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Abstract. In this paper, we study an information exchange pro-
cess in which a network of individuals exchanges a binary opinion.
In the process, the individuals change their opinions only if a ma-
jority of their neighbours have the opposite opinion and they do it
synchronously. Motivated by applications in multiagent systems, dis-
tributed computing, and social science, our goal is to derive graph-
theoretic features of the network that guarantee whenever a majority
of individuals initially have the same opinion, they will eventually
spread the opinion to all individuals. We tackle the problem by first
introducing a graph-theoretic notion called controlling set which is
capable of characterising the information exchange process and, by
exploiting the notion, we obtain a series of lower and upper bounds
on the in-degree of vertices as well as lower bound on the size of
certain neighbourhoods for guaranteeing the majority to unanimity
behaviour.

1 Introduction

In this paper, we study an information exchange process often re-
ferred to as opinion diffusion [1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 14] in
mutltiagent systems. The process also goes by the name of majority
dynamics in discrete mathematics [3, 18, 20, 21] and general thresh-
old model in social influences [10, 13, 15]. With minor variations,
the primitive form of the process is as follows. For a finite network
of individuals, at time 0, each has an initial opinion of either 1 or
0, then at time t > 1, an individual i changes its opinion only if a
majority of its neighbours have the opposite opinion. Depending on
the problem setting, the individuals update their opinions either syn-
chronously or asynchronously and the network is formalized as an
undirected graph, a directed graph or other specialized graphs such
as expander graph. Since there is a finite number of individuals, the
process will either stabilize where no individual makes any change
to its opinion or run into a cycle where the individuals periodically
change their opinions.

The central problem of this paper is to identify network features
that guarantee an opinion diffusion always stabilizes with all indi-
viduals having 1 (0) as their opinions, whenever a majority of the
individuals initially have the opinion of 1 (resp. 0). That is, to en-
sure the initial majority opinion eventually become the unanimous
opinion. For convenience, we refer to the problem as the majority to
unanimity problem. To be clear, by ‘majority,’ we mean a sufficiently
large proportion of the individuals where the proportion is specified
by the threshold variable T such that 1/2 6 T 6 1. Also, we for-
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malize the network as a directed graph and adopt the synchronous
mode of opinion update.

The majority to unanimity problem arises naturally in many appli-
cation scenarios of multiagent systems, distributed computing, and
social sciences. Whenever majority voting is adopted by a society
to reach a consensus that represents the genuine majority opinion of
the society, such as in a referendum, we need to guarantee the tri-
umph of the initial majority opinion, as in the majority to unanimity
problem. In the realm of discrete mathematics, a good deal of ef-
fort has been made in solving the majority to unanimity problem and
its variants [3, 18, 20, 21]. It is pointed out in [21] that several as-
pects of distributed computing can be formulated as a majority to
unanimity problem. For instance, to alleviate the damage caused by
faulty processors, replicated copies of data are maintained. A simple
majority voting process is performed among the participating pro-
cessors whenever a fault occurs, and the goal is to adopt the initial
value stored at the majority of the processors. The process almost
always restores the correct value of the data, as it is believed that
only a minority of processors can be faulty at any time. For this re-
covery process to work, the structure of the processor network has
to ensure that a majority number of processors always take control
of all processors in the voting process. Finally, the line of works in
social sciences that aims to understand how opinions are formed and
expressed in a social context also benefits from studying the majority
to unanimity problem.

There have been many efforts in the multiagent system commu-
nity to investigate behaviours of opinion diffusion related to the ma-
jority to unanimity problem. For instance, [14] articulates proper-
ties of the aggregation rules and features of the network that lead to
the stabilization and convergence of opinion diffusion. Additionally,
[2] aims to identify conditions for a minority/majority of individu-
als to spread their opinions to the whole population in terms of the
configurations of the initial opinions. In contrast to our setting, they
assume the individuals update their opinions asynchronously. The
discrete mathematics community also investigated issues related to
the majority to unanimity problem. Most noticeably, they study the
extremal combinatorial aspects of opinion diffusion such as to estab-
lish lower bounds for the cardinality of an individual set capable of
controlling the whole population in an opinion diffusion [3, 20, 21].
Moreover [18] tackles the majority to unanimity problem through the
exploration of network structure. They provide several sufficient or
necessary conditions on networks formalized as undirected graphs.
Many results in this paper generalize or strengthen those in [18].

