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Abstract. This paper proposes a novel deep learning method for
extraction of the conjunctive information that describes the relation-
ship between signals in multi-sensor systems to enhance the perfor-
mance of the given classification task. The signals obtained from dif-
ferent sensors included in the multi-sensor systems are closely re-
lated. Handcrafted metrics have been used to extract the relationship
between the signals in some work, which is hardly optimal for the
given task. Our proposed method learns the pair-wise relationship
from data to maximize the performance of the given task, which is
fully data-driven, multi-aspect, and target-oriented. We demonstrate
the effectiveness of the proposed method on a toy example and two
real-world problems, i.e., activity recognition using accelerometer
signals and emotional video classification using brain signals.

1 Introduction

Multi-sensor systems have been actively utilized for monitoring or
tracking the states of the environment and users because of the rich
information obtained from them. For example, manufacturing pro-
cess monitoring [17], action recognition [15], and health-care [11]
are conducted by using multi-sensor systems. In most existing deep
learning approaches, the signals from multi-sensor systems are con-
sidered independently. However, multiple sensors in such systems si-
multaneously measure the same object or the objects that are closely
related. Therefore, the relationship between the obtained signals pro-
vides the information from different points of view for the objects’
state, which is expected to contribute to the enhanced performance
for the given task.

There are several cases where the signals obtained by multiple
sensors have close relationship and provide the complementary in-
formation to each other. For example, when accelerometers are used
for monitoring the human activity [7], the signals captured by these
sensors provide the information related to the activity from differ-
ent perspectives (i.e., body parts). Problems related to the climate are
also examples involving multi-sensor systems. The local weather sta-
tus is a partial observation of the complex system where weather con-
ditions at different regions influence on each other. Thus, the weather
forecasting is often conducted based on weather conditions acquired
from multiple regions. Brain signals such as the electroencephalogra-
phy (EEG) signal are also examples, where the relationship between
the signals from different brain regions is importantly considered. It
is well known that the brain is a functional network, i.e., different
brain regions are functionally correlated [12]. The functional rela-
tionship between the brain signals measured at different locations,
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called connectivity, is often used for analysis of the functional net-
work of the brain.

Graphs are a way to represent the relationship between the sig-
nals. For example, the sensors in a system can be regarded as the
nodes of a graph, then the relationship between the sensors can be
encoded as the edges between the nodes. Handcrafted metrics such
as the physical distance between sensors [2] and correlation between
signals [4] are often used for measuring the relationship. However,
these manually designed metrics can measure only particular aspects
of the relationship. Moreover, a proper metric needs to be chosen for
each task, which may not be even optimal for the task. Therefore, it
is necessary to develop a method to design a metric that can reflect
various aspects of the relationship between signals and is optimized
to solve the given problem.

In this paper, we propose an end-to-end deep learning model to
learn the relationship between signals in the multi-sensor systems
from data, which is expected to be optimal for the given classifica-
tion task. The relationship extracted by the proposed method is called
conjunctive information in the sense that the extracted information
connects two signals obtained from different sensors and describes
diverse types of relationship between them. Our method is distinc-
tive from the existing methods in that the proposed method 1) ex-
tracts the relationship between signals to maximize the performance
of the given task in an end-to-end manner in contrast to the existing
graph-based approaches, 2) enables to obtain the comprehensive in-
formation of the relationship unlike the existing metrics considering
only a specific aspect, and 3) fully depends on the given data so that
it is applicable to various domains and tasks.

The remainder of this paper is organized as follows. After sum-
marizing the related work in Section 2, we explain the proposed
method in Section 3. Section 4 shows the effectiveness of the pro-
posed method based on three experiments, i.e., a toy simulation and
two real-world problems. Then, we conclude the paper in Section 5.

