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Abstract. We study the rational preferences of agents participating
in a mechanism whose outcome is a weak order among participants.
We propose a set of self-interest axioms and characterize the mu-
tual relationships between all subsets thereof. We then assume that
the mechanism can assign monetary rewards to the agents, in a way
that is consistent with the weak order. We show that the mechanism
can induce specific classes of preferences by suitably choosing the
assigned rewards, even in the absence of tie breaking.

1 Introduction
In several applications, a set of agents competes in a mechanism
whose output is a ranking among the agents themselves. Tourna-
ments [7], recruiting competitions, some types of auctions [12] and
elections [4, 8, 6], or partitioning students in groups with homoge-
neous level of ability [10] can all be considered in this way. In order
to design better mechanisms of this sort, we need tools to predict the
most likely behavior of the agents. If the agents are rational and know
the rules of the mechanism, they will project their preference among
different outcomes back to their choice of actions. That is indeed the
basic premise of game theory. Therefore, the first step to predict and
control the agents’ behavior is to analyze the ordinal preference that
they are likely to exhibit over the outcomes of the mechanism.

If the outcomes are linear orders among agents, there is virtually
no doubt about the way in which an agent compares two rankings:
the higher their placement in the ranking, the better.3 On the other
hand, a ranking mechanism can in principle fail to distinguish two
agents [1, 14, 11], ending up with one or more ties (formally, it re-
turns a weak order). In that case, a tie-breaking phase might be in
order, usually based either on randomization [9] or on a fixed order
between competing entities [13]. However, when applied to agents,
these domain-independent tie-breaking techniques may appear arbi-
trary or, even worse, prejudicial.

In this paper, we investigate the space of preferences that agents
may exhibit if the output of the mechanism is a weak order, and then
study a family of fair alternatives to tie-breaking, that promote com-
petition while treating all agents equally and avoiding randomization.
To this aim, we initially assume that an arbitrary mechanism pro-
duces a weak order among the participating agents. It is immediate
to see that in that case the preference of a rational agent is far from
uniquely specified, as ties can be perceived as more or less harmful
depending on the context. To put some order in the space of prefer-
ences, we introduce some natural conditions reflecting different as-
pects of the rational behaviour of a self-interested agent and study the
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3 Clearly, we are implicitly assuming that the output ranking represents some
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theories deriving from choosing a generic subset of those conditions.
We show that only a relatively small number of theories are distinct
and we characterize the taxonomy of their mutual relationships.

We then investigate how specific classes of preferences may be in-
duced by assigning quantitative rewards to the participating agents.
Specifically, we consider the case where the mechanism applies a re-
ward policy to convert a weak order among agents to a quantitative
reward for each participant. Adding a reward policy resolves the non-
determinism concerning the agents’ preferences: by assuming that
each agent is interested in maximising its own reward, we obtain a
well-specified preference for each agent.

As a first observation, reward policies provide a stronger justifi-
cation to the aforementioned rationality conditions: it is sufficient
to impose very general fairness assumptions on the policy to induce
preferences that satisfy at least the weakest rationality conditions.
Notice that this approach is independent of the specific ranking-
producing mechanism, which is instead the focus of standard mech-
anism design. As a consequence, our reward policies can be applied
to a wide range of concrete mechanisms.

We then focus on reward policies that split a fixed jackpot over
the agents, in a way that is consistent with their placements in the
output ranking. Notably, in this setting some preference theories col-
lapse into a single one. Finally, even if reward policies can in princi-
ple perform tie-breaking, we characterize a family of policies that do
not perform tie-breaking and yet promote competition by inducing
agents to overcome each other. For example, in the absence of a re-
ward mechanism the agents may adopt a preference that is insensitive
to ties. Such a preference does not induce agents to act in a way that
pushes same-level competitors down in the ranking. In turn, this lack
of incentive may compromise the success of the competition from the
point of view of the organizer. We show that a suitable reward policy
can prevent this problem by ensuring that the agents prefer configu-
rations where as many competitors as possible lie strictly below them
and as few as possible lie strictly above them.

The paper is structured as follows. In Section 2 we introduce pre-
liminary definitions as well as motivating examples of different pref-
erences an agent may adopt. In Section 3 we propose a list of self-
interest conditions over preferences, modelling different aspects of
rationality and we study their properties and mutual relationships. In
Section 4 we combine the aforementioned conditions and provide a
complete hierarchy of the resulting theories. Section 5 concerns re-
ward policies that can be applied to rankings. A short section with
concluding remarks ends the paper.

2 Preliminaries
Recall the following definitions: a pre-order is a reflexive and tran-
sitive binary relation, a weak order is a total pre-order, and a linear
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order is an antisymmetric weak order.
Given a pre-orderv, we denote its asymmetric part by@, its sym-

metric part by≡, and its symmetric complement by 6./. Formally, we
have:

a @ b iff a v b and b 6v a
a ≡ b iff a v b and b v a
a 6./ b iff a 6v b and b 6v a .

We say that a pre-order v2 perfects another pre-order v1 if a @1 b
implies a @2 b, and a 6./2 b implies a 6./1 b. Intuitively, v2 exhibits
at least the same strong preferences of v1, but it may distinguish
items that are equivalent for v1, as well as distinguishing or equat-
ing items that are incomparable for v1. This notion is incomparable
to the classical notion of refinement (that is, inclusion) between rela-
tions. Perfectioning is itself a pre-order, whose bottom element is the
identity relation and whose top elements are the linear orders.

