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Abstract. Deep neural networks trained on millions of instances
can recognize a wide variety of patterns. It is common to use these
pre-trained deep networks in applications where the domain specific
training data is not readily available. Once a pre-trained network is
deployed to such applications, some of the information contained in
the network may be irrelevant due to the difference between the train-
ing set and the application data distributions. As a result, parts of the
neural network become redundant and slow down inference. This re-
dundancy is unknown until the model is deployed and input data is
received. Therefore, it can only be identified and avoided in real-
time. Existing works on neural network acceleration can not exploit
such redundancy during offline training when the domain-specific
datasets are unavailable. In this paper, we study online learning to
accelerate neural network inference. We propose traveling classifiers
that continuously learn from the activations of two consecutive net-
work layers to accelerate inference in real-time. Traveling classifiers
model class conditional probabilities to generate early predictions
and bypass unnecessary computation of network layers. The classi-
fiers also adaptively switch the layers they learn from by measuring
the feature space differences between the activations. This traveling
mechanism automatically adjusts the aggressiveness of the accelera-
tion without sacrificing prediction accuracy. We demonstrate the per-
formance of the proposed algorithm on the ImageNet dataset [10]
using the state-of-the-art ResNet-50, ResNet-152 [18] and VGG-16
[38] architectures. Experiments demonstrate that our method signifi-
cantly outperforms baseline approaches.

1 INTRODUCTION

Recent studies have shown that the use of very large models can re-
sult in overcomplete systems that carry redundant information [8].
This suggests the acceleration of neural networks while preserving
the accuracy is possible [31]. Existing approaches on neural network
acceleration either generate truly static models regardless of the in-
put received in inference time, or are adaptive but involve offline re-
training. Moreover, their computational complexities scale up with
the depth of the reference neural network. When a large pre-trained
model that contains information from millions of labeled instances
and hundreds of categories is used for a specific application, a new
source of redundancy emerges. This redundancy is caused by the dif-
ference between the distributions of the labeled training set and the
input data provided by the application. To answer queries on traffic
surveillance cameras in real time, for example, state-of-the-art pre-
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Figure 1. Proposed traveling classifier accelerator on a 5-layer neural
network

trained object detectors such as YOLO [34] are used. These query
answering systems typically suffer from high latency at query time,
since inference with such large architectures is computationally ex-
pensive. These object detectors are trained to recognize a wide vari-
ety of objects and most of these objects may be redundant for a traf-
fic surveillance system. As another example, when ResNet-50 [18],
a convolutional network that is capable of classifying instances from
a thousand categories, is used to classify a stream of photographs
shared on a social media platform, the pattern distribution provided
by the stream is unknown but can be skewed toward the current
trends. Therefore, an unknown subset of information from the ref-
erence network may be sufficient for the task. Moreover since the
trends can change over time, different subsets of information may be
sufficient at different times. Existing pruning and acceleration strate-
gies do not address these issues.

To enable adaptive and real-time acceleration on neural network
inference, we propose online learning to accelerate with traveling
classifiers. Our proposed approach is motivated by two observations:
(1) instances of the same class generate similar activations [1], and
(2) different classes may require executions of different amounts of
layers until their sufficiently discriminative features are extracted
[40]. Our proposed algorithm initializes a traveling classifier for
each class encountered by the neural network at inference time. Each
classifier learns to model a class conditional probability only from a
designated pair of neural network layers and automatically changes
these layers for better acceleration, as shown in Figure 1. At each
feedforward pass, the classifiers attempt to early classify the network
activations. If the prediction of the most confident classifier is above
a certain threshold, the feedforward pass is interrupted and the classi-
fier output is used instead of the network output. Otherwise, the feed-
forward pass is completed and the network output is used to update
the traveling classifiers. Each classifier incrementally measures the
feature space difference between the two layers it learns from. Using
the feature space differences, the classifiers dynamically switch the
layers that feed them. This traveling mechanism lets the algorithm
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adjust the aggressiveness of the acceleration for each class separately,
with respect to the input data distribution. The contributions of this
paper are as follows:

• We propose traveling classifiers that learn to early classify net-
work activations, while automatically switching the layers they
learn from.

• We study the problem of online learning to accelerate neural net-
work inference, proposing real-time, adaptive and efficient accel-
eration with traveling classifiers.

• We empirically validate the performance of the proposed method
via the ImageNet dataset on state-of-the-art ResNet-50, ResNet-
152 and VGG-16 architectures.