2 Related work

Multi-sensor systems have been used in various real-world applica-
tions, and deep learning approaches to extract meaningful informa-
tion from the signals in such systems have been proposed. However,
many approaches typically regard the signals in multi-sensor systems
separately [10, 18, 19]

In a few studies, manually designed metrics are used for extracting
the relationship between EEG signals. In [4], absolute values of the
Pearson correlation coefficients (PCCs) between the EEG signals or
physical distances between the EEG electrodes are obtained to rep-
resent the connection strength between the EEG signals measured
from different electrodes for a video identification task. In our previ-
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Figure 1: Overview of the proposed method.

ous work [9], PCC, phase locking value (PLV), and phase lag index
are used for describing the relationship between EEG signals, and the
extracted relational information is applied for emotion classification.
Although these approaches are shown to yield better classification
accuracy for the target tasks than those without consideration of rela-
tionship information, the aforementioned limitations of handcrafted
metrics still exist.

A few studies try to infer the relationship between signals based
on the graph theory. A variational autoencoder-based graph neural
network is proposed to find latent structures of dynamic graphs in
[5]. However, only categorical relationships are considered, whereas
our proposed method obtains continuous-valued measures of con-
junctive information. Moreover, unlike our method, a priori knowl-
edge of the graph structure is required. In [3], a deep learning ap-
proach for graph generation is proposed, where the graph generator
network is trained by using hypergradients obtained from the clas-
sification results of graph convolutional networks. However, this ap-
proach targets graph node classification tasks, thus the learned rela-
tionship is between data samples from different objects, whereas our
method considers the relationship observed within a system. In addi-
tion, graph-based approaches usually suffer from high computational
and memory complexity [16].

3 Proposed method
Figure 1 illustrates the proposed deep learning method. When a set of
time series X = {x1, ...,xM} measured by M sensors is given, the
goal of the proposed method is to learn the pair-wise directional rela-
tionship between the time series inX and achieve the given task, i.e.,
prediction of the target label yX in this work. Particularly, the learned
relationship, i.e., the conjunctive information, is expected to reflect
various aspects of the relationship between signals rather than only a
certain characteristic such as similarity, correlation, and causality.

For two time series xi and xj obtained from the i-th and j-th
sensors, the conjunctive information from xj to xi is extracted by
the encoder E, which can be described as

rj→i = E(xj ,xi). (1)

Here, the conjunctive information is not limited to be a scalar, and its
dimension can be made different by adjusting the output size of the

encoder. The extracted conjunctive information rj→i is concatenated
with xj in the reconstruction branch, which is used for reconstruction
of xi by the decoder D, i.e.,

x̂i = D(xj , rj→i). (2)

Note that the encoder and decoder models are shared across all pairs
of signals. The deep learning models that are able to extract the latent
relationship from a pair of signals can be used as the encoder, and
those that can reconstruct the signals from a given latent vector can
be used as the decoder. Most of the supervised learning approaches
accord to these conditions, including convolutional neural networks
(CNNs) and recurrent neural networks.

The extracted conjunctive information is used for the given clas-
sification task in the classification branch. Particularly, we employ a
CNN as the classifier, therefore, the conjunctive information values
are reshaped to a tensor R. The element of R at (i, j, k) is defined as

Ri,j,k = Ek(xj ,xi), (3)

where the subscript k ofE(·) indicates the k-th element of the output
of the encoder. Therefore, the size of the tensor R isM×M×dwhen
the conjunctive information is a d-dimensional vector. The obtained
R is inputted to the classifier C that predicts the class label of X ,
which can be written as

ŷX = C(R). (4)

The reconstruction loss between the reconstructed signal (x̂i) and
the original signal (xi) and the classification loss of the predicted
label ŷX are used as the feedback for training. The weight parameters
of the decoder and classifier (wD and wC ) are learned based on the
reconstruction and classification losses, respectively, which can be
written as

w∗D = min
wD

L (xi, D (xj , E(xj ,xi))) (5)

and
w∗C = min

wC

L (yX , C(R)) , (6)

where L(·) refers to a loss function between given two inputs.
The training of the encoder is based on both losses, i.e.,

w∗E = min
wE

L (xi, D (xj , E(xj ,xi))) + λL (yX , C(R)) , (7)
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where wE represents the weight parameters of the encoder and λ is
a value to control the relative importance of the classification loss.
Therefore, the encoder learns the relationship from xj to xi, which
provides a clue for the reconstruction of xi using xj and, at the same
time, is related to the target label. In the case of i = j, the learning
of the conjunctive information becomes fully oriented to the classifi-
cation task, which enables to extract the target-related features from
individual signals.

