural networks. And the performance of semi-supervised
learning methods are always affected adversely by the quality of
the pseudo-labeled data. In this work, we propose a new framework
integrating active learning and self-paced learning in training deep
answer selection models. This framework proposes an uncertainty
quantification method based on Bayesian neural network, which can
guide active learning and self-paced learning in the same iterative
process of model training. Experiments were conducted on two kinds
of deep answer selection models with real-world datasets including
YahooCQA and SemiEvalCQA. The results reveal that the proposed
method can significantly reduce the labeled samples for model train-
ing.

1 INTRODUCTION

Answer Selection is an important subtask of Question Answering,
whose goal is to retrieve the best answers to a given question from
a set of candidate answers [19]. Especially, on the community ques-
tion answering site such as Stack Overflow, Yahoo! Answers, it is
important to facilitate users to locate the best answers to their ques-
tions because the quality of answers varies largely due to the diverse
attitude and ability of different community members. Therefore, the
high-quality answers are the important resources to generate useful
question-answer pairs, which are of great value for information re-
trieval [35]. Various efforts have been dedicated to developing auto-
mated tools to rank and identify candidate answers [32, 25, 37].
Obviously, Answer Selection is a learning-to-rank problem by na-
ture, in which deep learning methods have outperformed traditional
methods recently [32, 37]. But these deep learning models are diffi-
cult to be adopted in practical scenarios because to train these models
requires large amounts of labeled data. For the community QA sites
that can produce large volumes of data every day [38], it is very ap-
pealing to train deep learning models with few human annotations,
given their massive amounts of unlabeled data. Currently, the goal
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of active learning (AL) and semi-supervised learning are to enable
a machine learning model to achieve greater accuracy with fewer
labeled training samples, which are the two categories of learning
methods with the opposite criteria [23].

The main idea of active learning [6, 31] is to progressively select
and annotate most informative unlabeled samples to boost the model.
Recent research efforts on deep active learning are designed for im-
age classification [10, 30, 29] and named entity recognition [34, 33],
etc. None of the works have tackled with the problem of learning-
to-rank, which is often considered as more difficult tasks than image
and text classification. On the other hand, the semi-supervised learn-
ing takes a different approach by exploiting unlabeled samples to im-
prove the model performance. The self-training is a commonly used
semi-supervised learning technique for the answer selection task, in
which the unlabeled data are exploited to find reliable samples that
can be pseudo-labeled by the learning model. These selected new
data can be further added to the training dataset in an iterative train-
ing process. The major problem of the simple self-training method is
caused by the pre-maturity of the initial model because noisy pseudo-
labeled samples may significantly reduce learning performance [20].
Recently, the self-paced learning (SPL) [18] is introduced to address
this problem of self-training [5, 28, 39], which evolved from the cur-
riculum learning [3] biologically inspired by the common human
process of gradual learning. In self-training scenario, SPL gradually
incorporates pseudo-labeled samples with high reliability for train-
ing to avoid the compromise of ambiguous labeling and poor local
minima in model training [16].

In fact, both learning approaches rely upon good uncertainty quan-
tification mechanisms. But it is hard to design a suitable uncertainty
quantification mechanism in answer selection tasks that need con-
sidering the structure and dependence relationship in each sample.
Therefore, for the deep answer selection model, this work firstly ex-
tends the expected loss optimization with Bayesian neural network to
calculate the prediction uncertainty of each unlabeled sample, which
can determine informative samples in AL and reliable samples in
SPL. Then, this work proposes a framework based on the combina-
tion of active learning and self-paced learning to minimize annotation
costs while maximizing the desired performance. Specifically, the
learning process includes multiple rounds until the model achieves to
the optimal performance. In each round, the active learning method
can query the label for the low confidence samples those minimize
the model uncertainty, while the self-paced learning method can ex-
ploit the remaining unlabeled data to make the model more solid.
Both manually-labeled and pseudo-labeled samples are added to the
training data to retrain the deep learning model. Experiments were
conducted on two kinds of deep answer selection models with real-
world datasets including YahooCQA and SemiEvalCQA. The results
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reveal that the proposed method can significantly reduce the labeled
samples for model training. In summary, this paper makes the fol-
lowing contributions:

e We propose a new uncertainty quantification method for the deep
learning model of learning-to-rank. This method extends the ex-
pected loss optimization with Bayesian neural network for the
answer-selection tasks.

e We study how to integrate both active learning and self-paced
learning in training a deep answer selection model, which can
minimize the annotation labor to achieve the optimal performance
of the model.

e We conduct a thorough evaluation on two deep answer selection
models with real-world datasets to prove the effectiveness of the
proposed method.