2 RELATED WORK
2.1 Online Learning
Online learning is performed in consecutive rounds. On each round,
the learner receives a training example and makes a prediction ac-
cording to the given task. Then the actual answer to the predic-
tion task is revealed, causing the model suffer a potential loss. The
learner aims to minimize the total loss over all rounds. Online learn-
ing algorithms can be grouped into two main categories: first-order
[35, 42, 27] where the first derivative of the loss function is utilized,
and second-order [7, 32, 16, 5] where both first and second-order
information are used to update the model. There exists a family of
online learning algorithms that focus on problems where the feature
spaces change as the data stream in. [43] studied online classification
where the data volume and number of features grow simultaneously
over time. [3, 19] studied classification when feature spaces can ar-
bitrarily change as the data stream in. [21] studied evolving feature
spaces where new features are introduced to replace old ones. In this
paper, we pose the problem of real-time acceleration as online learn-
ing by changing the feature spaces on-demand to balance accuracy
and acceleration. Existing online learning methods can not efficiently
learn in such setting because they do not provide any mechanism to
switch feature spaces while learning. Finally, it is important to men-
tion that our problem is different than online transfer learning [12]
which focuses on building a new model in a given target domain.

2.2 Dynamic Neural Network Pruning
Pruning has been shown to improve generalization of neural net-
works [13], extensively studied as an acceleration and compression
technique for large neural network architectures [9]. Some of the
early and well known examples of neural network pruning algorithms
are [26, 17, 23, 22, 36]. Several algorithms have been proposed to dy-
namically prune neural networks to accelerate inference. [15] pruned
weights on-the-fly by using connection splicing and retraining. [28]
pruned the network at runtime by training a recurrent neural network
that models a Markov Decision process, using an encoder-decoder
structure. [29] proposed a low-rank decomposition based global and
dynamic pruning method that can recover removed filters, to improve
the model accuracy. The dynamic pruning step they proposed needs
to be followed by retraining. Even though the existing dynamic prun-
ing methods work upon inference, their decision functions are trained
offline. Therefore, they are not capable of adapting themselves to the
inference task. Moreover, these methods introduce a large amount
of memory and computational complexity due to neural network re-
training. Hence, they are not appropriate for resource constrained
systems in online setting.

2.3 Conditional Computation and Early Prediction

Conditional computation methods utilize decision functions that de-
pend on the current input. These methods decide which parts of the
neural network need to be executed for a given instance. Several con-
ditional computation methods use these decision functions to gen-
erate early predictions, before the network executes a full feedfor-
ward pass. Conditional computation methods such as [39, 2] use re-
inforcement learning strategies to learn optimal sequences of execu-
tions, given input instances. These methods rely on availability of
the labeled training data and sufficient computational power. More-
over, they scale poorly if the reference neural network is very deep.
Another set of literature introduces new neural network architec-
tures, proposing joint training strategies for loss minimization and
efficient execution [33, 6, 30]. These architectures typically involve
early prediction mechanisms that adaptively calculate the sufficient
amount of feature extraction. Joint training based approaches need
training from scratch. Therefore, they cannot be used to accelerate
pre-trained models. Existing works on early prediction assume that a
labeled training dataset exists for the given application. As a result,
due to the difference between the training set and the inference data,
these works cannot exploit the redundancy. Unlike existing works,
our method focuses on exploiting this difference and discarding re-
dundant information of the reference network with respect to the in-
ference task. Our method introduces negligible additional memory
and computational complexity, and adapts to the inference task in
real-time. Also different from the existing works such as [41, 14, 11],
our proposed method is not strictly coupled with a specific network
architecture. Our method can be jointly used with existing pruning
and acceleration methods, since it does not involve any additional
constraint to the neural network training or inference.

3 NOTATION AND THE PROBLEM SETTING

We study the problem of online learning to accelerate a neural net-
work. On every round t, the network receives an instance xt, gener-
ates a sequence of activations Ht = {h1

t ∈ Rl1 , ...,hDt ∈ RlD},
and outputs a prediction ŷt. Each activation hit is generated by a dif-
ferent layer, and therefore belongs to a different feature space Rli .
Since every neural network activation is a function of its preceding
activation, the set of feature spaces {Rl1 , ...,RlD} are disjoint but
correlated. Hence, we see each sequence of activations generated by
the network as an instance from a data stream generated by this set
of correlated feature spaces. To accelerate a neural network in real-
time and adaptively, we learn a multi-class model M that maintains
a classifier M[k] for each class k. Let lck and lpk denote the pair of
consecutive network layers that the classifier M[k] receives its input
from. Let Rck and Rpk be the feature spaces of the activations gener-
ated by the layers lck and lpk respectively. We denote the feature space
Rck as the child space and Rpk as the parent space for class k. Then,
each classifier M[k] : [M[k]c,M[k]p] takes a pair of activations
[hl

c
k ,hl

p
k ] generated by the layers [lck, l

p
k]. For notational simplicity

we refer to these activations as [hkc ,hkp ]. When M[k] classifies an
activation with a certain confidence, the layers after lpk are bypassed
and the prediction of M[k] is used as the output. To be able to learn
efficiently and in real-time, each class probability is modeled using
only the activations from two consecutive layers, instead of using the
full activation set H. On each round, every classifier learns in its par-
ent feature space and teaches to its child feature space counterpart.
If the difference between the parent and child feature spaces with re-
spect to the class conditional probability is small, the classifier travels
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to the preceding layer: it sets the child feature space as the new par-
ent and truncates the old parent’s weights. The classifier also declares
the preceding layer of the new parent as the child feature space and
initializes new weights for it. This lets the model automatically ad-
just the amount of acceleration for each class, while maintaining its
accuracy. Therefore, we refer to M[k] as a traveling classifier.