4 Experiments
We first provide a toy example for better understanding of the learned
conjunctive information in the proposed method. Then, the effective-
ness of our method is demonstrated based on two real-world prob-
lems, i.e., the activity recognition and the emotional video classifica-
tion.

The reconstruction loss is obtained as a root mean squared er-
ror (RMSE) between the reconstructed and original signals, and the
cross entropy loss is employed as the classification loss. The value
of λ is set to 1 for all experiments, which roughly corresponds to the
balanced contribution of the reconstruction and classification losses
for the training of the encoder.

The structures of the encoder, decoder, and classifier are designed
differently for each problem. In all problems, the rectified linear units
(ReLU) activation function is employed for the proposed model ex-
cept for the last layers of the decoder and classifier, for which the
linear activation function and softmax activation function are used,
respectively. The Adam optimizer is used for training with a learn-
ing rate of 0.0001. The batch size is 300, 256, and 256 for the toy
example, activity recognition, and emotional video classification, re-
spectively. The dropout scheme with a probability of 0.5 is applied to
the fully connected (FC) layers. The training is stopped if the valida-
tion loss does not decrease for successive 20 epochs, and the network
that shows the best validation classification performance is selected
for the test. The proposed model is implemented in PyTorch. The ex-
periments are conducted using a PC equipped with an Intel Xeon E5
CPU and an NVIDIA Tesla K80 GPU.

4.1 Toy simulation
We define a 3-class classification problem for a two-sensor system as
the toy example. A sine wave is consistently measured from the first
sensor,

x1 = sin t, (8)

and the signal obtained from the second sensor differs depending on
the class as follows:

x2 =


2 sin t if yX = 0

sin
(
t+ π

2

)
if yX = 1

n ∈ N (0, 1) if yX = 2,

(9)

where X = {x1,x2}, and yX corresponds to the class label of X .
The signals obtained from the two sensors are highly correlated in

the first class (yX = 0) and in a causal relationship for the second
class (yX = 1). The signal of the second sensor for the third class
(yX = 2) is Gaussian random noise, which means that the two sen-
sors are independent. The training, validation, and test of the model
are conducted using 3000, 300, and 300 data samples (i.e., 1000, 100,
and 100 samples per class), respectively. Each data sample is individ-
ualized by adding Gaussian random noise of 5% in amplitude. The
length of the samples is 384, and the sampling rate is 5 Hz.

Table 1: Results of the toy example.

yX Direction rj→i RMSE Accuracy

0 1→ 2 0.017 1.165 1.000
2→ 1 0 0.497

1 1→ 2 1.740 0.699 1.000
2→ 1 0.158 0.566

2 1→ 2 0 1.037 1.000
2→ 1 3.228 0.659

The encoder is implemented as a CNN that consists of two convo-
lutional layers having eight 1× 129 kernels and one 2× 128 kernel,
respectively. As the number of kernels in the last layer of the encoder
is one, the conjunctive information is obtained as a scalar value. A
FC layer with 128 hidden neurons is employed as the decoder. The
classifier consists of a single convolutional layer having thirty-two
3×3 kernels and a FC layer having 128 hidden neurons.

Table 1 shows the results. The reconstruction errors are obtained
as average RMSEs for the test data sequences in the corresponding
class. As the conjunctive information rj→i acts as the supplemen-
tary information for cross-signal reconstruction in the reconstruction
branch, its value can be interpreted as the amount of information that
is required to reconstruct xi based on xj . Note that in all cases, the
classification accuracy is 100%.