The remainder of this paper is structured as follows: In Section
2, we present previous related work. And we describe the deep an-
swer selection model in Section 3. Then we introduce the proposed
framework in Section 4. Using the YahooCQA and SemiEvalCQA,
we make an evaluation of the proposed method in Section 5. In Sec-
tion 6, we present our conclusions and directions for future work.

2 RELATED WORK
2.1 Active learning and semi-supervised learning

The goal of active learning is reducing required annotations for train-
ing machine learning models, which focus on actively selecting and
annotating the most informative unlabeled samples to avoid unnec-
essary and redundant annotations [31]. Active learning starts with a
small labeled dataset for training the initial model, and a large pool
of unlabeled data. It needs to run multiple rounds of data labelling
and model retraining. In each round, based on the trained model, an
acquisition function is implemented to choose informative samples
from unlabeled data to be annotated up, which are used to augment
the labeled dataset [6].

In fact, designing active learning algorithm on ranking tasks poses
more challenges because learning-to-rank is quite different from
classification and regression tasks due to its unique query-document
structure. And it has received significant amount of attention from the
research community [4, 22, 24]. However, the previous research ef-
forts about learning-to-rank are all based on the traditional machine
learning models, such as Gradient Boosting Decision Tree(GBDT)
[8], SVM [7], etc. These methods can not be directly applied to deep
learning because they require training an ensemble of learners to esti-
mate the uncertainty, which becomes computationally expensive for
deep learning models. Recently, Gal and Ghahramani [9] show an
equivalence between approximate Bayesian inference and dropout,
which enables the application of Bayesian methods to obtain the pre-
diction of uncertainties over neural networks. Based on this method,
AL algorithms can effectively query informative unlabeled samples
for deep learning models [17]. And many research efforts [10, 34, 33]
attempt to develop an active learning framework based on Bayesian
neural networks. But none of the works have tackled with the uncer-
tainty estimate of deep learning models for learning-to-rank tasks.

On the other hand, active learning only emphasizes utilizing low-
confidence samples to reduce labelling budget without considering
the potential use of the other high-confidence samples. In fact, semi-
supervised learning can explore the unsupervised information be-
yond labeled data to train robust models [27]. In this setting, self-
training is a practical approach that is more suitable for answer se-
lection tasks. The approach of self-training was first presented by

Nigam et. al. [26] and it was shown that it can be interpreted as an
instance of the Classification Expectation Maximization algorithm
[2]. Recently, B Hyams et al. [14] has proposed a semi-supervised
deep learning method for the image classification task, in which the
samples with highest predicted class probability are assigned pseudo-
labels for training. It employs dropout in Bayesian deep learning to
obtain prediction distribution over the deep learning model, and sub-
stantially improves learning efficiency .

2.2 Combination of active learning and
semi-supervised learning

It is nature to integrate active learning and semi-supervised learn-
ing in the same model training procedure. For example, for synthetic
aperture radar image recognition, Gao et al. [11] presented an ac-
tive semi-supervised learning approach that accepts some pseudo-
labels with highest confidence in every iteration and asks an oracle
for a chosen number of samples with lowest confidence. The ma-
jor limitation of his method lies in the measurement of label confi-
dence with classification probability, which is not suitable for deep
learning models. With the advantages of uncertainty modeling with
Bayesian neural network model over network activations and pre-
dictions [17], Rottmann et al. [23] proposed a deep Bayesian ac-
tive semi-supervised learning approach for classification tasks paired
with an active learning component and approximate Bayesian uncer-
tainty. Note that such an approach is only designed for the simple
classification tasks, thus cannot be applied in ranking tasks that we
aim to address in this paper.