In addressing the majority to unanimity problem, we first intro-
duce a graph-theoretic notion called controlling set which makes the
collective influential power of a set of individuals to another in an
opinion diffusion explicit. Roughly speaking, if a set of individuals
C has a unified opinion and is a controlling set of another set of indi-
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viduals S, then the individuals of C can persuade those of S to agree
with the unified opinion within some predefined rounds of opinion
exchange. As we will show, the controlling relationship specified by
the notion of controlling set fully characterizes the behaviour of opin-
ion diffusion. Because of this, to obtain guaranteeing conditions for
the majority to unanimity problem, instead of dealing with the iter-
ated and dynamic process of opinion diffusion, we only have to look
into the directed graph that formalizes the underlying network. Fol-
lowing this strategy, we derive a series of lower and upper bounds
on the indegree of vertices of the directed graph and lower bound
on the size of some neighbourhoods of the directed graph that form
sufficient and/or necessary conditions for the majority to unanimity
problem.

The formal model of opinion diffusion is presented in the next
section. In Section 3, we introduce the notion of controlling set and
demonstrate its capability of fully characterizing opinion diffusion.
Then Section 4 covers a range of sufficient and/or necessary con-
ditions formalized in graph-theoretic terms for the majority to una-
nimity problem. Finally, we give the related work and conclude the
paper.

2 Opinion Diffusion

Opinion diffusion is a discrete sequence of synchronous opinion ag-
gregation and update among a network of individuals. At any time
t > 1, each individual aggregates the opinions of its influencers at
time t − 1 and update its opinion accordingly. We denote the opin-
ion of individual i at t as Ot

i and the opinion profile at t as the n-
dimensional vector Ot = 〈Ot

1, . . . , O
t
n〉 where n is the number of

individuals in the network.O0
i and O0 denote respectively the initial

opinion of i and the initial opinion profile.
Formally, an opinion diffusion OD = (G, T,O0) consists of a

finite directed graph G, a threshold T , and an initial profile O0. The
directed graph G = (N , E) represents the influence among a set of
individuals whereN = {1, . . . , n} is a set of n vertices representing
the individuals and E ⊆ N × N is a set of edges between pairs of
vertices representing the existence of influence from one individual
to another where (i, j) ∈ E indicates i is an influencer of j. The
threshold T indicates the threshold proportion such that 1/2 6 T <
1. An individual alters its opinion at time t only if the proportion of
its influencers having the opposite opinion at time t − 1 is greater
than T .

We denote the set of individuals that influence individual i as
I−(i) and those influenced by i as I+(i), that is

I−(i) = {j ∈ N | (j, i) ∈ E}

and
I+(i) = {j ∈ N | (i, j) ∈ E}.

By abuse of notation, we write
⋃

i∈S I
+(i) as I+(S) and similarly

for I−(S). Moreover, we denote the indegree of a vertex (i.e., an
individual) i as d(i), hence d(i) = |I−(i)|. Note that, for any set S,
|S| is its cardinality. We may attach subscripts to I−(i) and I+(i) to
denote their subsets and similarly to d(i). For example, given a set
of individuals C, dC(i) = |I−C (i)| = |I−(i) ∩ C|. Finally, given an
opinion profile Ot, we denote the set of individuals whose opinions
are 1 and respectively 0 in Ot as 1Ot and 0Ot . Since 1Ot = N \
0Ot , 1Ot or 0Ot alone uniquely identifies the opinion profile Ot. We
say an opinion profile Ot has a majority opinion if either |1Ot |/n >
T or |0Ot |/n > T , otherwise it has no majority opinion.

The change of an individual’s opinion is governed by the following
update rule:

Ot
i =


1 if d1

Ot−1 (i)/d(i) > T

0 if d0
Ot−1 (i)/d(i) > T

Ot−1
i otherwise

for all i ∈ N and t > 1. That is, an individual changes its opinion
only if the proportion of its influencers having the opposite opinion
exceeds T .

The two most common and indeed fundamental properties of opin-
ion diffusion are stabilization and convergence. We say an opinion
diffusion OD = (G, T,O0) stabilizes at t if Ot = Ot+1 and we
call Ot the stabilized opinion profile. Moreover, if the opinion dif-
fusion stabilizes at t and the stabilized opinion profile is such that
Ot

1 = Ot
2 = · · · = Ot

n, we say the opinion diffusion converges at t.
Figure 1 illustrates an opinion diffusion with T = 1/2 and an

initial opinion profile 〈1, 1, 1, 0, 0, 0, 0〉. Note that, all nodes in the
graph have a self-loop which is omitted for clarity; a cycle involving
two nodes is simplified to a two-way arrow, and a vertex filled by
grey indicates the corresponding individual’s opinion is 1 and oth-
erwise 0. Starting from time 1, each individual updates its opinion
according to the update rule. For example, at time 1, since individual
3 has more than half of its influencers having the opinion of 1, (i.e.,
d1