4 ONLINE LEARNING TO ACCELERATE

4.1 Learning Class Conditional Probabilities

The traveling classifier M[k] represents a log-linear model that
learns a class conditional probability from the parent feature space
Rpk and teaches to its weights in the child feature space Rck. M[k]
measures the difference between the two feature spaces and seeks to
switch the layers it learns from for further acceleration. On round t,
we define the probability of class k in the parent feature space pa-
rameterized by a traveling classifier as P (ŷt = k | hkpt ;M[k]pt ) =

σ(M[k]pt · h
kp
t ) = 1

1+exp(−M[k]
p
t ·h

kp
t )

, where ŷt is the output of

the neural network after a full feedforward pass for the instance xt.
The probability in the child feature space is defined similarly. We
express the loss of a traveling classifier M[k] with respect to the net-
work output ŷ as the negative log likelihood `(ŷ, σ(M[k] · hk)) =
ŷ log[σ(M[k] · hk)] − (1 − ŷ) log[1 − σ(M[k] · hk)]. Let ȳt =

P (ŷt = k | hkpt ;M[k]pt ) and ỹt = P (ŷt = k | hkct ;M[k]ct).
Then, we formulate the problem of learning the traveling classifier
M[k]t+1 :

[
M[k]ct+1,M[k]pt+1

]
as the minimization of the follow-

ing pair of regularized objective functions:

C(M[k]c) =
1

2
‖M[k]ct −M[k]c‖2

+
λ1

2

(
σ(M[k]ct · hkct )− σ(M[k]pt · h

kp
t )
)2

+ λ2`
(
ŷt, σ(M[k]ct · hkct )

)
,

(1)

C(M[k]p) =
1

2
‖M[k]pt −M[k]p‖2

+ λ3`(ŷt, σ(M[k]pt · h
kp
t )),

(2)

where λ1, λ2, λ3 ≥ 0 are tradeoff hyperparameters. On every round
t, the traveling classifier aims to satisfy multiple soft constraints in
two feature spaces. In the parent feature space, the classifier min-
imizes the loss suffered, with the smallest change to the prototype
vector M[k]pt . In the child feature space, the classifier has an ad-
ditional regularizer to minimize the difference between predictions
made in the two feature spaces. With this additional regularizer, the
classifier forces its child feature space weights to receive informa-
tion from its parent space counterpart. If the child feature space is
sufficiently representative to replace its parent, the traveling classi-
fier declares the current child space as the new parent, travels to the
preceding layer, therefore starts making earlier predictions for class
k.

We assume λ1 = λ2 = λ3 = η for simplicity, and set the deriva-
tives of above objective functions to zero for solving M[k]t+1, arriv-
ing at the following update rules:

M[k]t+1 :
[
M[k]ct+1,M[k]pt+1

]
=[

M[k]ct + ηhkct (ŷ − ỹ(1 + (ȳ − ỹ)(1− ỹ))),

M[k]pt + ηh
kp
t (ŷ − ȳ)

]
. (3)

Note that when the predictions from the two feature spaces are the
same, the two update rules are also the same. Therefore, the classifier
directly minimizes the negative likelihood function ` in both of the
feature spaces. If the predictions are different, the classifier suffers
from an extra loss in the child feature space because of the constraint
(ỹt − ȳt)2. If the two feature spaces are similarly representative of
the class conditional probability for k, this constraint helps the child
feature space weights to converge to the probability distribution mod-
eled by the parent feature space weights. If the spaces are not similar
enough, the extra loss suffered helps the traveling classifier to early
identify and approximate the feature space difference. This approxi-
mation is used to output a layer switching decision.

4.2 Adaptive Acceleration by Traveling

The traveling classifier M[k] learns to model the conditional proba-
bility of class k given the activations from feature spaces Rck and Rpk.
On each round, it translates information from Rpk to Rck while making
predictions in Rpk. If the two feature spaces are similarly representa-
tive of the class conditional probability for k, the traveling classifier
can directly learn and make predictions in Rck instead of Rpk, without
sacrificing too much accuracy. This accelerates the network infer-
ence which can now be made without executing the network layers
after lpk. In this section, we first introduce the feature space differ-
ence for a traveling classifier. Then, we design a decision mecha-
nism that helps the traveling classifier to switch layers automatically
if the two feature spaces are similar enough. We start by defining
Rt(ỹ) = 1

2
(ỹt− ȳt)2 + `(ŷt, ỹt) and Rt(ȳ) = `(ŷt, ȳt) as the regu-

larization received in the feature spaces Rck and Rpk on round t respec-
tively. Let ỹ∗t = P (k | hkct ;M∗[k]c) and ȳ∗t = P (k | hkpt ;M∗[k]p)
be the outputs generated by the unknown optimal traveling classifier
weights in the two feature spaces. We define the feature space differ-
ence for the traveling classifier M[k] as follows:

E[∆∗k] =
1

T

T∑
t=1

| Rt(ỹ∗t )−Rt(ȳ∗t ) | . (4)

Therefore, the feature space difference is the expected value of the
absolute regularization difference distribution ∆∗k. It is important to
note that measuring the difference based on the functions Rt(ỹ) and
Rt(ȳ) is supported by the objective functions given in Equations (1)
and (2) because the traveling classifier receives an extra loss in the
child feature space if the predictions are different. As a result, the
total regularization difference increases. If the outputs generated in
the two feature spaces are similar even though their predictions are
wrong, they receive similar regularizations, and hence the difference
is small.

The proposed feature space difference metric is not immediately
practical due to two reasons. First, since the optimal weight matrix
M∗ is unknown, it is not possible to calculate the regularizations re-
ceived on each round. Second, because an upper bound to T is not
available, the number of samples that needs to be observed to calcu-
late E[∆∗k] is unknown. We address these problems with the follow-
ing two theorems respectively.
Theorem 1. Let [Kck, Kpk] be a pair of bounded convex and com-
pact sets in the Euclidian spaces defined by their corresponding
layers. Let [Dc

k, D
p
k] be the upper bounds on the diameters of the

sets [Kck,Kpk]. Let [Gck, G
p
k] be the upper bounds on the norm of

the regularizer gradients [∇Rt(ỹ),∇Rt(ȳ)] with respect to M∗.
Let the step sizes in the two feature spaces [ηct , η

p
t ] on round t be

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



[Dc
k/G

c
k

√
t,Dp

k/G
p
k

√
t]. After observing T instances, the total reg-

ularization suffered by the optimal traveling classifier M∗[k] in the
parent and child feature spaces is bounded as follows:

T∑
t=1

Rt(ỹ
∗
t ) ≤

T∑
t=1

Rt(ỹt) +GckD
c
k

√
T ,

T∑
t=1

Rt(ȳ
∗
t ) ≤

T∑
t=1

Rt(ȳt) +GpkD
p
k

√
T .

Proof of Theorem 1. Using the functions Rt(ỹ) and Rt(ȳ), we
can rewrite the update rules derived for a traveling classifier as
M[k]ct+1 = M[k]ct + ηct∇Rt(ỹ) and M[k]pt+1 = M[k]pt +
ηpt∇Rt(ȳ). Note that in this form, the functions Rt(ỹ) and Rt(ȳ)
act as the loss functions of a pair of online gradient descent update
rules. These functions are convex in the vector M[k] [24]. Hence to
prove Theorem 1, we borrow the concept of regret from Online Con-
vex Optimization framework [37] and use the following lemma.
Lemma 1. The traveling classifier M[k] regularized by Rt(ỹ) and
Rt(ȳ) attains the following regret bounds in the child and parent
feature spaces, relative to the output distribution:

regretkcT ≤ G
c
kD

c
k

√
T and regretkpT ≤ G

p
kD

p
k

√
T . (5)

Proof of Lemma 1. We start by proving the lemma for the child fea-
ture space. By convexity of Rt(ỹ), the following inequality holds:

Rt(ỹt)−Rt(ỹ∗t ) ≤ (∇Rt(ỹ))T (M[k]ct −M∗[k]c). (6)

Therefore by summing over T , we can upper bound regretkcT with the
right side of Equation (6). We proceed to upper bound the right side
using the update rule M[k]ct+1 = M[k]ct +ηct∇Rt(ỹ) we previously
defined, and derive the following equation.

‖M[k]ct+1 −M∗[k]c‖2 = ‖(M[k]ct −M∗[k]c)− ηct∇Rt(ỹ)‖2 =

‖M[k]ct −M∗[k]c‖2 − 2ηct (∇Rt(ỹ))T (M[k]ct −M∗[k]c)

+ (ηct )
2 ‖∇Rt(ỹ)‖2 .

After rearranging, we get

(∇Rt(ỹ))T (M[k]ct −M∗[k]c) =

‖M[k]ct −M∗[k]c‖2 − ‖M[k]ct+1 −M∗[k]c‖2

2ηct

+
ηct ‖∇Rt(ỹ)‖2

2

≤ ‖M[k]ct −M∗[k]c‖2

2ηct
− ‖M[k]ct −M∗[k]c‖2

2ηct−1

+
ηct ‖∇Rt(ỹ)‖2

2
.

We sum the expression above over T , and upper bound the regret by
the following inequality:

regretkcT =

T∑
t=1

Rt(ỹ)(M[k]ct)−Rt(ỹ)(M∗[k]c)

≤
T∑
t=1

‖M[k]ct −M∗[k]c‖2

2ηct

− ‖M[k]ct −M∗[k]c‖2

2ηct−1

+
T∑
t=1

ηct ‖∇Rt(ỹ)‖2

2
.

After plugging Dc
k and Gck in, we use telescoping series over ηct .