The above efforts adopted the pseudo-labelling method in their
semi-supervised learning components have inherent problems. In its
iterative training process, it only evaluates unlabeled samples and al-
ways retains the pseudo-labels generated previously. Moreover, most
self-training frameworks manually set the threshold for choosing
high confidence samples in their training process. But it is necessary
to fine-tune such a threshold in different cases, which is not a triv-
ial task for researchers. And given the premature model in the initial
phase of semi-supervised learning, improper threshold values may
allow many noisy pseudo-labeled samples to be incorporated into
the training data [20]. Therefore, unavoidable classification errors of
the premature model under training may result in error amplification,
which adversely affect the performance of self-training.

In order to tackle with the above limitation of the current deep
active semi-supervised learning, we replace the simple pseudo-
labelling by self-paced learning, which gradually incorporates the
high reliability unlabeled samples for pseudo-labelling. In fact, the
self-paced learning is a more general implementation for curriculum
learning because the curriculum in the SPL is independent of model
objectives in the specific problems [15]. Recently, some research
projects successfully adopt self-paced learning for semi-supervised
tasks and prove that it can avoid poor local minima and noisy pseudo-
label samples [5, 28, 39]. For example, Chen et al. [5] leveraged the
self-paced learning in semi-supervised object detection, and their ex-
periments show that the self-paced learning paradigm can achieve
the promising accuracy with a smaller amount of labeled training
data. Sangineto et al. [28] proposed a training protocol based on the
self-paced learning paradigm in a weakly-supervised scenario ob-
ject detector. Lin et al. [21] combined active learning and self-paced
learning for SVM based facial identification. Therefore, we expect
that integration of active learning and self-paced learning should ef-
fectively achieve better model accuracy and robustness against noisy
samples than previous frameworks. Note that previous research work
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didn’t integrate active learning and self-paced learning for training
deep neural networks. In this work, for the answer selection task, we
study the combination of self-paced learning and active learning to
train a robust deep learning model.

3 DEEP LEARNING FOR ANSWER
SELECTION

Given a dataset in the answer selection task, where each sample
X; includes a question sentence g; and a list of answer sentences
{ai1, a2, ..., a5}, the answer selection task is to find the best an-
swer candidate for each question. Therefore, the goal is to train a
deep learning model that can measure the matching degree of each
question-answer pair, where the answer with the highest degree is
the best candidate for the corresponding question. In addition, get-
ting the training data could be approached as a multi-labelling task
for the answer selection model. The answer candidates of question
are labeled with their judgements label; = {li1, li2, ..., ;5 }, where
li; = 1 if the answer j is the best answer to the question ¢, and oth-
erwise [;; = 0. Generally, we can simply use each tuple (g;, aij, lij)
to train the answer selection model respectively.
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Figure 1. The neural network architecture for answer selection

In this work, we adopt two basic neural networks for the answer
selection task from [32] and [36], which use CNN and LSTM as
the encoder respectively. The architecture of two neural networks are
shown in Figure 1. They both adopt two distributional sentence mod-
els based on the encoder to arrive at a question embedding e, for the
question ¢; and an answer embedding e, y for the candidate answer
a;;, which are then used to learn the semantic similarity between
them. At the join layer, all intermediate representations are concate-
nated into a single vector. The architecture includes an additional
hidden layer right before the softmax layer to model interactions be-
tween the components of the intermediate representation. At last, the
neural network gives a prediction y;; (y;; € [0, 1]) of the relevance
score between question g; and answer a;; , which means the proba-
bility that the candidate answer is correct for the question. Therefore,
for all answers in the sample X;, the model gives a prediction per-
mutation Y; = {y“, Yi2y oeny yu}.