O0 (3)/d(3) = d{1,2,3}(3)/d(3) = 3/4 > 1/2), the individual
updates its opinion to 1 which happens to be its initial opinion. One
can verify that the opinion diffusion stabilizes and converges at time
2. For this opinion diffusion, starting with the initial majority opinion
of 0, it stabilizes with all individuals having a unanimous opinion of
1. Clearly, this is what we want to avoid for the majority to unanimity
problem. For the ease of presentation, we formalize the property of
opinion diffusion with respect to the majority to unanimity problem
as majority dominating.

Definition 1. An opinion diffusion OD = (G, T,O0) is majority
dominating iff there is a time t such that Ot = 〈1, . . . , 1〉 (Ot =
〈0, . . . , 0〉) whenever |1O0 |/n > T (resp. |0O0 |/n > T ).

That is, an opinion diffusion is majority dominating iff whenever
there is an initial majority opinion the opinion diffusion converges
on it. Recall that |1O0 | is the number of individuals whose initial
opinion is 1, hence |1O0 |/n > T means 1 is the initial majority
opinion. The opinion diffusion in Figure 1 is not majority dominat-
ing, because, although it converges, the opinion that everyone has
at convergence (i.e., 1) is different from the initial majority opinion
(i.e., 0).

Before ending this section, we give the complexity result for deter-
mining whether an opinion diffusion is stabilizable, convergent, and
majority dominating respectively.

Proposition 1. It is PSPACE-complete to determine whether a given
opinion diffusion is stabilizable, convergent, and majority dominat-
ing respectively.

Proof. The membership is trivial for all the desired cases. Here we
only consider the hardness. The PSPACE-hardness of stabilizabil-
ity immediately follows from Theorem 1 in [6] which asserts that
deciding whether a given opinion diffusion with threshold 1/2 is
stabilizable is PSPACE-complete. Below we show how to prove the
PSPACE-hardness of majority dominating. Note that the case of con-
vergence can be proved by almost the same argument.

The general idea is to reduce the problem of checking whether a
given polynomial space-bounded Turing machine halts to our prob-
lem (i.e., checking whether a given opinion diffusion is majority

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



1 3 2

6 5 4

7

time 0

1 3 2

6 5 4

7

time 1

1 3 2

6 5 4

7

time 2

Figure 1. An opinion diffusion with O0 = 〈1, 1, 1, 0, 0, 0, 0〉 and
T = 1/2.

dominating). With this reduction, as the former problem was proved
to be PSPACE-hard (see Theorem 19.9 in [19] and the proof of The-
orem 1 in [6]), we thus obtain the desired hardness.

Now it remains to implement the reduction. Given any polynomial
space-bounded Turing machine M , we assume, w.l.o.g., that M has
only one halting state h, represented by a binary string “11 . . . 1” of
an even length 2k; and assume each of the other states ofM is repre-
sented by a binary string of length 2k in which the number of ‘0’ is
the same as that of ‘1’. By the approach proposed in [6], one can con-
struct an opinion diffusion ODM (with threshold 1/2) to simulates
M . W.l.o.g., suppose (x1, y1), . . . , (x2k, y2k) are the dual pairs in
ODM that encode the current state of M . Keep in mind that, in the
binary representation of each state, ‘0’ is encoded by the dual pair
(0, 1), and ‘1’ by (1, 0). Let n be the number of vertices in ODM ,
and letm be the least integer that is not less than n/2. Now we define
a new opinion diffusion OD′M , obtained from ODM by

1. adding fresh vertices v1, . . . , v2m into OD′M , setting the initial
opinion of v1, . . . , vm to be 1, and setting the initial opinion of
vm+1, . . . , v2m to be 0;

2. adding fresh vertices u1, . . . , u4m+1 into OD′M , and setting the
initial opinion of u1, . . . , u4m+1 to be 1.

3. for each i ∈ {1, . . . , 2m}, adding edges (x1, vi), . . . , (x2k, vi)
into OD′M .

4. for each vertex v in ODM , adding edges (v1, v), . . . , (v2m, v)
into OD′M .

Intuitively, vertices v1, . . . , v2m and related edges are used to
check whether M halts; if true, then change their opinion to 1; by
applying the diffusion, the opinion of any other vertex in OD′M will
be changed to 1. Vertices u1, . . . , u4m+1 are introduced to assure
that more than one half of vertices in O′M hold the initial opinion 1.