We assume that an undescribed process, such as a competition or a
vote, produces a weak order on a finite set of agentsA. When a weak
order involves agents we call it a ranking and we denote by R(A)
the set of all possible rankings over A. Unless differently specified,
we consider a fixed set A containing at least two agents. In the fol-
lowing sections we will investigate how the involved agents compare
different rankings and establish a preference over them. For a ranking
v and an agent a, let bla(v), eqa(v), aba(v) be the partition of A
into the agents that are strictly below, equivalent, and strictly above
a, respectively. Moreover, let lvl>a (v) be the length of the longest@-
chain starting from a, which can be recursively defined as follows:

lvl>a (v) =

{
1 if aba(v) = ∅
maxb∈aba(v) lvl

>
b (v) + 1 otherwise.

One can dually define lvl⊥a (v) as the length of the longest @-chain
ending in a. Informally, this measures the level of a, starting from
the bottom.

Given a ranking v, the set of agents A can be partitioned in those
agents a that are on the top level (lvl>a (v) = 1), those agents at level
two and so on. Notice that a ranking v2 prefecting another ranking
v1 means thatv2 can split some levels fromv1 into multiple levels.

Finally, a preference relation for an agent a (in short, a-
preference) is a weak order onR(A).

2.1 A Catalog of Preferences
In this section we show a short catalog of possible ways to compare
two rankings from the point of view of a participant.

To identify a preference, we use a uniform naming system based
on the following abbreviations:

Abbreviation Meaning

> lvl>a (v)
⊥ −lvl⊥a (v)
ab |aba(v)|
eq |eqa(v)|
bl |bla(v)|

We use the above abbreviations as a superscript to indicate that a
preference tries to minimise the corresponding quantity. For exam-
ple, P ab

a is the a-preference that minimises |aba(v)|, i.e., the num-
ber of agents strictly above a in the ranking. Formally, P ab

a (v1,v2)

holds iff |aba(v1)| ≥ |aba(v2)|. We also write P x,y
a for the prefer-

ence that tries to minimise first quantity x and then quantity y, lex-
icographically. Finally, we allow simple arithmetic expressions, like
P ab+eq
a for the preference that minimises the sum of |aba(v)| and
|eqa(v)|.

Here is a selection of possible preferences based on the above mea-
sures:

• Level-based. P>a prefers to minimise the level of a in the ranking,
i.e., lvl>a (v). In particular, it is insensitive to ties.

• Level-based top-k. For a positive integer k, P>k
a prefers a to be

within the first k levels in the ranking. This preference only dis-
tinguishes two classes of rankings: those where a sits in one of the
top k levels, and all other rankings. Any ranking in the first class
is (strongly) preferred to any ranking in the second class.

• Relative. P ab,eq
a prefers having fewer agents above a; equal that,

it prefers to have fewer agents tied with a. It is equivalent to min-
imising the vector

(
|aba(v)|, |eqa(v)|

)
, lexicographically.

• Best linearization. P bst
a judges a ranking the same as its linear ex-

tension where a has the best position. The canonical name for
this preference is P ab

a , because it is equivalent to minimising
|aba(v)|.

• Worst linearization. Pwst
a is the dual of P bst

a . The canonical name
for this preference is P ab+eq

a , because it is equivalent to minimis-
ing |aba(v)|+ |eqa(v)|.

The preference P>a may reflect a conscientious participant when a
group of students is being partitioned into different levels of ability.
Similarly, the preference P>k

a can be adopted by the candidates of a
multi-winner voting systems where different scoring rules (e.g. plu-
rality score or Borda score) can be used to select those agents that
are in the top-k placements.

In [7] the authors use the preference P ab,eq
a to model the fact that

a player participating in a tournament generally aims at prevailing
over the opponents.

Preferences P bst
a and Pwst

a can be adopted whenever an unknown
rule is used to resolve ties. In particular, they reflect an optimistic or
pessimistic attitude, respectively.

The previous examples show how, depending on the specific con-
text, different ways to compare rankings can be adopted. At the same
time, it is evident that not all possible weak orders on R(A) make
sense. For instance, a preference where coming in last position is bet-
ter than being first is poorly tenable in any context. In the next section
we investigate which preferences are plausible from the point of view
of a rational and self-interested agent.

3 Preference Axioms
In this section we formalize some preference axioms and investigate
their mutual relationship. First, we introduce some basic binary rela-
tions on rankings. Let v1,v2∈ R(A) be two rankings and a ∈ A
an agent:

Same-context. The restrictions of v1 and v2 to (A \ {a})2 coin-
cide. If we need to emphasize the arguments, this property can
also be denoted by the extended notation SCa(v1,v2).

Dominance. For all b ∈ A, if b @1 a then b @2 a, and if b ≡1 a
then b v2 a. Extended notation: Doma(v1,v2).

Improvement. There exists b ∈ A such that either a ≡1 b and b @2

a, or a @1 b and b v2 a. Extended notation: Impra(v1,v2).
Swap. There exists b ∈ A such that a @1 b andv2 is obtained from
v1 by switching a and b. Extended notation: Swapa(v1,v2).
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Notice that, by definition, Doma(v1,v2) is equivalent to the con-
junction of the following conditions:

bla(v1) ⊆ bla(v2) (I)

eqa(v1) ⊆ eqa(v2) ∪ bla(v2) (II)

and also equivalent to the conjunction of the following:

aba(v2) ⊆ aba(v1) (III)

aba(v2) ∪ eqa(v2) ⊆ aba(v1) ∪ eqa(v1) . (IV)

Then, assuming that a rankingv2 dominatesv1 for agent a, the fol-
lowing lemma establishes other equivalences depending on whether
v2 also improves v1.