4 THE INTEGRATED FRAMEWORK WITH
DEEP ACTIVE LEARNING AND
SELF-PACED LEARNING

For answer selection task, this section describes a new framework
that integrates active learning and self-paced learning to improve the

performance of deep answer selection model. The workflow of the
proposed framework is depicted in Figure 2. This framework runs
the DASL algorithm described in Section 4.3, which incorporates
uncertainty quantification, active learning and self-paced learning in
the same workflow.
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Figure 2. The workflow of the integrated framework

In the workflow of the framework, there are three datasets: the un-
labelled dataset Dy, the labelled dataset D, and the training dataset
Dr. Dy and Dy, are used as the original input by the DASL al-
gorithm. And the training dataset Dy is dynamically updated by
the pseudo-labeled and manually-labeled samples from Dy and Dy,
with multiple rounds of the DASL algorithm. In each round, the un-
certainty quantification method for answer selection tasks (as men-
tioned in Section 4.1) estimates the confidence of each unlabeled
sample in Dy, including pseudo-labeled samples. Based on the self-
paced learning paradigm, the most reliable samples are gradually
labeled by the deep learning model and incorporated into D for
retraining (as mentioned in Section 4.2). And when the model con-
verges to the maximum performance by the self-paced learning on
the validation data, the most uncertain unlabeled samples are anno-
tated by the active learning method and incorporated into the labeled
dataset Dr,.

4.1 Uncertainty quantification

For the deep learning model of learning-to-rank, this section pro-
poses an uncertainty measure method based on the expected loss op-
timization. Specifically, the first step is to estimate the expected error
of a label in an unlabeled sample X, in which the posterior distribu-
tion P(Y|X, Dr) is employed following Bayesian formalism and a
loss function L(label,Y) is used to estimate the error of the label
in each prediction. According to Bayesian decision theory, the label
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with the least expected loss should be adopted by sample X, and the
expected loss is defined as follows:

EL(X):= lmbu%/ L(label, Y)P(Y|X, Dy)dY (1
aoe Y

Obviously, a sample with the highest expected loss will impart the
greatest change to the current model, which is more uncertain for
learning model. On the other hand, in answer selection tasks, given
a sample X, the prediction Y is a permutation of the relevant scores
between the question and all candidate answers, where a label can
be viewed as a ranking permutation 7. In order to calculate the loss
function of a ranking permutation, we define Equation 2 and 3 by
using discounted cumulative gain (DCG) to measure the quality of a
rank and calculating the difference between the DCG of that permu-
tation and the best permutation with the highest DCG.

L(mY) = m&}XDCG(W', Y)—-DCG(m,Y) (2)
J .
i 1
DCG(r,Y) = B S 3
™Y) = Xm0 ®

Where y; is the relevance score of the jth answer given by the
deep answer selection model. 7 (j) is the position of the jth answer
in the ordered permutation 7. Correspondingly, the expected loss for
a given sample X can be expressed in Equation 4.

EL(X) := min/ (max DCG(r',Y) — DCG(r,Y)) @
b v il

P(Y|X,Dr)dY
For the deep learning model, to infer the posterior distribution

of the prediction, the Bayesian neural network is utilized in our
method. It is used to describe a neural network as a probabilistic

model P(Y|X,w) with prior probability distributions placed over a
set of model parameters w = {w1,...}:

w ~ P(w) )
Further, given the training data Dr =

{(X1,labelr), ..., (Xn,labely,)}, Bayesian inference for neu-
ral networks can first calculate the posterior distribution of the
weights P(w|Dr), and then calculate the predictive distribution of
a test data sample X.

P(Y|X,DT):/P(Y|X,w)P(w|DT)dw (6)

Because it is often infeasible to perform exact Bayesian inference
in Equation 6, we must rely upon variance approximate inference
technique. It often attempts to find a distribution Pj (w) to mini-
mize the Kullback-Leibler (KL) divergence with the true model pos-
terior P(w|D7). Gal and Ghahramani [9] proved the equivalence
between approximate Bayesian inference and dropout. Therefore, ap-
proximate Bayesian inference can be done according to Equation 7.
It performs stochastic forward passes with dropout to sample from
the approximate posterior Py (w), which is marginalized over the ap-
proximate posterior using Monte Carlo integration.