Clearly, the size of OD′M is still polynomial w.r.t. the size of M .
It is also not difficult to see that M halts iff OD′M is majority domi-
nating. These then prove the correctness of the reduction.

The PSPACE-hardness indicates that, unless PTIME = PSPACE, it
is impossible to identify features of a directed graph that character-
ize majority dominating opinion diffusion and are tractable to verify.
The result sets the tone for our exploration of the majority to una-
nimity problem in which we aim for intuitively appealing and simple
features of a directed graph that ensure majority dominating over
some typical instances of opinion diffusion, and necessary (but not
sufficient) features over all instances of opinion diffusion.

3 Controlling Set and Opinion Diffusion
In this section, we first introduce a graph-theoretic notion called con-
trolling set, then we derive some of its important properties, and fi-
nally, we demonstrate its capability of fully characterizing the be-
haviour of opinion diffusion, which paves the way for obtaining net-
work features that are sufficient or necessary for the majority dom-
inating property of opinion diffusion. The notion of controlling set
is not entirely new. For instance, the main idea behind it has been
discussed in [9] which gives rise to the notions of winning and veto
coalitions and dependency sequence. Apart from slight variations in
the problem setting, the notions are essentially the same as that of
controlling set. The difference is that, in this paper, we give a more
comprehensive and systematic treatment of the properties of the no-
tion, the intuitions behind it, and special classes of it. Also, while [9]
uses the notion to form conditions for the stabilization of an opinion
diffusion, we use it for the majority dominating property.

Lies in the heart of an opinion diffusion is the back and forth of
groups of individuals gaining control of the opinions of each other.
With controlling set, we intend to capture the controlling relation-
ship between groups of individuals in terms of the structure of the
underlying network. More precisely, given two sets of individuals C
and S, the controlling relationship between C and S should imply
the following: if, at some time point, individuals of C all have 1 (0)
as their opinions, then, at some later time point, the individuals of C
and S all have 1 (resp. 0) as their opinions. Essentially, the defini-
tion of controlling set is a reinterpretation of the update rule through
graph-theoretic notions. For convenience, unless stated otherwise, in
the remaining of the paper, the letters C, S,R denote a subset of N .
We define that C is a level 1 controlling set for S with respect to a
threshold T , iff for any individual i of S, the proportion of incoming
edges from C is greater than T when i is not in C and is no less than
1− T when i is in C. Generalizing to arbitrary levels, C is a level k
controlling set for S, iff there is a sequence of k + 1 sets that starts
with C and ends with S such that any set in the sequence is a level 1
controlling set for the next one in the sequence. We say C controls S
if there is a k such that C is a level k controlling set for S.

Definition 2. The set of level k controlling sets for S with respect to
a threshold T , denoted as CkT (S), is such that C ∈ C1T (S) iff

1. dC(i)/d(i) > T for i ∈ S \ C, and

2. dC(i)/d(i) > 1− T for i ∈ S ∩ C.

For k > 2, C ∈ CkT (S) iff there are C0, C1, . . . , Ck such that C0 =
C, Ck = S and Ci ∈ C1T (Ci+1) for 0 6 i 6 k − 1.

Condition 1 takes care of the case where i of S is not in C, which
means i may hold the opposite opinion than the unified opinion of
C. Thus to ensure it will change its opinion to the unified opinion
of C, the proportion of its influencers in C has to be higher than T .
Condition 2 takes care of the case where i is inC. Since the notion of
controlling set is intended solely for situations when all individuals
ofC have the same opinion, we only need to ensure i does not change
its opinion which means the proportion of its influencers outside C
has to be less than T , or equivalently, the proportion of its influencers
in C is greater than or equal to 1− T .

Let’s illustrate the definition with the opinion diffusion in Figure 1.
Taking individual 4 as an example, since

d(4) = |I−(4)| = |{1, 2, 3, 4, 5}| = 5

and

d{1,2,3}(4) = |I−{1,2,3}(4)| = |I
−(4) ∩ {1, 2, 3}| = |{1, 2, 3}| = 3
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we have d{1,2,3}(4)/d(4) = 3/5 > 1/2 which means {1, 2, 3} ∈
C11/2({4}). For other individuals, since d{1,2,3}(3)/d(3) = 3/4 >
1/2, d{1,2,3}(5)/d(5) = 3/4 > 1/2, and d{1,2,3}(6)/d(6) =
2/3 > 1/2, we have {1, 2, 3} ∈ C11/2({3, 4, 5, 6}). One can also
verify that {3, 4, 5, 6} ∈ C11/2({1, 2, 3, 4, 5, 6, 7}) which implies
{1, 2, 3} ∈ C21/2({1, 2, 3, 4, 5, 6, 7}), that is {1, 2, 3} is a level 2
controlling set forN .