Lemma 1 Letv1,v2∈ R(A) be two rankings such that Doma(v1

,v2). The following are equivalent:

1. Not Impra(v1,v2);
2. Doma(v2,v1);
3. v1 and v2 are 3-tier equivalent for a, i.e., bla(v1) = bla(v2),

eqa(v1) = eqa(v2), and aba(v1) = aba(v2).

Moreover, the following are equivalent:

4. Impra(v1,v2);
5. not Doma(v2,v1);
6. one of the two inclusions in (I) or (II) (resp. (III) or (IV)) is strict.

Proof: Regarding the first triple of equivalences, the following
chain of implications holds: if Impra(v1,v2) does not hold, the
definition of dominance boils down to: for all b ∈ A, if b @1 a
then b @2 a, and if b ≡1 a then b ≡2 a. This clearly implies that
v1 and v2 are 3-tier equivalent for a. Then, assume v1 and v2 are
3-tier equivalent for a. By conditions (III) and (IV), it immediately
holds that also v2 dominates v1 for a. Finally, assume that also v2

dominates v1 for a. In particular, we have that b @1 a is equivalent
to b @2 a and b ≡1 a is equivalent to b ≡2 a. Consequently, none of
the two cases in the definition of Improvement is satisfied.

The second triple of equivalences is a direct consequence of the
first one and conditions (I) or (II) (resp., (III) or (IV)). �

The properties introduced above allow us to describe four notions
that represent a change for the better for agent a:

• a trades place with an agent that is higher up in the order (Swap);
• a moves up in the order, and all other agents stay put (Same-

context and Improvement);
• all other agents do not cross the position of a (Dominance).
• a moves up in the order, and all other agents do not cross the

position of a (Dominance and Improvement).

In any of these four cases, one may think that a rational self-
interested a should prefer the new situation to the old one, at least
weakly. In fact, in the following we show that there are reasonable
scenarios where some of the above are undesired. For each notion,
we propose two axioms prescribing weak and strong preference, re-
spectively. We break the symmetry only for Dom, since Dom is a re-
flexive relation and hence it cannot imply strong preference (it would
be unsatisfiable). To obtain a strong axiom, we pair Dom and Impr,
which together essentially define strong dominance (see Lemma 1).

To simplify the notation, hereafter we refer by default to the pref-
erence of agent a, and omit the corresponding subscript. Moreover,

by PP (v1,v2) we mean that preference P strictly prefers ranking
v2 to rankingv1 (that is, P (v1,v2) holds and P (v2,v1) does not
hold). We obtain the following seven axioms:

Swap(v1,v2) −→ P (v1,v2) (Sw)

Swap(v1,v2) −→ PP (v1,v2) (SSw)

SC(v1,v2) ∧ Impr(v1,v2) −→ P (v1,v2) (SCI)

SC(v1,v2) ∧ Impr(v1,v2) −→ PP (v1,v2) (SSCI)

Dom(v1,v2) −→ P (v1,v2) (Dom)

Dom(v1,v2) ∧ Impr(v1,v2) −→ P (v1,v2) (DomI)

Dom(v1,v2) ∧ Impr(v1,v2) −→ PP (v1,v2) (SDomI)

A preference P satisfies one of the above axioms if the axiom
holds for all rankings v1,v2. Given an axiom α, we denote by
Pref A(α) the set of preferences satisfying α. As customary, we say
that the axiom α implies another axiom β, denoted by α =⇒ β, if
for all sets of agents A and all preferences P , if P satisfies α then it
also satisfies β (i.e., Pref A(α) ⊆ Pref A(β)).

The following theorem characterizes the implication relationships
holding between the preference axioms.

Theorem 1 The only implications holding among the preference ax-
ioms are displayed in Figure 1 (including the transitive closure of the
arrows).

Proof: The implications SSw =⇒ Sw, Dom =⇒ DomI ,
SDomI =⇒ DomI , and SSCI =⇒ SCI are obvious by
definition. The implications between the other axioms derive from
the following two implications between their premises.
Implication 1:

Swap(v1,v2) implies Dom(v1,v2) ∧ Impr(v1,v2) .

Assume Swap(v1,v2) and let b be the agent that trades place with
a. Notice that b is strictly above a in v1. To prove that Dominance
holds, let c be such that c @1 a. Since a moves up in the order,
we have that c @2 a. If instead we consider c s.t. c ≡1 a, for the
same reason we have that c v2 a. To prove that Impr(v1,v2) holds,
simply use b as witness. This claim proves thatDomI =⇒ Sw and
SDomI =⇒ SSw.
Implication 2:

SC(v1,v2)∧Impr(v1,v2) implies Dom(v1,v2)∧Impr(v1,v2) .

It suffices to prove that Dom(v1,v2) holds. Let v1,v2 be two
rankings satisfying SC and Impr, and let b be the witness agent for
Impr. To prove dominance, let c be an agent s.t. c @1 a (if there is
no such agent, this part of the claim is vacuously true). By definition
of Impr(v1,v2), a v1 b and therefore b 6= c. It follows that c @1 b
and, by SC(v1,v2), c @2 b. Since b @2 a, by transitivity we obtain
c @2 a, as required by dominance.

Next, let c be s.t. c ≡1 a. If b = c then c v2 a, as required by
dominance. Otherwise, we distinguish two further cases, according
to the disjunction in the definition of improvement. If a ≡1 b then
c ≡1 b and, by SC(v1,v2), c ≡2 b. By definition of improvement,
b @2 a and therefore c @2 a, as required by dominance. Finally, if
a @1 b then c @1 b and, by the same-context condition, c @2 b.
Since b v2 a, by transitivity we obtain c @2 a. This claim proves
that DomI =⇒ SCI and that SDomI =⇒ SSCI .