Finally, we conclude the proof of Lemma 1 as follows:

regretkcT ≤
(GckD

c
k)2

2

T∑
t=1

ηct +
1

ηct
− 1

ηct−1

≤ GckDc
k

√
T

Since Rt(ȳ) is also a convex function, the same sequence of opera-
tions can be followed to derive the bound for regretkpT by using ηpt ,
Dp
k and Gpk. Plugging the definition of regret in the inequality above

and rearranging concludes the proof of Theorem 1. This theorem sug-
gests that instead of using the difference between regularization re-
ceived by the optimal weights in Equation (4), we can upper bound
the difference. To address the second problem of the proposed differ-
ence metric, we use the following theorem.
Theorem 2. Assume that the regularization difference distribution
∆∗k takes values in [0,1]. Then the following inequality holds for
δ ∈ [0, 1]:

P
[(
E[∆∗k]− 1

n

n∑
t=1

| Rt(ỹt)−Rt(ȳt) |
)
≤

1√
2n

(
√

log(2/δ) + 2
√

2(GckD
c
k +GpkD

p
k))
]
≥ 1− δ. (7)

Proof of Theorem 2. Let ∆∗k[1], ...,∆∗k[n] be i.i.d. samples from
the difference distribution ∆∗k. Then, Hoeffding’s inequality [20]
states that P (| 1

n

∑n
t=1 ∆∗k[t] − E[∆∗k]| > ε) ≤ 1 − δ where

ε =
√

1
2n

log 2/δ. By Theorem 1 we have,

n∑
t=1

| Rt(ỹ∗t )−Rt(ȳ∗t ) |≤
n∑
t=1

| Rt(ỹt)−Rt(ȳt) | +

(GckD
c
k +GpkD

p
k)
√
n. (8)

Combining Theorem 1 and Hoeffding’s inequality, we derive the fol-
lowing equation:

P (
1

n

n∑
t=1

| Rt(ỹt)−Rt(ȳt) | +
(GckD

c
k +GpkD

p
k)√

n

− E[∆∗k] < ε) = 1− δ. (9)

Plugging ε in and rearranging the equation above, we conclude the
proof of Theorem 2. This theorem utilizes Hoeffding’s inequality and
the upper bounds provided by Theorem 1 to decide if two feature
spaces are similarly representative. Note that Hoeffding’s inequal-
ity applies to arbitrary stationary distributions and {(ȳt, ỹt)}0<t<T
is not guaranteed to be stationary due to the updates received by
the traveling classifier on each round. Theorem 2 uses the fact
that {(ȳt, ỹt)}0<t<T can be calculated on each round and be used
with Theorem 1 to upper bound the stationary output distribution
{(ȳ∗t , ỹ∗t )}0<t<T generated by the optimal weights. The final layer
switching mechanism for the traveling classifier M[k] is shown in
Algorithm 1. When the condition given in Theorem 2 is satisfied with
a margin of hyperparameter ths, the classifier travels to the preceding
layer by declaring the child space as the new parent and initializing
a new child prototype, as listed on lines 2-9.

4.3 Online Acceleration with Traveling Classifiers
In this section, we first extend the traveling classifier to multi-class
setting and derive the update rules for the proposed accelerator. Then,
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Algorithm 1: Traveling Process
Input : nk: Number of instances seen by M[k].

ths : Layer switching threshold.
[Gck, G

p
k]: Grad. upper bounds in two spaces.

[Dc
k, D

p
k]: Diameters of two spaces.

δ: Probability threshold.∑
∆k:

∑nk
t=1 | Rt(ỹt)−Rt(ȳt) | for M[k].

1 ε =

(
√

log(2/δ)+2
√

2(GckD
c
k+GpkD

p
k))/
√

2n+(
∑

∆k)/nk.
2 if ε < ths then
3 Set child as new parent: M[k]p = M[k]c

4 Initialize the new child: M[k]c ∈ Rl
c
k−1

5 Update parent layer: lpk = lpk − 1
6 Update child layer: lck = lck − 1
7 Reset regularizer sum:

∑
∆k = 0

8 Reset number of instances: nk = 0

9 end

we propose an accelerated feedforward pass algorithm that uses trav-
eling classifiers, and discuss the algorithm’s running time and mem-
ory complexity.
Multi-class Extension. Let M be the multi-class model that con-
tains a traveling classifier M[k] for each class k encountered by
the neural network. On any round t, M may have traveling classi-
fiers that expect outputs from different neural network layers due to
the layer switching mechanism. When layer l is executed on round
t, {M[k]t}k|lk=l denotes the set of traveling classifiers compatible
with the output of l. The prediction of the multi-class traveling clas-
sifier (MTC) is calculated as k̂t = argmax

k

{σ(M[k]pt · hlt)}k|lp
k
=l.

