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Abstract. We propose a method which can visually explain the clas-

sification decision of deep neural networks (DNNs). Many methods

have been proposed in machine learning and computer vision seeking

to clarify the decision of machine learning black boxes, specifically

DNNs. All of these methods try to gain insight into why the network

“chose class A” as an answer. Humans search for explanations by

asking two types of questions. The first question is, “Why did you

choose this answer?” The second question asks, “Why did you not

choose answer B over A?” The previously proposed methods are not

able to provide the latter directly or efficiently.

We introduce a method capable of answering the second question

both directly and efficiently. In this work, we limit the inputs to be

images. In general, the proposed method generates explanations in the

input space of any model capable of efficient evaluation and gradient

evaluation. It does not require any knowledge of the underlying clas-

sifier nor use heuristics in its explanation generation, and it is compu-

tationally fast to evaluate. We provide extensive experimental results

on three different datasets, showing the robustness of our approach,

and its superiority for gaining insight into the inner representations of

machine learning models. As an example, we demonstrate our method

can detect and explain how a network trained to recognize hair color

actually detects eye color, whereas other methods cannot find this bias

in the trained classifier.

1 Introduction

Deep neural networks (DNN) have shown extraordinary performance

on computer vision tasks such as image classification [34, 32, 33, 10],

image segmentation [5], and image denoising [38]. The first example

of such a performance was on image classification, where it outper-

formed other computer vision methods which were carefully hand-

crafted for image classification [18]. Following this success, DNNs

continued to grow in popularity. Even with DNNs achieving testing

accuracy close to human expertise [26] and in some cases surpassing

them [33], there is hesitation to use them when interpretability of the

results is important. Accuracy is a well-defined criterion but does not

provide useful understandings of the concept captured by the network.

If the deployment of a network may result in inputs whose distribu-

tion differs from that of the training or testing data, interpretability or

explanations of the network’s decisions can be important for securing

human trust in the network.

Explanations are important in settings such as medical treatments,

system verification, and human training and teaching. Naturally, one

way of getting an explanation is asking the direct question, “Why

did the DNN choose this answer?” Yet, humans often also seek con-

trasting explanations. For instance, they may be more familiar with

the contrasting answer, or they want to find the subtle differences in
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input which change the given answer to the contrasting one. This way

of questioning can be phrased as, “Why did the DNN not choose B

(over A)?” In this work, we present a framework to answer this type

of question.

To present the explanation in the space of natural images, with

which humans are accustomed, we assume a generative model on the

input space exists. This model, which is trained on the input space

and not necessarily on the input dataset of the DNN, is able to provide

synthetic samples similar to the input. Then, we ask how we can alter

this synthetic input to change the classification outcome. Our proposed

framework is not based on heuristics, does not need to change the

given network, is applicable as long as the given model can handle

backpropagation (no further requirements for layers), and can run

much faster than methods with input perturbation. The only overhead

of this method is the assumed availability of a latent model over the

input. If this latent model is not available, we can learn such a model

using a generative adversarial network (GAN) or variational auto

encoder (VAE). Learning this latent space needs to be done only a

single time and is independent of the learned classifier to be explained.

2 Related Work

Some past work has mapped queries back to the training set of the ex-

amined network [17, 19]. This can be effective in providing guidance

on dataset changes. However, training methods or network architec-

tures may also be responsible for the network’s effects. Further, the

resulting network is its own object and its decisions can be explain

irrespective of how it was trained to produce them. To that end, our

work and the work we describe below treat the network as a given and

seek explanations of the function given, not of the learning method

that produced the function.

Our problem is distinct from work on adversarial examples in that

we are not interested in how to break the classifier, but rather what

concept the classifier has learned. For instance, an adversarial ex-

ample which adds small amounts of speckled noise is not helpful

for understanding the concept in the space of natural image varia-

tion. This drives our use of latent-space representation of the input

(through GANs or VAEs). There are uses of interpretations to secure

classifiers against adversarial examples. However, our focus is on

non-adversarial explanations.

There are different ways to categorize interpretability methods [30].

Here we categorize the existing approaches into three overlapping

categories, focused on methods for deep neural networks.