Overall, the extracted conjunctive information values correspond
to the preassigned relationships between the two sensors, which
proves that the proposed method is able to measure various aspects
of inter-signal relationship. When the two signals are perfectly corre-
lated (i.e., yX = 0), the extracted conjunctive information has small
values because the signal is reproducible based on the counterpart
signal without much information of their relationship. The smaller
value of r2→1 is probably because the decoder more frequently faces
x1 than x2 and the reconstruction of x1 is relatively easy. Larger
values of conjunctive information are obtained for the second class,
where the delay of a quarter period exists, compared to the case of
the perfect correlation. For the third class, the conjunctive informa-
tion from the first sensor to the second sensor shows a small value
despite of their independence. This reflects that x2 is reconstructed
without the relationship information with x1 because x2 is a random
signal. In the opposite direction, the decoder tries to reconstruct x1

based on the random signal, therefore, the conjunctive information
has a large value in this case.

4.2 Activity recognition
4.2.1 Database

The OPPORTUNITY dataset [13] is employed for the activity recog-
nition experiment. Particularly, the signals obtained from twelve ac-
celerometers attached on the subjects’ body are used for the classifi-
cation between null, stand, walk, sit, and lie, where null indicates the
unrecognized activities.

The data sequences are normalized within [−1.0, 1.0] for each
sensor channel, then segmented into 0.5-second-long sequences with
a 50% overlap according to the protocol of the OPPORTUNITY
challenge [1]. As a result, the shape of data sequences becomes
36×15, which corresponds to M = (12 accelerometers) × (3
axes) = 36 and a time length of 0.5 second for a sampling rate
of 30 Hz. We exclude the data sequences where signals for two or
more sensors are missing. The data sequences are divided into train-
ing, validation, and test data based on the protocol [1], which assigns
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Table 2: Network architectures for activity recognition.

Type Output shape Kernel size

E
1 convolution 2×9×8 1×7
2 convolution 1×1×d 2×9

D
1 dense 128 -
2 linear 15 -

C

1 convolution 36×36×32 3×3
2 convolution 36×36×32 3×3
3 max-pooling 18×18×32 2×2
4 convolution 18×18×32 3×3
5 convolution 18×18×32 3×3
6 max-pooling 9×9×32 2×2
7 dense 128 -
8 softmax 5 -

24369, 3324, and 6995 data sequences for each, respectively.

4.2.2 Setup

The structures of encoder E, decoder D, and classifier C are de-
scribed in Table 2. The classification performance is measured in
terms of the classification accuracy and weighted F1 score to con-
sider the imbalanced distribution of the activity classes.

We implement the random forest and k-nearest neighbors (k-NN)
for comparison as traditional machine learning methods. For the ran-
dom forest, the number of trees and the number of features are set
to 100 and squared root of the input dimension, respectively. The
maximum depth, minimum leaf size, and minimum node size to be
split are fine-tuned based on the validation data. The value of k in the
k-NN method is set to 5.

In addition, two existing deep learning methods, i.e., the deep
convolutional LSTM (DeepConvLSTM) [10] and residual bidirec-
tional LSTM (ResBidirLSTM) [20], are compared with the proposed
method. The former employs two LSTM units after four convo-
lutional layers that conduct convolution operations along the time
axis to consider the temporal dynamics. The latter is a bidirectional
LSTM network with residual connections, which enables to extract
the information reflecting forward and backward temporal directions
while preventing the gradient vanishing problem. In these methods,
the data from all sensors is inputted to the models after concatena-
tion, which can be seen as an early integration scheme that does not
explicitly consider relationship between the signals.

4.2.3 Results

Table 3 summarizes the results. Our proposed method outperforms
the conventional machine learning methods and deep learning ap-
proaches in terms of the accuracy and weighted F1 score. This partic-
ularly implies that the explicitly modeled conjunctive information is
more effective for the activity recognition, for which the relationship
between sensors has been considered only implicitly by the sensor
integration scheme.

While the proposed approach is capable of extracting directed con-
junctive information, undirected information can be also obtained us-
ing a symmetric R that is obtained by copying the extracted upper
triangular part and pasting it to the lower triangular part. The directed
cases show slight superiority over the undirected cases in Table 3, but
the performance difference between them is not significant.

The running time of the best case (directed, d = 32) is 1.53 hours
and 2.58 seconds for training and test, respectively.

Table 3: Results of activity recognition. The F1 score of the random
forest is not available because it fails to recognize the lie class.