On every round t a feedforward pass is interrupted or completed, and
an output is generated either by MTC or the neural network. This
output ot ∈

{
k̂t, ŷt

}
is used as supervision to update the model. Let

M
′
t = {k 6= ot : σ(M[k]pt · h

kp
t ) ≥ σ(M[ot]

p
t · h

(ot)p
t )} be the

prototype set that contains the classifiers making an incorrect pre-
diction with a higher confidence than the prototype of ot. To update
the multi-class model, we use a simple approach by only modifying
M

′
t ∪M[ot]t when M

′
t 6= ∅. This helps to minimize the computa-

tional cost and keep the overall change to all classes balanced. On
round t, MTC is updated as follows:

M[k]t+1 = [M[k]ct+1,M[k]pt+1] =

[M[k]ct + τtη
c
th

kc
t (ŷ − ỹ(1 + (ȳ − ỹ)(1− ỹ))),

M[k]pt + τtη
p
t h

kp
t (ŷ − ȳ)] (10)

where

τt =


1/|M

′
t|, if k ∈M

′
t

1, if k = ot

0, otherwise.

(11)

Algorithm and Complexity Analysis. The proposed accelerated
feedforward pass is shown in Algorithm 2. MTC is initialized to the
empty set on round t = 1, hence it can not generate any prediction
and lets the network complete its feedforward pass. As the neural
network f outputs predictions f.output, MTC initializes a traveling
classifier that learns from the last layer of the network for each class,
listed on lines 16-20. For each layer, if MTC generates a confident
activation, the feedforward pass is interrupted and MTC output k̂t is
used as the final prediction, shown on lines 6-12. MTC weights are

Algorithm 2: Accelerated Feedforward Pass
Input : f : Trained neural network.

xt: Neural network input.
ths : Layer switching threshold.
thb : Bypass threshold.
δ: Probability threshold.
Dp, Dc: Diameter bounds.
Gp, Gc: Gradient bounds.
MTC: Multi-class clf.

1 Set initial activation: f [0](xt) = xt.
2 Set ηpt = Dp/Gp

√
t, ηct = Dc/Gc

√
t

3 for l in f.layers− 1 do
4 Generate act. pair: hlt,h

l+1
t = f [l](hl−1

t ), f [l + 1](hlt).
5 Get prediction: k̂t = argmax

k

{σ(M[k]pt · hlt)}k|lp
k
=l.

6 if confidence(k̂t) > thb then
7 Interrupt feedforward pass.
8 Set output: ot = k̂t.
9 Update MTC with ηpt , η

c
t , ot using Eq. (10), (11).

10 Call Algorithm 1 to attempt travel.
11 Update nk and

∑
∆k for each traveling clf.

12 return ot
13 end
14 end
15 Set output ot = f.output.
16 if ot not in MTC then
17 Initialize new traveling clf. for ot: M[ot] ∈ Rl.
18 Set variables for new child and parent:
19 lpot = l, lcot = l − 1, and not = 1.
20 end
21 Update MTC with ηpt , η

c
t , ot using Eq. (10), (11).

22 Update nk and
∑

∆k for each traveling clf.
23 return ot.

updated based on the final prediction generated on each round, shown
on the lines 9 and 21. After generating predictions, MTC checks if
any of its prototypes is eligible to switch layers, shown on line 10.
If MTC generates an activation that is not confident enough, the next
layer of the network is executed. If MTC cannot generate a confi-
dent activation for any of the network layers, the network output is
used as the final prediction, shown on line 15. Let the number of
different classes encountered by the neural network on round t be
|Ct|, and the maximum neural network activation size be |h|max.
On every round t, the proposed algorithm introduces O(|Ct||h|max)
running time and memory complexity. If no early prediction occurs,
the additional overhead of using the accelerated feedforward pass per
round is only linear in |h|max and |Ct|. Note that unlike most of the
existing works, additional complexity introduced by MTC does not
depend on the neural network depth.

Table 1. Hyperparameters adopted by the proposed accelerator

Architecture ths thb D
ResNet-50 0.1 0.9 1

ResNet-152 0.1 0.8 1
VGG-16 0.1 0.9 0.5
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5 EXPERIMENTS AND RESULTS
5.1 Experiment Setting
We evaluate the performance of the proposed acceleration algorithm
using ResNet-50, ResNet-152 [18] and VGG-16 [38] trained on Im-
ageNet dataset [25]. We train each neural network using their best
parameter settings and report their Top-1 accuracy in our experiment
results. To simulate the redundancy introduced by the difference be-
tween the training set and application data distributions, we randomly
sample subsets of instances from 100 out of 1000 of the classes avail-
able in the ImageNet test set. Then, we use Gaussian noise and ran-
dom flips to increase the number of instances of our inference task.
We shuffle the sampled instances on each round, and report the aver-
age performance over 10 rounds. We tune the thb, ths andD param-
eters using grid search and set them as shown in Table 1. Note that
we use D to set both Dc and Dp, since both diameters belong to the
same neural network. We set the probability threshold δ to 10−10.
Setting the Gradient Upper Bounds. We provide a theorem to up-
per bound the gradients of the functions Rt(ỹ) = Rt(σ(M[k]ct ·
hkct )) and Rt(ȳ) = Rt(σ(M[k]pt · h