P(Y|X, Dr) :/P(Y|X,w)P(w|DT)dw
~ / P(Y|X,w) P} (w)dw -

P(Y|X,&"

Q
Nl =
NE

o~
Il
i

Equation 7 formulates the predictive distribution given an in-
put X, in which Pj(w) represents the dropout distribution and
@' ~ Pj(w) that represents the model parameters over forward
pass t with dropout [9]. Given an input in the answer selection
task, the prediction is a permutation with relevance scores of can-
didate answers, which is determined over a forward pass. For con-
venience, we represent the predicted result Y over forward pass ¢
as Yt = {yt 5, ...,y }. Therefore, substituting Equation 7 into
Equation 4, the expected loss for a given X can be easily derived as
Equation 8.

T
EL(X)~m ZmaXDCGTr Y" — DCG(m, Y"))
1 7 1 —
=7 Zm&}xDCG(W’,Yt) — max ZDCG(TI’, Y?)
=1 T t=1
®

The first component of Equation 8 can be rewritten as Equation 9,
where 7' is sorted by the prediction Y'* over forward pass ¢ because
this has the maximum DCG .

T
% > max DCG(x',Y")
- ©)

T
_ % S DG, YY)
t=1

The second component of Equation 8 means to find a permutation
7% with the maximum sum of DCG over all the forward passes,
which can be sorted by the approximate posterior relevance score ¥j;
of each answer for the sample X.

t
o (10)
== > DCG(x",Y")
t=1
1 T
po= — t
Ui = o ;yj (1n

In addition, for a sample X, the value of the acquisition function
of active learning is calculated with the prediction permutation of rel-
evance scores Y = {y1,¥2, ..., ys}. Therefore, to ensure the com-
parability of the value between different samples, it is necessary to
normalize the relevance scores of the sample firstly.

Y1 Y2 YJ
Y ={=5 y =7 s 7 } (12)
Ej:l Yj Ej:l Yj Ej:l Yi
The details of the proposed method are described in Algorithm
1. And the sample is more uncertain for the deep answer selection
model when its EL value is higher, otherwise is more confident.

4.2 Self-paced learning

Our framework adopts self-paced learning method to reduce noises
in pseudo-labeled samples. It is a robust learning strategy for self-
training, which involves multiple iterations for model training. In
each iteration, all unlabeled samples and pseudo-labeled samples are
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Algorithm 1 The uncertainty quantification algorithm
Input:
deep learning model M, unlabeled samples Dy

Output:

1: for each sample X € Dy do

2. for forward pass with dropoutt = 1, ...,7 do

3: yj- < prediction of deep answer selection model M over

forward pass ¢ on the jth answer

v}
7 T
1Y5

j=

t vi y}
Yi= {Z'j’:ll b s Z'j’;l yj}
get w* sorted by Y
end for
caleulate c1 = % S°7_ | DCG(r",Y") following Eq. 9
forj=1,...,J do
calculate ; = > Y5
10:  end for
11:  get 7" sorted by {41, Y2, ..., 47}
12 calculate €2 = £ S DCG(r*,Y?) following Eq. 10
13:  EL(X) = c¢1 — c2 following Eq. 8
14: end for
15: return the E L value of each sample

LRI Dx;N b

re-evaluated, and the most reliable samples are automatically pseudo-
labeled according to the “pace” parameter, whose size is progres-
sively increased in the subsequent iterations with the improvement of
the model under training. In this iterative process, since the unlabeled
samples are gradually included into the training set, it avoids incor-
rectly pseudo-labeled samples. Self-paced learning reformulates cur-
riculum learning as an optimization problem by jointly modeling the
curriculum and the task, which can be formulated as a general opti-
mization problem in Equation 13:

Hu}inZviL(w;Xi,Yi) + fvis A) (13)
[

where w represents the model parameters. L(w; X;,Y;) denotes
the cost between the objective label and the model prediction, which
represents the reliability of the sample. For training data, a self-
paced learning model places weighted loss terms v = [v1, va, ..., Un]
on all samples reflecting their importance. Meanwhile, a regularizer
f(v; \) is imposed on sample weights, whose parameter A controls
the pace to determine which samples to be selected. Our framework
adopts the negative 11-norm regularizer, which is general and appli-
cable to various learning tasks with different loss functions [15]. On
the other hand, to represent the reliability of each unlabeled sample
in our case of answer selection, our framework adopts the uncertainty
quantification method defined in Section 4.1. Based on the negative
11-norm regularizer and our uncertainty quantification method, the
problem becomes convex and can be explicit expressed as follows in
our setting.