Model Acc F1

Baseline

k-NN 0.462 0.469
random forest 0.608 -

ResBidirLSTM [20] 0.699 0.685
DeepConvLSTM [10] 0.734 0.737

Proposed

undirected

d = 8 0.803 0.795
d = 12 0.812 0.803
d = 16 0.816 0.809
d = 24 0.810 0.804
d = 32 0.809 0.803

directed

d = 8 0.806 0.798
d = 12 0.807 0.801
d = 16 0.819 0.812
d = 24 0.807 0.800
d = 32 0.821 0.814

We conduct further analysis for the best case. First, to examine
the importance of the reconstruction branch, the encoder is trained
only based on the classification loss. The obtained classification ac-
curacy and F1 score are 0.782 and 0.755, respectively. This implies
that the explicit feedback from the reconstruction branch is crucial
for learning of the conjunctive information.

Next, the reconstruction performance is evaluated in terms of the
reconstruction RMSE. Figure 2 illustrates the RMSE values after
normalization within [0,1] for all pairs of sensors (36×36) depending
on the activity class, where darker colors indicate smaller RMSEs.
The averages and standard deviations of RMSEs are 0.227± 0.033,
0.601 ± 0.062, 0.666 ± 0.071, 0.546 ± 0.055, and 0.483 ± 0.121
for Figures 2a-2e, respectively. Therefore, although the difficulty of
cross-signal reconstruction changes depending on the activity class,
the variation of reconstruction errors across the sensor pairs within
the same class is relatively small. This has two implications. First,
the extracted conjunctive information provides useful information for
the cross-sensor reconstruction. If the reconstruction of one signal
is only based on the other signal in the pair, the reconstruction er-
rors would vary significantly among the sensor pairs because differ-
ent sensors measure accelerometer signals from different body parts.
Moreover, the reconstruction errors are largely different across the
activity classes for the same sensor pairs. This indicates that the re-
lationship between the signals significantly varies depending on the
class and thus provides useful information for classification.

In addition, the Grad-CAM approach [14] is applied to verify the
significance of particular sensor pairs for the activity recognition.
The results are shown in Figure 3, which are obtained by averaging
the Grad-CAM heatmaps of randomly selected 40 test data for each
activity class. While the arrangement of sensors in R follows the
description in [13] during the training and test processes, the Grad-
CAM heatmaps are reshaped depending on the sensor positions in
order to ease the analysis. A brighter region of the figures indicates
higher contribution of the corresponding conjunctive information. In
addition, the Grad-CAM results are also visualized as connections of
sensor pairs on the body, where brighter regions in the Grad-CAM
results are represented as thicker connection lines.

It is noticeable that the highlighted locations in the Grad-CAM re-
sult vary depending on the activity type. For example, the conjunctive
information values related to hip are contributive to the recognition
of walk in Figures 3c and 3h, whereas the recognition of sit is mostly
influenced by the conjunctive information values within the upper
body (Figures 3d and 3i).
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Figure 2: Reconstruction errors in RMSE depending on the activity class. A pixel value in each panel represents the error of reconstruction of
the signal from the sensor in the row using the signal from the sensor in the column.
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Figure 3: Results of Grad-CAM analysis for activity recognition. (a)-(e) are Grad-CAM heatmaps (0-2: left hand, 3-5: left wrist, 6-11: left arm,
12-14: right hand, 15-17: right wrist, 18-23: right arm, 24-26: back, 27-29: hip, 30-35: right leg), and (f)-(j) visualize the Grad-CAM results
on body illustrations, where the strength of connections between sensors is obtained as an average of the corresponding Grad-CAM heatmap
values. Note that closely located sensors are merged in (f)-(j) for better visualization. Thicker lines indicate more significant contribution for
activity recognition (i.e., brighter colors in the heatmaps).

The conjunctive information values related to the arms or hands
are frequently attended for the classification. For instance, the con-
junctive information within the upper body and that between hip
and the upper body parts significantly contributes to the classifica-
tion of walk, sit, or lie in Figure 3. Since subjects were instructed
to perform the given gestures such as cleanup, eating, and open-
ing/closing doors, the arms and hands are expected to be in dynamic
states while the movements of the other parts are relatively static or
regular. Therefore, while the target activities are mostly driven by
the states of the lower body, the incoordinated relationship with the
upper body provides additional information for recognizing the loco-
motion, which is effectively captured by the proposed method.