Each non-implication can be proved by a suitable counter-
example. Due to space limitations, we omit the details. �
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SCI Sw

SSCI DomI SSw

Dom

SDomI

Figure 1. Hasse diagram for implication order between self-interest
axioms. Thick boxes denote axioms that prescribe strong preference.

All the preferences in Section 2.1 satisfy a notable property: agent
a takes into account only its own placement considering all the other
agents in the same way. More formally, we introduce the condition
Ind to others(v1,v2), meaning that v2 is obtained from v1 by
permutating the agents in A \ {a}. Notice that Ind to others(·, ·) is
an equivalence relation. Then, we say that a is indifferent to the oth-
ers if Ind to others(v1,v2) implies that v1 and v2 are equivalent
for a.

Ind to others(v1,v2) −→ P (v1,v2) ∧ P (v2,v1) (Ind)

The following theorem states that Ind is independent of the other
axioms in the sense that Ind does not imply any other axiom and it
is not implied by any of them.

Theorem 2 Axiom Ind is independent of the other axioms.

Proof: According to the taxonomy proved in Theorem 1, it suffices
to prove the following non-implications.
Ind 6=⇒ SCI and Ind 6=⇒ Sw. Consider the preference

P−> where agent a prefers to maximize its level. It is straightfor-
ward to see that P−> satisfies Ind and yet it does not satisfy neither
SCI nor Sw.
SDomI 6=⇒ Ind and Dom 6=⇒ Ind. Pick an agent b 6= a

and consider the preference relation denoted by P̂ = P ab,eq,a≥b,
that perfects P ab,eq in the following way: when two rankings are
equivalent for P ab,eq, P̂ strongly prefers the ranking where agent a
comes before b.

We first show that P̂ satisfies both SDomI and Dom. Assume
that Dom(v1,v2) holds. By (III), we know that ab(v2) ⊆ ab(v1);
if the containment is strict we immediately obtain that agent a strictly
prefersv2. Conversely, if ab(v2) = ab(v1), condition (IV) implies
that eq(v2) ⊆ eq(v1). Again if eq(v2) ⊂ eq(v1), then P̂ strictly
prefers v2. Conversely, assume that eq(v1) = eq(v2). In this
case v1 and v2 are 3-tier equivalent and hence b v1 a iff b v2 a;
consequently v1 and v2 are equivalent for a. This concludes the
proof that P̂ satisfies Dom. Assume now that also Impr(v1,v2)
holds. As before, if ab(v2) ⊂ ab(v1), then P̂ strictly prefers
v2. When ab(v2) = ab(v1), instead, Lemma 1 ensures that
eq(v2) ⊂ eq(v1) and hence also in this case P̂ strictly prefers v2.
It remains to show that P̂ violates Ind. To this aim, consider
the linear orders c @1 a @1 b and b @2 a @2 c. Clearly,
Ind to others(v1,v2) holds, since v2 is obtained from v1 by
permutating agents b and c. However, P̂ strictly prefers v2 where a
leaves b behind. �

4 Preference Theories
As we have seen in Section 3, there are some reasonable cases where
not all the preference axioms can be expected to hold. Nevertheless,
it seems equally reasonable to combine multiple axioms to further
circumscribe the class of preferences an agent may adopt. In this sec-
tion we investigate how axioms can be combined to form preference
theories. We initially focus on the axioms in Figure 1, treating axiom
Ind separately.

Let AX denote the set of axioms in Figure 1. As usual, given
a subset T ⊆ AX , Pref A(T ) is the set of preferences satisfying
all the axioms in T . As for single axioms, we say that a theory T
implies T ′, denoted by T =⇒ T ′, if for all sets of agents A it
holds Pref A(T ) ⊆ Pref A(T ′).

We claim that axioms SCI and Sw are primitive and should be
satisfied by any preference. This claim is supported by the follow-
ing observations: (i) axioms SCI and Sw are mutually independent
and are not subsumed by any other axiom (see Figure 1), and (ii)
all “plausible” preferences that we have been able to define satisfy
those two axioms. Consequently, we will consider only those theo-
ries that imply {SCI, Sw}. The following preliminary lemma shows
that DomI and SSCI together imply SSw.

Lemma 2 If a preference relation satisfies DomI and SSCI, then it
satisfies SSw.

Proof: Let P be a preference satisfying DomI and SSCI, and
let v1 and v2 be two rankings such that Swap(v1,v2) holds. By
definition, there is an agent b different from a such that a @1 b and
v2 is obtained from v1 by switching a and b. Let v3 be the ranking
that coincides with v1, except for the position of a, which rises to
the level of b, so that a ≡3 b. Notice that it holds SC(v1,v3) and
Impr(v1,v3), the latter thanks to agent b, who is strictly better than
a in v1, and equivalent to a in v3. Therefore, by SSCI we have that
P strictly prefers v3 to v1. Now, the only difference between v3

and v2 consists in b moving down to the level that a occupies in
v1. As a consequence, it holds Dom(v3,v2) and Impr(v3,v2).
By axiom DomI, P weakly prefers v2 over v3. By transitivity, P
strongly prefers v2 over v1. So, P satisfies SSw. �

Our next result states that the theories in Figure 4 cover all possible
combinations of axioms in AX that imply at least axioms SCI and
Sw.

Theorem 3 For all T ⊆ AX , if Pref A(T ) ⊆ Pref A(SCI, Sw)
then Pref A(T ) is equal to one of the canonical theories in Figure 4.

Proof: Let T ⊆ AX . Obtain T ′ ⊆ T by removing from T all ax-
ioms that are redundant due to the implications in Figure 1. Clearly,
the preference theories of T and T ′ coincide.