2.1 Network Visualizers

The first group of methods try to understand units of the network

[7, 36, 2]. These methods test each individual network unit or a set of

units to gain insight into what network has learned.
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The disadvantage of these methods is that they need to check all

the units to see which one (or combination of units) is responsible

for a concept. The method proposed in [22] showed it is unlikely

that only a single unit learns a concept. Rather, a set of units usually

combine to represent a concept. This, in turn, makes these methods

inapplicable in practice when the network contains thousands of units.

These methods are example-based explanations. That is, they generate

an explanation for a single input. By contrast, [8] proposed a method

to determine whether the network learned a concept based on a set of

probe images and pixel-level annotated ground truth which may not

be readily available or easy to obtain for many tasks.

2.2 Input Space Visualizers

The second category corresponds to networks that try to explain the

network’s decision in the space of the input image. Authors of [27]

proposed a method to find out which parts of the image have the

largest contribution to the decision of the network by making changes

to the image and forwarding the new image through network. The

method by [40] proposed a similar approach with a more clever way of

sampling the image parts. These methods need to consider changing

each dimension of the image and find an explanation for each change

in order that the aggregated results are visually coherent. In [6] a

method proposed which also takes into account the middle layers of

the network to produce the explanation. [39] proposed a method which

forwards the image through the network, records the activations in

the last pooling or convolution layer, and uses them as an explanation.

[29] propose a similar method which uses the back-propagated signal

for a more accurate explanation. There are two potential difficulties

with these approaches. First, they assume that the explanation can

be summarized in the last layer which has a broad receptive field

which may not be appropriate for fine-grained datasets. Second, these

methods are restricted to use in convolutional networks.

[31] used the gradient of the output with respect to the pixels of the

input to generate a heat map. They showed that their proposed method

is closely related to DeconvNets [37]. The difference is in the handling

of backpropagation of ReLU units. The weakness of these methods is

that the generated backpropagated signal in image space is not visually

specific. They need to use heuristics in backpropagation to make the

results more specific and useful to humans, such as changing the

backpropagation rules for ReLU unit [33]. These methods have been

shown to be unreliable with respect to shifts in the input [15]. Some

of these methods need a reference input image [30] whose choice

can greatly change the generated explanation [15]. In [13], authors

discussed the issue of learning a surface statistics rather than a high

level concept. In 4 Section, we examine that how much of this claim

might be true. [23] propose a method to find a sparse combination

of filter responses which are the most responsible for the network’s

classification. [4] explores how the network behavior changes if some

part of the image changes based on a Bernoulli prior, but do not create

a real counter-factual as we do.

The most similar work to ours is the unpublished xGEMs [14], a

preprint available on arXiv. xGEMs is similar to our work in that it

uses a GAN to regularize the explanation and also seeks to find a “why

not” explanation. Their work is different in that it does not formulate

a constrained optimization problem as we do (our results show the

importance of our constraints), and they focus on producing a “morph”

from one class to another, rather than highlighting the differences

directly in the input image (as we do).

Input space visualizers (including our own) produce one example

of how the input might be changed to change the classification or

output of the network being analyzed. If the demonstrated change

does not match the human’s understanding of the task, this example

explains a problem with the classifier. However, there may be other

examples of input changes which similarly modify the classifier’s

output. Therefore, if the demonstrated change matches the human’s

understanding of the task, this does not guarantee that there are not

other undesirable properties of the analyzed network.

2.3 Justification Explanations

Finally, there are methods that learn to justify the classification of a

network by producing textual or visual justifications from training

explanations. [11, 24]. Although related to image descriptions or

definitions, they differ in that their goal is to explain why in a general

sense. Because the justification network is trained to match human

explanations, they are not direct explanations of how the learned

classification network makes its decisions, but rather what humans

would like as the explanation. If the explanation is “correct,” we

cannot be certain this is because the network learned the concept

correctly, or because the explanation network learned to mimic what

we want to hear.