4.3 Emotional video classification
4.3.1 Database

We employ the DEAP dataset [6] for emotional video classification
using EEG signals. The classification task is to identify which video
was watched by a subject among 40 videos based on the 32-channel
EEG signals measured during the watching period, where the video
was supposed to invoke the subject’s emotional response. The pre-
processed EEG signals provided in the dataset is used, which under-
went noise removal, downsampling to 128 Hz, filtering, etc. The EEG

sequences are divided into 3-second-long segments with an overlap
of two seconds. Then, randomly selected 10% of the EEG sequences
are used as test data, and another 10% are employed for validation.
The rest is used for training.

4.3.2 Setup

Table 4 describes the network architectures of our method in this
experiment. The structures are similar to those used for the activ-
ity recognition. However, the kernel sizes of convolutional layers are
slightly changed to match the data size, and more numbers of hid-
den nodes in the FC layers and kernels in the convolutional layers
are employed to reflect the higher complexity of the cross-signal re-
construction and classification task. As the test data is well-balanced
(368 ± 18 sequences for each class), the classification accuracy is
used as the performance measure. The cases of undirected conjunc-
tive information are examined for this experiment due to the exces-
sive computational complexity of the directed cases.

The random forest and k-NN are implemented for comparison,
where the power spectral density of EEG sequences is used as fea-
tures because of the high dimension of the raw EEG signals. The
parameters of the random forest and the k-NN are determined in the
same way to that for the activity recognition.
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Table 4: Network architectures for video classification.

Type Output shape Kernel size

E
1 convolution 2×128×8 1×129
2 convolution 1×1×d 2×128

D
1 dense 256 -
2 linear 384 -

C

1 convolution 32×32×32 3×3
2 convolution 32×32×64 3×3
3 max-pooling 16×16×64 2×2
4 convolution 16×18×128 3×3
5 convolution 16×16×256 3×3
6 max-pooling 8×8×256 2×2
7 dense 256 -
8 softmax 40 -

Table 5: Results of video classification.

Model Accuracy

Baseline

k-NN 0.462
random forest 0.465

GCNN [4] 0.653
ConnCNN-TE [9] 0.554

ConnCNN-PCC [9] 0.677
ConnCNN-PLV [9] 0.731
ConnCNN-all [9] 0.721

Proposed

d = 8 0.929
d = 12 0.979
d = 16 0.952
d = 24 0.935
d = 32 0.930

In adddition, a graph convolutional neural network (GCNN) ap-
proach [4] is compared, which considers the relationship between
sensors to conduct the convolution on graphs. Particularly, the phys-
ical distance between EEG electrodes is employed as the connection
strength between the sensors.

A CNN-based deep learning approach [9] (denoted as ConnCNN)
that utilizes brain connectivity features is also implemented. In this
approach, the handcrafted connectivity metrics are employed to ob-
tain the connectivity matrix that corresponds to R in our proposed
model, then the connectivity matrix is inputted to the CNN classifier.
Bandpass filters are applied to the raw EEG signals to separate sig-
nals into delta, theta, low alpha, high alpha, alpha, low beta, mid beta,
high beta, beta, and gamma frequency bands, and the transfer entropy
(TE), PCC, or PLV is calculated from each pair of the band-limited
EEG signals as connectivity metric values. The obtained connectivity
values are used for constructing the connectivity matrix, which has
a size of 32×32×10 (M ×M×(number of frequency bands)). Fur-
thermore, the case of multiple connectivity features (ConnCNN-all)
is examined by employing the TE, PCC, and PLV at the same time,
for which the TE, PCC, and PLV connectivity matrices are concate-
nated along the depth dimension and thus the size of the connectivity
matrix becomes 32×32×30.