If SDomI ∈ T ′, then either T ′ = {Dom,SDomI} or T ′ =
{SDomI}. In both cases, the thesis holds because T ′ is one of the
the theories in Figure 4. In the rest of the proof we can assume that
SDomI 6∈ T ′.

Next, assume that Dom ∈ T ′. Then, T ′ is one of the follow-
ing theories: (i) {Dom}, (ii) {Dom,SSw}, (iii) {Dom,SSCI},
or (iv) {Dom,SSw, SSCI}. The first three theories are canonical
whereas, from Lemma 2 and the fact that Dom implies DomI , the
theory {Dom,SSw, SSCI} is equivalent to {Dom,SSCI}. In the
rest of the proof we can assume that Dom 6∈ T ′.

By a similar argument as for Dom, it can be proved that
the only canonical theories that include DomI are {DomI},
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{DomI, SSw}, and {DomI, SSCI}, which are all present in
Figure 4. Thereafter, we assume that DomI 6∈ T ′. The remaining
theories which include either SSw or SSCI are {SSw, SSCI},
{Sw, SSCI}, and {SSw, SCI}. All of them are canonical. Finally,
{Sw, SCI} is canonical. �

As the following theorem shows, the hierarchy in Figure 4 among
all canonical theories is correct and complete. In particular, Theo-
rem 4 makes use of the pre-order P dom onR(A) such that P dom(v1

,v2) iff Dom(v1,v2). Notice that P dom is not a preference be-
cause it is not a total order.

Theorem 4 Let T1, T2 be two of the theories in Figure 4. It holds
T1 =⇒ T2 if and only if there is a path from T1 to T2 in Figure 4.

Proof: It is easy to verify that most implications in Figure 4 di-
rectly derive from Theorem 1. For instance, since SDomI implies
bothDomI and SSCI , then we clearly have that {SDomI} implies
{DomI, SSCI}. The only two implications that do not directly de-
rive from Theorem 1, namely the fact that {DomI, SSCI} implies
both {DomI, SSw} and {SSCI, SSw}, follow from Lemma 2 in-
stead. Next, we prove the non-implications that separate all theories
in Figure 4.
{SDomI} 6=⇒ {Dom} and {Dom} 6=⇒ {Dom,SSw}.

Also these non-implications directly derive from Theorem 1 where
we have already proved that SDomI does not imply Dom, which in
turn does not imply SSw (see Figure 1).
{SSCI, SSw} 6=⇒ {DomI}. Consider the preference P>,eq.

Since P>,eq perfects P> it is immediate to see that it satisfies SSw.
We show that also SSCI is satisfied. Assume thatv1 and v2 are two
rankings that agree on the relative order of all agents different from
a, i.e., the rankings satisfy SC(v1,v2). If also Impr(v1,v2) holds,
then two cases may occur. In the first case, a @1 b and b v2 a for
some b, we have that the level of a from the top is strictly lower in
v2 and hence P>,eq strictly prefers v2 to v1. In the second case,
a ≡1 b and b @2 a for some b, a remains in the same level, but the
set of other agents that are at the same level as a is strictly smaller
in v2 and hence again P>,eq strictly prefers v2 to v1. This proves
that P>,eq satisfies SSCI.
It remains to show that P>,eq does not satisfy DomI. Consider four
agents, A = {a, b, c, d}, and a ranking v1 such that b ≡1 c, a @1 b
and a ≡1 d. Then, let v2 be the linear order d @2 a @2 c @2 b. It
is straightforward to see that both Dom(v1,v2) and Impr(v1,v2)
are satisfied and yet, since a is inv2 at a lower level than inv1, then
P>,eq(v1,v2) does not hold.
{Dom,SSCI} 6=⇒ {SDomI}. Let P be the transitive closure

of the union of P>,⊥ and P dom . It is easy to verify that P is a prefer-
ence satisfying {Dom,SSCI}. Consider the two rankings v1 and
v2 such that c @1 a, a ≡1 b, c @2 a, and c ≡2 b. Since v1 and v2

are equivalent for P>,⊥, they are also equivalent for P . However,
SDomI strictly prefers v2.
{DomI, SSw} 6=⇒ {Dom}. Consider P 1 from Figure 2. It is

straightforward to see that P 1 satisfies both DomI and SSw. To see
that it violates Dom, consider the linear order a @1 b @1 c and the
ranking a @2 b ≡2 c. Since they are 3-tier equivalent for a, they are
Dom-equivalent according to Lemma 1. However, P 1 strictly prefers
v2.
{SCI, SSw} 6=⇒ {SSCI, SSw}. Consider P>. It is imme-

diate to see that P> satisfies both SCI and SSw. Then, consider the
rankings v1 and v2 over two agents such that a ≡1 b and b @2 a.
According to axiom SSCI v2 should be strongly preferable to v1,

a, b, c
a, b
c

a, c
b

a
b, c

a
b
c

a
c
b

b
a
c

c
a
b

b, c
a

b
a, c

c
a, b

b
c
a

c
b
a

Figure 2. The preference relation P 1 used in Theorem 4. P 1 prefers the
rankings that appear higher in the figure. This preference satisfies DomI,

SSw, and Ind, but not Dom.

a
b, c

a, b, c
a
b
c

a
c
b

a, b
c

a, c
b

b, c
a

b
a
c

c
a
b

b
a, c

c
a, b

b
c
a

c
b
a

Figure 3. The preference relation P 2 used in Theorem 4. This preference
satisfies SSCI, Sw, and Ind, but not SSw.

however they are equivalent for P>.
{Dom,SSw} 6=⇒ {SSCI, Sw}. It is straightforward to see

that P ab = P bst satisfies both Dom and SSw. Consider the rankings
a ≡1 b and b @2 a, they are equivalent for P ab, but SSCI requires
v2 to be strongly preferred.
{SSCI, Sw} 6=⇒ {SSw}. Consider the preference P 2 in

Figure 3. It is straightforward to see that P 2 satisfies both SSCI and
Sw. However, consider the rankings v1 and v2 such that a @1 b,
b ≡1 c, c @2 a, and a ≡2 b. Axiom SSw would force v2 to be
strongly preferable to v1, however they are equivalent for P 2. �

The next theorem characterizes the strongest preference theory
Pref A(Dom,SDomI) in terms of P dom . The proof is omitted due
to space constraints.