{1, EL(X:) < A,
P = (14)
0, EL(X;)> A

Obviously, highly reliable samples should be considered for
adding into the training data in each pace. After the model is retrained
with the updated training data, the model becomes more mature in
the next pace. By sequentially optimizing the model with gradually
increasing pace parameter A\, more samples can be automatically dis-
covered in a pure self-paced way.

4.3 DASL algorithm

The detail of the DASL algorithm is shown in Algorithm 2. At the
beginning, a small set of unlabeled data is selected randomly to be
labeled as the initial labeled data. In each round, we use self-paced
learning to exploit unlabeled dataset Dy firstly. Specifically, the
model parameters are updated by retraining on the training dataset
D in line 5, which includes the labeled data and the pseudo-labeled
data. In line 6 and line 7, the highly reliable samples are selected
through Algorithm 1, and assigned pseudo-labels with the model pre-
diction. The self—paced learning is repeated until the model conver-
gences to the maximum performance on the validation data, and the
pace A is updated in each iteration. Secondly, based on the trained
model that achieves the best improvement with the support of self-
paced learning, the acquisition function of active learning can choose
the most informative samples from Dy to the predefined budget
through Algorithm 1, which are annotated up and incorporated into
the labeled dataset Dy,. This process runs multiple rounds until it
reaches the maximum round, in which pseudo-labeled samples and
unlabeled samples are also re-evaluated in each round. In addition,
in each round, we train from scratch to avoid possibly overfitting the
data collected in earlier rounds based on observations by Hu et al.
[13].

Algorithm 2 DASL algorithm
Input:
initial labeled data Dy, unlabeled data Dy, initial pace A, pa-
rameter ;1 > 1
Output:
1: while not reach maximum round R do
22 A=X v, =0forvVX; € Dy
3 while not convergence do
4: DT<—DLU{(X7;,YA;;)|U7;:1,VX7;EDU}
5.
6

update model parameters w with D7
update indicators v; for VX; € Dy following Eq. 14 and
the uncertainty estimated by Algorithm 1

7: label samples {X;|v; = 1,VX; € Dy} with the model
prediction Y;
8: update pace A = pA

9:  end while

10:  query labels for most uncertainty samples S from Dy by Al-
gorithm 1

11: Dy <~ Dy + S

122 Dy <+ Dy -—S

13: end while

14: return model parameters w

5 EXPERIMENTS
5.1 Experimental setup
5.1.1 Datasets

The proposed frame and DASL algorithm is evaluated in community-
based question answering (CQA) datasets, including benchmark
dataset YahooCQA and SemEvalCQA.

e YahooCQA is a large-scale and real world dataset for community-
based question answering, which is collected from Yahoo An-
swers community. Since active learning in the DASL algorithm
requires frequent retraining of the neural network model as long



24th European Conference on Artificial Intelligence - ECAI 2020

Santiago de Compostela, Spain

as new labeled samples are acquired, it is very time-consuming
to retrain the model given the large size of the Yahoo dataset.
We have to select a part of all the data for experiments in order
to reduce the training time. According to the method in [36], we
selected question-answer pairs containing questions and best an-
swers of length 5-50 tokens, and we constructed negative samples
for each question by sampling four samples from the top 1000 hits
obtained via Lucene 7 search.

e SemEvalCQA is a well-studied dataset for community-based
question answering, which is collected from SemEval-2016 Task
3 Subtask A [1]. This is a real-world dataset obtained from Qatar
Living Forums. In this dataset, the answers in each question
‘thread’ are marked as ‘Good’, ‘Potentially Useful’ or ‘Bad’. For
each question, we randomly selected a ‘Good’ answer as positive
sample and four ‘Bad’ answers as negative samples.