kp
t )). We use these bounds to

set the values for the hyperparameters Gc and Gp. Let x belong to
a bounded convex set K, and D be the diameter upper bound of the
set K. Gradient of a function f(x) can be written as ∇xf(x) = cx
where c is the proportionality constant decided by the function [4].
If we find an upper bound for c such that c ≤ L, we can also upper
bound the gradient norm as ‖∇xf(x)‖ ≤ LD. We start by provid-
ing the definition of Lipschitz continuity.
Definition 1. Let L > 0 be an upper bound on the (sub)derivative of

a function f over a bounded convex set K such that, | ∂
∂x

f(x)| ≤ L
for all x ∈ K. Existence of such bound implies that f is L-Lipschitz.
Note that Lipschitzness does not imply any bound on gradients, but
implies a bound on the proportionality constant c. This suggests that
if we show the functions Rt(ỹ) and Rt(ȳ) are Lipschitz continuous
and derive their corresponding Lipschitz variables, we can use them
with D to upper bound the gradients. Since ỹ and ȳ are generated
by the function σ(x) = 1/(1 + e−x), the inequality 0 ≤ ỹ, ȳ ≤ 1
holds. Also note that, ŷ ∈ {0, 1} for each M[k] of M. As a result, to
bound the gradients of the functions Rt(ỹ) and Rt(ȳ), it is sufficient
to prove that they are locally Lipschitz in [0, 1].
Theorem 3. The functions Rt(σ(M[k]ct · hkct )) and Rt(σ(M[k]pt ·
h
kp
t )) are 1-Lipschitz in [0, 1], and their gradients with respect

to their corresponding classifier weights M[k]ct and M[k]pt are
bounded as follows:∥∥∥∥ ∂Rt(ỹ)

∂M[k]ct

∥∥∥∥ ≤ 2,

∥∥∥∥ ∂Rt(ȳ)

∂M[k]pt

∥∥∥∥ ≤ 1. (12)

Proof of Theorem 3. We start by taking the partial derivatives of both
functions as follows:

∂Rt(ỹ)

∂M[k]ct
= ŷ − ỹ(1 + (ȳ − ỹ)(1− ỹ))), (13)

∂Rt(ȳ)

∂M[k]pt
= ŷ − ȳ. (14)

It is trivial to see that for ŷ, ȳ ∈ [0, 1], the inequality ∂Rt(ȳ) ≤ 1
holds. Therefore the function Rt(ȳ) is 1-Lipschitz in [0, 1]. To prove
Lipschitzness of the function Rt(ỹ), we use the fact that it is the
sum of two locally Lipschitz functions 1

2
(ỹt− ȳt)2 and `(ŷt, ỹt) [4].

Then, we use the following lemma.
Lemma 2. Assume f(ỹ) = 1

2
(ỹt− ȳt)2, g(ỹ) = `(ŷt, ỹt) are locally

Lipschitz functions in the region [0, 1] with the constants Lf and Lg .
Then the sum f(ỹ) + g(ỹ) is also locally Lipschitz with the constant
Lsum, where Lsum ≤ Lf + Lg .
Proof of Lemma 2. By using Definition 1 we prove the lemma for all
ỹ1, ỹ2 ∈ [0, 1] as follows.

|f(ỹ1) + g(ỹ1)− f(ỹ2)− g(ỹ2)|
≤ |f(ỹ1)− f(ỹ2)|+ |g(ỹ1)− g(ỹ2)|
≤ Lf |ỹ1 − ỹ2|+ Lg|ỹ1 − ỹ2|
= (Lf + Lg)|ỹ1 − ỹ2|.

Note that 1
2
(ỹt − ȳt)

2 and `(ŷt, ỹt) are both 1-Lipschitz in [0, 1].
Then according to Lemma 2, the function Rt(ỹ) is L̃-Lipschitz
where L̃ ≤ 2. This concludes the proof of Theorem 3.
Handling Convolutional Layers. Convolutional layers generate fea-
ture maps of different dimensions based on input and receptive field
sizes, stride of convolution and padding. Also, the number of fea-
ture maps generated by each convolutional layer is typically decided
by the number of kernels contained in the corresponding layer. Each
kernel ideally extracts a different feature, and combinations of these
features are used to output predictions. Motivated by this, we em-
ploy a simple mapping strategy from the set of kernels generated
by a convolutional layer to a vector. Let Φl = {φl1, ..., φlM} be
the set of feature maps generated by the lth layer and φlm[i] be
the ith element of φlm. We define the activation vector for layer l

as hl =
[ 1

|φ1|
∑|φ1|
i=1 φ1[i], ...,

1

|φM |
∑|φM |
i=1 φM [i]

]
. Note that this

strategy approximates the likelihood of the feature maps, when each
value of a feature map is assumed to be independent of each other.