Theorem 5 A preference belongs to Pref A(Dom,SDomI) iff it
refines and perfects P dom .

To appreciate the relevance of the previous theorem, notice that
Lemma 1 tells us that all preferences satisfying the axiom Dom
are 3-tier (that is, they do not distinguish between 3-tier equivalent
rankings). However, if Dominance establishes a strong preference
between two rankings, a preference satisfying Dom may instead
equate those orders. For an extreme example, the degenerate pref-
erence P≡ equates all rankings, but it still satisfies Dom. Theorem
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{SCI, Sw} P>k , P
⊥
k

{SCI, SSw}
P>, P⊥

{SSCI, Sw}{DomI}

{DomI, SSw}{Dom}
P≡, P ab

k

{Dom,SSw}
P ab, P ab+eq

{Dom,SSCI}

{DomI, SSCI}

{SSCI, SSw}
P>,⊥, P⊥,>

P>,eq

{SDomI}
P ab,eq,>

{Dom,SDomI}
P ab−bl, P ab,eq, P

ab
bl+1

Figure 4. Hasse diagram for containment between self-interest theories.
Lower theories are contained in higher ones. The preferences listed next to a
theory belong to that theory and do not belong to any stronger theory in the

diagram.

5 states that adding SDomI to the picture forces preferences to up-
hold those strong preferences as well. Indeed, since preferences are
total orders, a preference refining and perfecting P dom can only (and
must) establish a preference among rankings that are incomparable
for P dom .

Finally, the hierarchy depicted in Figure 4 does not change in case
we assume indifference to the others.

Theorem 6 Let T1, T2 ⊆ AX . Then, T1∪{Ind} implies T2∪{Ind}
if and only if T1 implies T2.

Proof: The if direction being trivial, for the only if direction,
assume by contraposition that T1 does not imply T2. By Theorem
3 we can assume that T1 and T2 are canonical. Now, all the
non-implications in Theorem 4 have been proved using as witnesses
preferences that satisfy Ind. Consequently, there exists a preference
P that satisfies T1 ∪ {Ind} and does not satisfy T2. �

5 Quantitative Rewards

The designer of a competition may try to induce specific preferences
by converting the outcome of the competition from a ranking to a
numerical reward for each participant.

A reward policy (or simply reward) is a function r : R(A)→ RA

preserving strict order in a weak sense; formally, for all a, b ∈ A, if
a @ b then r(v)(a) ≤ r(v)(b). We allow rewards to be more or less
discriminating than the ranking. The only requirement is that they do
not invert the order of the agents. A faithful reward preserves order:
a v b iff r(v)(a) ≤ r(v)(b). Intuitively, a faithful reward only
establishes the distance between different layers from the ranking,

whereas a general reward can also perform tie-breaking. Addition-
ally, a reward is anonymous if it is invariant under permutations of
agents. Intuitively, anonymity is a fairness condition ensuring that
the designer does not favour any agent in particular and the rewards
are assigned only on the basis of the mutual placements in the rank-
ing.

A straightforward application of the definition proves that anony-
mous rewards assign the same amount to equivalent agents. In other
words, anonymous rewards cannot break ties.

Lemma 3 If r is an anonymous reward andv is a ranking such that
a ≡ b, then r(v)(a) = r(v)(b).

A reward r naturally induces a preference P r
a for each agent

a ∈ A, where P r
a (v1,v2) iff r(v1)(a) ≤ r(v2)(a). Moreover,

we say that a preference is compatible with a reward r if it perfects
the preference induced by r. We say that a reward r satisfies one of
the preference axioms in Section 3 iff for all agents a, the preference
P r
a induced by r on a satisfies that axiom.
The next result draws a close connection between anonymity of a

reward and the two axioms Sw and SSw.

Lemma 4 If a reward is anonymous then it satisfies Sw. Moreover,
an anonymous reward is faithful if and only if it satisfies SSw.

A common requirement is that a reward should split a fixed
amount of money (the jackpot) among the participants. In that case,
we say that the reward is cake-cutting (CC) and we conventionally
set the jackpot to 1. Formally, for all subsets of agents A′ ⊆ A, de-
note by r(v)(A′) the sum of the rewards r(v)(a) for all a ∈ A′. A
reward is cake-cutting if for all rankings v it holds r(v)(A) = 1.

5.1 Level-Averaged Rewards
Next, we introduce a class of anonymous and CC rewards, called
level-averaged, that will be shown to play a special role in the tax-
onomy of rewards. Intuitively, level-averaged rewards generalize the
so-called fractional ranking [15, 5], in that a group of tied agents
receive the arithmetic mean of what they would receive if the tie
was broken in an arbitrary way. The formal definition follows. Letv
be a ranking with l levels, and ni be the number of agents at level
i = 1, . . . , l (1 is the top level). Clearly, the sum n of all the ni

is equal to the total number of agents. A reward r is level-averaged
(LA) iff there exists a sequence of real coefficients λ1 ≥ · · · ≥ λn

summing up to 1 such that if a is an agent at level i, it receives the
reward

r(v)(a) = 1

ni

Ni+ni∑
j=Ni+1

λj ,

where Ni is the sum of all nh with h < i. A reward is strictly level-
averaged if it is LA and its coefficients are strictly monotonic, that
is, if λ1 > · · · > λn.