5.1.2  Implementation details

To demonstrate that our DASL algorithm is more effective for answer
selection tasks, we compare it with the random sampling and other
deep active learning methods.

o Random Sampling. Using this acquisition function is equivalent
to choosing a point uniformly at random from the unlabeled data
pool.

e Bayesian Active Learning by Disagreement (BALD). Based on
the dropout approximating method in Bayesian neural network, it
boils down to choosing data points, in which each stochastic for-
ward pass through the model would have the highest probability
assigned to a different class [12, 10].

e Core-Set. It chooses the samples that best cover the dataset in the
learned representation space [29].

e DAL. To analyze the efficiency of our proposed uncertainty quan-
tification method, we implement a variant of our method DASL,
which discards high-confidence sample pseudo-labelling via self-
paced learning.

e All Data. We manually label all the training samples and use them
to train the deep answer selection model.

To ensure the fairness of the experiment, all methods were as-
sessed with two answer selection models described in Section 3,
which adopt CNN and LSTM as the encoder respectively. Follow-
ing the settings in the related work, we randomly selected 80% sam-
ples to form the training data, 10% samples to form the validation
data and the rest were left as the testing data in our experiments. The
initial labeled training data D;, was randomly determined, and the
rest of the samples were used as the unlabeled training data Dy for
incremental model learning process. In addition to tune the param-
eters of the adopted neural networks, the validation data was also
used to find the optimal parameter value of the self-paced learning.
All experiments were run for a fixed amount of acquisition steps, or
equivalently, until a certain amount of training data was labeled. To
reduce the influence of randomness, the experiment for each active
learning method was repeated four times and the results were aver-
aged, in which each forward consisted of an identical architecture
but different random initialization. For Bayesian active learning, in
addition to using dropout for training deep learning model, we also
employed dropout to decide which data samples to acquire at training
time including 100 forward passes. The dropout rate was 0.5 for neu-
ral network. Our code is at (https://github.com/BUAAw-ML/Active-
Self-paced-Learning).

5.1.3  Evaluation metric

The answer selection task identifies the correct answers to the ques-
tion by ranking all the candidate answers. Typically, the perfor-
mance of an answer selection system is measured in Mean Recip-
rocal Rank(MRR) and Mean Average Precision (MAP), which are
standard metrics in answer selection. In our setting, because each
question has exactly one correct answer, the value of MRR and MAP
are the same. Therefore, we only need to use MRR as our evaluation
metric. Given a set of questions Q, MRR is calculated as Equation
15, (#) refers to the rank position of the correct candidate answer to
the ith question.

1 Q| 1
MRR = — — 15
Q2= (1

5.2 Comparison results and empirical analysis

The experiments in Figure 3 adopt the LSTM-based deep learning
model and CNN-based deep learning model as the underlying model
for the answer selection task respectively. They illustrate the MRR
curve of different active learning methods on the YahooCQA and Se-
mEvalCQA dataset. It is obviously that our proposed DASL method
clearly outperforms other methods in any case. As shown in the Fig-
ure 3(a), random sampling outperforms BALD in early rounds of
experiments for the LSTM-based deep learning model. This phe-
nomenon may be caused by the sample-selection strategy of BALD,
which is the most common method in deep active learning but is
not very suitable for ranking problem. From all the experimental re-
sults, we find that our DASL outperforms the compared methods in
a clear margin given the same percentage of annotated samples, es-
pecially when the percentage of annotated samples is low. We also
find that DAL outperforms other active learning methods, which val-
idate the effectiveness of our uncertainty quantification method for
ranking problem. In addition, it is interesting that the performance
of Core-Set is poor comparing other deep active learning methods.
The reason may be that using the geometry intuition is difficult to
select representative samples in the ranking task, which aims at mea-
suring the matching degree of question-answer pair. Note that curves
in Figure 3 are fluctuate due to the randomness of model training, but
it dose not affect the comparison of different methods.

Then, as shown in Table 1, we compare the percentage of anno-
tated data needed for different methods to achieve the performance
of training with all data. Table 1(a) gives the result of experiments us-
ing the LSTM-based deep learning model as the underlying model.
Specifically, DASL labels only 48% and 40% of the samples on the
SemEvalCQA dataset and the YahooCQA dataset respectively. As a
comparison, DAL requires 59% and 57% labeled training samples,
BALD requires 79% and 68% labeled training samples, Core-Set re-
quires 87% and 79% labeled training samples. On the other hand,
our proposed DASL method also clearly outperforms BALD and
Core-Set as shown in Table 1(b), which adopts the CNN-based deep
learning model as the underlying model. In general, DASL achieves
the performance of training with all data using much fewer acquisi-
tions than other methods in any case. This justifies that our proposed
DASL can effectively reduce the needed labor of labelling massive
samples in training deep learning models for answer-selection tasks.