5.2 Experiments with State-of-the-art Neural
Networks

In this section, we demonstrate the performance of the proposed
online acceleration algorithm on three state-of-the-art deep neural
network architectures. We evaluate the proposed acceleration algo-
rithm in terms of average accumulating prediction error rate and the
amount of layers executed, as the inference data stream across the
neural network. The first row of Figure 2 shows the accumulating
neural network usage of the proposed accelerator MTC. Several ob-
servations can be made from this row. First, the network usage is
initially high because the proposed accelerator cannot output suffi-
ciently confident predictions to trigger an interrupt to the feedforward
pass. As more instances received, the accelerator is trained using the
network output. The trained accelerator starts generating confident
early predictions and network usage decreases. Second, the network
usage does not always decrease smoothly. This is because the model
encounters instances from classes that have not been seen by MTC
before. Therefore MTC needs to let the network execute a few feed-
forward passes, initialize a new prototype for the recently encoun-
tered class and train it before outputting confident early predictions.
Also note that as the neural networks get deeper, the network usage
ratio decreases because there exists more redundancy to be exploited.
While exploiting this redundancy, our proposed accelerator does not
introduce additional complexity as the networks get deeper. From
the second row of Figure 2 it can be seen that the accelerator con-
verges after receiving one half of the instances. After convergence,
the accelerator achieves comparable error rates to the original net-
works. This observation can also be validated by comparing the av-
erage numbers of prediction errors and network layers executed, as
listed in Table 2.
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Figure 2. Experiments comparing error rate and network usage on the three network architectures

Table 2. Accumulating amounts of mispredictions and network usage

Error ResNet-50 ResNet-152 VGG-16
No Acc. 1923 1930 3269

MTC 1981± 46 1998± 43 3340± 92
MTC-mid 4268± 66 4160± 67 1568± 114
MTC-last 1952± 24 2115± 15 3272± 86
Net Use ResNet-50 ResNet-152 VGG-16
No Acc. 500K 1.52M 160K

MTC 295K ± 428 761K ± 216 111K ± 244
MTC-mid 262K ± 125 653K ± 294 81.6K ± 415
MTC-last 439K ± 27 1.39M ± 281 147K ± 328

5.3 Comparison with Baseline Accelerators
Existing methods on neural network inference acceleration require
offline training of the accelerator models. These methods need mul-
tiple epochs (20 - 100) for convergence. As a result, it is not possi-
ble for these methods to exploit the existing distribution difference
in runtime. Hence, it is unfair to compare these methods with our
proposed algorithm in online setting. In this section, we introduce
two baseline accelerators that can be trained online and compare the
performance of the proposed algorithm with these baseline methods.
These methods are designed to demonstrate that our proposed algo-
rithm is able to balance the accuracy and acceleration of a neural
network while learning in online setting. The baseline methods use
the same update rules and thresholds as the proposed model MTC,
but they do not have the capability of traveling among the network
layers for adaptive acceleration. Note that these two baseline meth-
ods have the same asymptotic complexity as the proposed MTC.
Baseline 1: MTC-mid. This method is designed to learn from the
middle layer of each neural network only. Therefore, it provides ap-
proximately 2× acceleration by interrupting the feedforward pass in
the middle.
Baseline 2: MTC-last. This method is designed to learn from the
last layer of each neural network. Therefore, it represents the maxi-

mum accuracy that can be attained by the linear acceleration scheme
in online setting. MTC-last can only interrupt the feedforward pass
right before the last layer of the network is executed.
From Figure 2, it can be observed that the accelerator MTC-mid ex-
hibits around 50% of neural network usage. This is because MTC-
mid models all the class probabilities by using only the middle neural
network layers, and outputs a bypass decision after the execution of
these layers. It can be seen that MTC-mid sacrifices a lot in terms of
prediction accuracy compared to the other methods we introduced.
On the other hand, the accelerator MTC-last achieves a very similar
accuracy to the original neural networks it accelerated, since MTC-
last basically approximates the last fully connected layers of these
networks using a linear model. Also note that, because MTC-last is
located at the last layers of the networks, it cannot achieve high ac-
celeration rates. From Figure 2 and Table 2, it can be observed that
the proposed traveling classifier based acceleration algorithm MTC
can automatically balance the prediction accuracy and acceleration
of the feedforward pass with the help of its layer switching mecha-
nism. This mechanism allows the proposed accelerator to model the
conditional probabilities separately for each class, adapting the num-
ber of layers to be executed before interrupting the feedforward pass
based on the class characteristics.

6 CONCLUSION
In this paper, we have explored online learning to accelerate neural
network inference. We propose traveling classifiers that adaptively
change the layers they learn from and output early predictions for a
given network. For adaptive layer switching, we introduce the feature
space difference for a traveling classifier and provide an algorithm.
We also propose an accelerated feedforward pass algorithm that uti-
lizes the traveling classifiers and analyze its running time complex-
ity. Finally, we demonstrate the proposed algorithm’s performance
on state-of-the-art network architectures, compare it with two base-
line online accelerators and discuss its effectiveness.
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