For example, consider a set of three agents a, b, c and the strictly
LA reward r with coefficients (λ1, λ2, λ3) = ( 1

2
, 1
3
, 1
6
). For any

linear ranking, r attributes reward λi to the agent on level i. For the
ranking a ≡ b @ c, instead, r assigns reward 1

2
to c, because it is the

only agent on level 1; agents a and b receive 1
2
( 1
3
+ 1

6
) = 1

4
each.

The first result on LA rewards shows which axioms they satisfy.
In particular, strictly LA rewards induce preferences in the strongest
of our theories.

Lemma 5 Level-averaged rewards are anonymous, CC, and satisfy
Dom. Strictly level-averaged rewards additionally satisfy SDomI .
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Proof: Anonymity and CC are obvious consequences of the def-
inition of LA reward. As for Dom, let v1 and v2 be two rankings
s.t. Doma(v1,v2) holds, for some agent a. Following the definition
of LA reward, let n1,m1, n2,m2 be the integers such that:

r(v1)(a) =
1

n1

m1+n1−1∑
j=m1

λj

r(v2)(a) =
1

n2

m2+n2−1∑
j=m2

λj .

In words, r(v1)(a) is the arithmetic mean of the sequence of val-
ues λm1 , . . . , λm1+n1−1, and r(v2)(a) is the arithmetic mean of
λm2 , . . . , λm2+n2−1. Recall that the sequence of λj’s is monotoni-
cally non-increasing.

Now, inclusion (III) states that the set of agents above a in v2 is
a subset of the set of agents above a in v1. This implies that m2 ≤
m1. Additionally, inclusion (IV) states that the set of agents above or
equivalent to a in v2 is also a subset of the corresponding set in v1.
This implies that m2 + n2 ≤ m1 + n1. Summarizing, the sequence
of λj’s whose mean is r(v2)(a) starts earlier (index-wise) and ends
earlier than the corresponding sequence for r(v1)(a). It follows that
r(v2)(a) ≥ r(v1)(a) and any a-preference compatible with r must
weakly prefer v2 over v1.

Finally, we prove that if r is strictly LA, it additionally satis-
fies SDomI . Let v1 and v2 be two rankings s.t. Doma(v1,v2)
and Impra(v1,v2) hold, for some agent a. From the previous
argument, we know that r(v2)(a) ≥ r(v1)(a). It remains to show
that Impra implies that such inequality is strict. By Lemma 1, one
of the two inequalities m2 ≤ m1 and m2 + n2 ≤ m1 + n1 is
strict. Thus, either the sequence of λj’s whose mean is r(v2)(a)
starts strictly earlier than the corresponding sequence for r(v1)(a),
or the former ends strictly earlier than the latter. In either case,
since the sequence of λj’s is strictly decreasing, we obtain that
r(v2)(a) > r(v1)(a) and hence the thesis. �

We can actually prove that being a LA reward is equivalent to
being anonymous, CC, and satisfying Dom.

Theorem 7 A reward is level-averaged if and only if it is anony-
mous, CC, and satisfies Dom.

Proof: The “only if” direction is a consequence of Lemma 5. The
“if” direction is proved by induction on the number of agents n. The
base case n = 1 trivially follows from the CC condition.

Assume by induction that any anonymous, CC, and Dom-
satisfying reward on n agents is LA. Let r be a reward on n + 1
agents A ∪ {a}, which is anonymous, CC, and Dom-satisfying. We
define r′ as the projection of r on A obtained by fixing the position
of a as the top element in the order. Formally, for all rankingsvA on
A and agents b ∈ A, we set

r′(vA)(b) =
r(va

A)(b)

r(va
A)(A)

,

where va
A is the ranking on A ∪ {a} obtained from vA by placing

a above all other agents.
The reward r′ inherits anonymity from r and is CC by construc-

tion. We show that it also satisfies Dom. Let v1 and v2 be two
rankings on A such that Domb(v1,v2) holds for an agent b ∈ A.
Notice that adding a on top of two rankings preserves dominance
among them from the point of view of all the other agents. Then,

since r satisfies Dom, it holds (i) r(va
1)(b) ≤ r(va

2)(b). Moreover,
since in both va

1 and va
2 the agent a is the only agent on level one,

we have that Doma(va
1 ,va

2) and Doma(va
2 ,va

1), which implies (ii)
r(va

1)(a) = r(va
2)(a). In turn, conditions (i) and (ii) imply that

r′(v1)(b) =
r(va

1)(b)

r(va
1)(A)

by definition

≤ r(va
2)(b)

r(va
1)(A)

by (i)

=
r(va

2)(b)

r(va
2)(A)

by (ii)

= r′(v2)(b) by definition,

and hence r′ satisfies Dom. Summarizing, we have that r′ is anony-
mous, CC, and satisfiesDom. Therefore, by the induction hypothesis
r′ is LA with coefficients, say, {λ1, . . . , λn}.