5.3 Importance of self-paced learning

To further analyze how self-paced learning contributes to perfor-
mance in DASL, we implement variants of our method by simply
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(a) Experiments for the LSTM-based deep learning model

(b) Experiments for the CNN-based deep learning model

Figure 3. Extensive experiment results of different methods, in which the vertical axes represent the performance and the horizontal axes represent the
percentage of annotated data of the whole set. One can observe that our method DASL works consistently better than other methods

Table 1.

Percentage of acquired data for different active learning methods

to achieve the performance of training with all data
(a) Results for the LSTM-based deep learning model

Dataset Core-Set BALD DAL  DASL
SemEvalCQA 87% 79% 59% 48%
YahooCQA 79% 68% 57% 40%

(b) Results for the CNN-based deep learning model

Dataset Core-Set BALD DAL DASL
SemEvalCQA 77% 70% 53% 47%
YahooCQA 84% 73% 57% 33%

using self-training to exploit unlabeled data. These implementations
choose fixed thresholds to determine the percentage of most reliable
samples to be pseudo-labeled in unlabeled dataset Dy, including the
threshold 0.1(STO.1), 0.3(ST0.3) and 0.5(ST0.5). Note that we also
re-evaluate all unlabeled samples and pseudo-labeled samples in dif-
ferent rounds, otherwise the performance will be worse due to many
retained noisy pseudo-labels generated by the pre-maturity of the ini-
tial model. In addition, from the experimental results in Figure 3, it is
obvious that the prediction ability of the LSTM-based model is bet-
ter than the CNN-based model, which means that the LSTM-based
model is more likely to predict a right label for a sample. There-
fore, we uses the LSTM-based deep learning model as the underlying
model in this experiment.

YahooCQA dataset

SemEvalCQA dataset

— DASL
8T0.5
S§T0.3
S§T0.1
All Data

— DASL
8T0.5
8T0.3
8T0.1
All Data

0 20 30 4 s 6 70
Percentage of Data Used

80 90 100

20

0 40

50

6 70 8 S0 100

Percentage of Data Used

Figure 4. Performance with the increase of annotated samples between
DASL and variants that simply use self-training to exploit unlabeled data

A comparison between DASL and other self-training based meth-

ods is given in Figure 4. By exploiting unlabeled data with the self-
paced learning, DASL can attain higher accuracy early on, and con-
verge to a higher accuracy overall. This demonstrates that self-paced
learning has significantly improved the training efficiency. We also
observe that the performance of STO0.3 is higher than both STO.1
and STO.5. This is mainly because the pseudo-labeled samples for
training model is insufficient if the percentage is low, while the more
noisy labels are incorporated if the percentage is high. In addition,
to avoid costly computation due to the multiple training iterations in
SPL, we set the parameter (4 at a sufficiently large value. And in our
experiments, the self—paced learning is repeated with around three
iterations until the model achieves the maximum performance. On
the other hand, due to the multiple training iterations in SPL of our
method, we only implement the half of epochs than other methods
for retraining the model. From the experimental results, the training
time of our method only slightly increased.

6 CONCLUSION

we propose a new framework integrating active learning and self-
paced learning in training deep answer selection models, which is a
kind of learning-to-rank task. This framework proposes a new un-
certainty quantification method based on Bayesian neural network to
guide active learning and self-paced learning in the same iterative
process of model training. Lastly, we conduct a thorough evaluation
on two kinds of deep answer selection model with the real-world
datasets including YahooCQA and SemiEvalCQA. The experiment
results demonstrate the proposed method can achieve better perfor-
mance than other deep active learning methods. Furthermore, this
method can be easily extended to other learning-to-rank tasks such
as information retrieval. In the future, we are going to make further
exploration with our framework in the deep learning models of dif-
ferent learning-to-rank tasks.
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