2.4 Summary

Existing methods have one or more of these downsides:

I They are only applicable to specific architectures. [39, 29]

II They use heuristics during backpropagation. [33, 37]

III They need of a set of probe images or concepts. [30]

IV They need network alteration to record the activations. [37, 2, 30]

V They need considerable computational time. [40, 27]

VI They learn an explanation, and are trained to produce the expla-

nations we desire, rather than faithful ones. [24]

We have replaced these downsides (assumptions, heuristics, probe

images, or other black-boxes) with a generative latent-space model

(built with a GAN or VAE). We submit that this latent-space model

imposes less bias on the explanations, while still providing a human-

understandable explanation. The unbiased, true explanation for any

classification is the (long) sequence of calculations performed. For

human understanding, these must be filtered through some type of

lens.

We believe the latent input space is a natural bridge between the

network’s understanding and the human’s understanding, as it is com-

mon data (or language) to both, unlike raw pixels or activation values

(which are natural for the network, but not for the human). Other

bridges, like natural language or scene objects, require assumptions

about how the network works (which call into question whether the

explanation is valid) or training up other networks to make the bridge.

While we also require another network, there is less bias imposed by

modeling the space of natural images than by modeling the mapping

from neural network concepts to natural language or other higher-level

concepts.

Our lens, of the latent-space parameterization of the input domain,

can be trained on completely different data than that used for the

classifier to be analyzed (Section 4.6), can be shared across multiple

classifiers with the same input domain (thus providing a standard

testing tool), and can be improved and tested externally and indepen-

dently from the classifier-to-be-analyzed. We further show experi-

ments demonstrating that the generative model does not project its

own training set (Section 4.2) onto the explanations for a network

trained on different data.
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(a, as suggested by CDeepEx) (b, as suggested by xGEMs)

(c, true class change) (d, probe class change)
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Figure 8: (a) we manually increase eye intensity from its original value to maximum, as suggested by our method, CDeepEx. (b) we decrease eye intensity from its
original value to minimum, as suggested by xGEMs. (c) and (d) show the plots of how the discriminator network d’s outputs change for the probe (blonde female)
and reported/true (dark-haired female) classes. this demonstrates that xGEMs generates the wrong explanation of the correlation of the hair with the eyes, whereas
the change suggested by CDeepEx correctly moves the reported class of the discriminator network from the true class (dark hair) to the probe class (blonde).

Input CDeepEx xGEMs

Figure 9: CDeepEX vs xGEMs experiments. The top row is the result of a
query “why is the person not dark-haired?” on a blonde female. We see that
the network pays more attention to the eye color than the hair color. In the
second row, the probe class is blonde and true class is dark-haired, for the
inverse query. We can see generated explanations from xGEMs and CDeepEx
disagree over the “sign” of change in the eyes. See Figure 8 for more details.

that demonstrate that the learned discriminative network learned eye

color and not hair color. In particular, lightening the eyes changes

the reported hair color to blonde. However, xGEMs (which does not

have the constraint on non-probe, non-true classes), gave the reverse

explanation (darkening the eyes would produce a blonde classification)

which was not borne out by our experiment.

Clearly, with better training or a more complete dataset, D could

probably have learned the “correct” concept. The purpose of CDeepEx

is not to find the “correct” differences in the classes, but rather the

T-shirt vs. shirt trousers vs. coat

CDeepEx xGEMs CDeepEx xGEMs

ResNet101

Vgg16

(a) (b) (c) (d)

Figure 10: Top and bottom rows are the results for ResNet101 and VGG16
respectively. (a) Change from T-shirt to a Shirt with constraints. (b) T-shirt to
shirt without constraints. (c) Change from trousers to coat with constraints. (d)
Change from trousers to coat without constraints.

differences that the network D has decided on. Most critically, our

method can identify when the classifier D has not properly generalized

the training set. This CelebA result directly shows such an example,

and our method is able to clearly explain what the classifier did detect

(eye color). This information can be used to build (or erode) trust

in the classifier and to suggest training or deployment changes that

would help correct discovered errors.

4.5 Fashion MNIST

We trained two different networks for D on the Fashion MNIST

dataset: Vgg16 [32] and ResNet101 [10]. The testing accuracy for

both networks is 92%. For the generating network, G, we used the

structures and learning method presented by [1] with latent space of

size 200. We then illustrate our method’s ability to gain insight into

the robustness of the classifiers through contrastive explanations. The

generator network’s structure is the same as the MNIST’s generator

network’s structure.
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