Let vA be an arbitrary ranking over A and va
A be the extension

where a is placed above all other agents. We set λ0 to r(va
A)(a) and

λ′i to λi · r(va
A)(A). Notice that by condition (ii) above λ0 does not

depend on the choice of vA. Clearly, it holds by construction that
λ′1 ≥ . . . ≥ λ′n and λ0 + λ′1 + · · · + λ′n = 1. Moreover, we show
that λ0 ≥ λ′1. Let v be a linear order on A ∪ {a} with a the only
agent on level 1. Since we have more than one agent, there exists an
agent b on level 2 in v. Consider the linear order v′ obtained from
v by swapping a and b. We have that

r(v)(a) ≥ r(v′)(a) by Dom

= r(v)(b) by anonymity.

Since by construction v is equal to va
A for some linear order vA,

we know that r(v)(a) = λ0 and r(v)(b) = λ′1. Therefore,
λ0 ≥ λ′1 and λ0, λ

′
1, . . . , λ

′
n have all the properties required to form

a LA reward. Indeed, we now prove that r is LA with coefficients
λ0, λ

′
1, . . . , λ

′
n.

Let v be a ranking on A ∪ {a}, we can assume w.l.o.g. that agent
a is at level one — otherwise we can consider by anonymity an r-
equivalent ranking obtained by swapping a with some agent on the
top. Letv+ be obtained fromv by moving a above all other agents.

First, consider the case where a is the only agent on the top level
in v. Then v+=v and v is equal to va

A for some ranking vA on
A. As shown previously, this means that r(v)(a) = λ0. Moreover,
given an agent b ∈ A located on level i > 1, it holds

r(v)(b) = r(va
A)(b) = r′(vA)(b) · r(va

A)(A)

=
r(va

A)(A)

ni

Ni+ni−1∑
j=Ni

λj =
1

ni

Ni+ni−1∑
j=Ni

λ′j .

Consequently, r is LA on v.
Assume now that a is not the only agent on the top level in v

(i.e., v+ 6=v). By the previous case we know that r is LA on v+.
In particular, r(v+)(a) = λ0 and, assuming that the number of
agents on the second level of v+ is k, for each of those agents b it
holds r(v+)(b) = 1

k
(λ′1 + · · · + λ′k). Let c be an agent at level

≥ 2 in v (if any). By Lemma 1, v and v+ are Dom-equivalent for
c and hence r(v)(c) = r(v+)(c). Since this holds for all agents
below level one in v, then the total budget that r can assign to
the first level in v is equal to the budget for the first two levels in
v+ which is λ0 + λ′1 + · · · + λ′k. Finally, by anonymity, when
evaluated onv r must equally distribute that same budget over agent
a and the other k agents. Consequently, each of them receives a re-
ward equal to 1

k+1
·(λ0+λ

′
1+· · ·+λ′k), which means that r is LA.�
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Similarly to Theorem 7, we can prove that for a reward to be
anonymous, CC and satisfying Dom and SSw is equivalent to
being strictly LA. Since strictly LA rewards additionally satisfy
SDomI (Lemma 5), this implies that the theories {Dom,SSw},
{Dom,SSCI}, and {Dom,SDomI} collapse when applied to re-
wards. In other words, there is no reward that induces a preference
satisfying {Dom,SSw} but not SDomI , because all preferences
that satisfy the former combination of axioms are strictly LA.

Theorem 8 A reward is strictly level-averaged if and only if it is
anonymous, CC, and satisfies Dom and SSw.

The taxonomy of anonymous and CC rewards w.r.t. the axioms in
AX is depicted in Figure 5. The implications are all consequences of
Theorem 4 (see Figure 4). The non-implications need new counter-
examples, because the preferences used to prove non-implications
in Theorem 4 are not necessarily induced by a reward. To find these
new counter-examples, we encoded the existence of a suitable reward
as a system of linear inequalities and used the Parma Polyhedra Li-
brary [2] to check its feasibility. The details are omitted due to space
limitations.

Theorem 9 Let T ⊆ AX be a set of axioms and let Rew(T ) be
the set of anonymous and CC rewards satisfying the axioms in T .
If Rew(T ) ⊆ Rew({SCI, Sw}), then Rew(T ) coincides with one
of the classes Rew(T ′), with T ′ in Figure 5. Additionally, a class
Rew(T1) is contained in another class Rew(T2) if and only if there
is a path from T1 to T2 in that figure.

{SCI, Sw}

{SCI, SSw} {SSCI, Sw}{DomI}

{DomI, SSw}{Dom}
LA

{DomI, SSCI}

{SSCI, SSw}

{SDomI}

{Dom,SDomI}
strictly LA

Figure 5. Hasse diagram for containment between classes of anonymous
and CC rewards.

6 Conclusions
This paper initiates an investigation about the rational behavior of
self-interested agents participating in a competition whose outcome
is a ranking (i.e., a weak order) among participants. Even though sev-
eral works focused on preferences over aggregate outcomes (see [3]
and references therein), studying preferences over rankings is to the
best of our knowledge a novel research question.

Our results show an intriguing landscape of self-interest theories,
most of which include simple preferences that are easily motivated

by practical scenarios. From the point of view of the competition de-
signer, being able to pinpoint the likely preference theory adopted by
the participants is valuable information because it allows the designer
to predict the participants’ behavior during the competition. For ex-
ample, in [7] the authors address the problem of avoiding irrelevant
matches in sporting tournaments by assuming that agents adopt the
preference P ab,eq.

Generally speaking, the designer will want participants to act com-
petitively, rather than indifferently or even cooperatively. In this re-
spect, we investigated the case when the competition designer is able
to assign monetary rewards to the participants, based on the weak
order. Even if the assigned rewards do not break the ties in the order,
they may still influence the agents’ preferences simply by tuning the
distance between different levels in the weak order. In particular, we
have characterized a class of level-averaged rewards that are anony-
mous, cake-cutting, and promote competition by inducing agents to
overcome each other.
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