4.3.3 Results

Table 5 shows the classification results. The proposed method re-
sults in the best classification accuracy of 0.979 (for d = 12), out-
performing both the conventional machine learning methods and
the connectivity-based deep learning methods. This demonstrates
that the learned conjunctive information obtained by the proposed
method is more effective than the manually designed connectivity

features. For this case, the running time is measured as 28.69 hours
and 25.09 seconds for training and test, respectively.

The ConnCNN-all scheme is less effective even compared to the
case with a single connectivity metric (i.e., ConnCNN-PLV). This
indicates that the simple combination of multiple handcrafted met-
rics is not effective enough to model various aspects of the relation-
ship between EEG signals. In contrast, the proposed method extracts
extensive relationship between EEG signals from different brain re-
gions effectively based on the data, which results in the outstanding
classification performance.

When the reconstruction branch is omitted in our method, the clas-
sification accuracy drops to 0.938, which shows the importance of the
reconstruction branch as in the case of activity recognition.

Results of the reconstruction are described in Figure 4. The re-
construction errors are shown for the videos that have distinguished
emotional characteristics in terms of the valence and arousal. The va-
lence and arousal scores obtained from the subjects are provided in
the dataset. We select the videos having the highest or lowest valence
or arousal scores. Distinguished variations depending on class (i.e.,
video) are observed, such as the 17th, 20th, 21st, and 22nd sensors
in Figures 4a and 4b (marked by red arrows) and the 5th and 23rd
sensors in Figures 4c and 4d (marked by blue arrows). Those sen-
sors perhaps reflect the emotional responses appearing in the brain
activity.

We employ the t-SNE technique [8] to compare the learned con-
junctive information values and handcrafted connectivity values. The
results are shown in Figure 5, where different colors correspond to
different videos. Figure 5a shows the entire t-SNE results of the con-
junctive information values, where the data points are clustered ac-
cording to subjects on a global scale due to the high dependency of
the EEG signals on subjects. Therefore, the region corresponding to
the data points of subject #17 (marked by a red box in Figure 5a)
is enlarged for better visualization in Figure 5b. Figures 5c-5e are
also obtained in the same way for TE, PCC, and PLV, respectively.
It is apparent that the conjunctive information values are well clus-
tered according to the target class in Figure 5b. In contrast, in Fig-
ures 5c-5e, discriminability between classes is much lowered, which
explains the worse classification accuracies than that of our method.
This demonstrates that our proposed method successfully extracts the
data-driven and target-optimized relationship between signals.

5 Conclusion

We have proposed a deep learning approach to learn the conjunctive
information between signals in multi-sensor systems. The proposed
method has two advantages compared to the conventional hand-
crafted metrics to measure the relationship between signals. First,
our method is applicable to datasets from various domains because it
is a totally data-driven, task-optimized general framework. Second,
our method extracts the comprehensive relationship between signals,
yielding improved performance for the given task, while the hand-
crafted metrics are designed for only specific aspects of the relation-
ship. These advantages were proven by the toy example and two real-
world problems of different domains.

In our future work, the proposed method will be extended to het-
erogeneous multi-sensor systems. The multi-sensor signals consid-
ered in this paper were acquired from the same type of sensors (ac-
celerometers or EEG electrodes). However, different types of sensors
are often utilized in a single multi-sensor system. In such a case, a
mechanism to handle signals of heterogeneous characteristics would
be additionally required.
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Figure 4: Reconstruction errors for emotional video classification depending on emotional characteristics of videos.

(a) conjunctive information (b) conjunctive information of subject #17

(c) TE of subject #17 (d) PCC of subject #17 (e) PLV of subject #17

Figure 5: Results of t-SNE analysis on the conjunctive information obtained by the proposed method and the handcrafted brain connectivites.
Different colors indicate different target classes (i.e., videos).

In this work, we designed our method for systems involving rather
small numbers of sensors, i.e., sensors placed on users’ body for ac-
tivity recognition and those on the scalp for EEG monitoring, which
need to consider wearability and comfortability. In some other cases,
a large number of sensors may be involved, e.g., climate or financial
data, where the complexity to consider all pair-wise combinations
may matter. Considering such applications, future work on enhanc-
ing scalability of the proposed method would be worth investigating.
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