We first derive some basic properties of controlling set. Sum-
marised in Lemma 1, the relationship induced by controlling set is
“monotonic” that if C controls S with respect to a threshold T , then
this also holds for any subset of S (point 1), any superset of C (point
2), and any smaller threshold than T (point 3). It is “additive” that C
is a level k controlling set for S which is a level l controlling set for
R implies C is a level k+ l controlling set for R (point 4). Finally, it
is “exclusive” that non-overlapping sets cannot control the same set
(point 5).

Lemma 1. Let C,R, S be sets of individuals. Then the following
holds:

1. if C ∈ CkT (S) and R ⊂ S, then C ∈ CkT (R);
2. if C ∈ CkT (S) and C ⊂ R, then R ∈ CkT (S);
3. if T > T ′ and C ∈ CkT (S), then C ∈ CkT ′(S);
4. if C ∈ CkT (S) and S ∈ ClT (R), then C ∈ Ck+l

T (R);

5. if C,R ∈ CkT (S), then C ∩R 6= ∅;

Proof. We only provide the proof for point 5 as the rest follow im-
mediately from Definition 2.

Point 5: Let A,B ⊆ N and A ∩ B = ∅. For all i ∈ N , A ∈
C1T (i) implies dA(i)/d(i) = |I−(i)∩A|/d(i) > T . It follows from
|I−(i) ∩ A|/d(i) > T that |I−(i) \ (I−(i) ∩ A)|/d(i) < 1 − T .
Then as (I−(i)∩B) ⊆ (I−(i)\(I−(i)∩A)) follows fromA∩B =
∅, we have dB(i)/d(i) = |I−(i) ∩ B|/d(i) 6 |I−(i) \ (I−(i) ∩
A)|/d(i) < 1− T which means B 6∈ C1T (i). Hence, for all A,B ⊆
N , A ∩ B = ∅ implies there is no i ∈ N such that A ∈ C1T (i) and
B ∈ C1T (i).

Suppose C,R ∈ CkT (S). Then there are sequences
C0, C1, . . . , Ck and R0, R1, . . . , Rk such that C0 = C, R0 = R,
Ck = Rk = S, and Ci ∈ C1T (Ci+1), Ri ∈ C1T (Ci+1) for
0 6 i 6 k − 1. Let’s assume C ∩ R = ∅. Then according to the
above result, Ri ∩ Ci = ∅ for 1 6 i 6 k, which is a contradiction.
Hence C ∩R 6= ∅.

Let C be a level k controlling set for S. Inspired by the mono-
tonicity of the controlling relationship, it is natural to ask if S is the
maximal set that C controls.4 This leads to the notion of maximal
controlling sets.

Definition 3. The set of maximal level k controlling sets for S with
respect to T , denoted as MCkT (S), is such that C ∈ MCkT (S) iff
C ∈ CkT (S) and there is no R ⊃ S such that C ∈ CkT (R).

While there can be many maximal level k controlling sets for a given
set, every set can be a maximal level k controlling set for exactly one
set. In Figure 1, {1, 2, 3} is an maximal level 1 controlling set for
{3, 4, 5, 6}. Note that any set that controls N is trivially a maximal
controlling set for N as there is no set larger than N . With this no-
tion of maximality, we can derive that the controlling relationship is

4 It is also natural to ask if C is the minimal set that controls S. The notion
however is irrelevant to the main results of this paper.

“complementary” that for any individual i ∈ N , if a set C does not
control it, the complement of C (with respect toN ) does.

Lemma 2. Let C ⊆ N and i ∈ N . If C 6∈ CkT ({i}), then N \ C ∈
CkT ({i}).

Proof. Let S ⊆ N . We first show that, if S 6∈ C1T ({i}), thenN\S ∈
C1T ({i}). There are two cases.

Case 1, i ∈ S: Then i 6∈ N \ S. Also, by Definition 2,
dS(i)/d(i) = |I−(i) ∩ S|/d(i) < 1 − T which implies |I−(i) \
(I−(i) ∩ S)|/d(i) > T . Then since I−(i) \ (I−(i) ∩ S) =
I−(i)∩(N\S), we have |I−(i)∩(N\S)|/d(i) = dN\S/d(i) > T .
Hence, by Definition 2,N \ S ∈ C1T ({i}).

Case 2, i 6∈ S: Then i ∈ N \ S. Also, by Definition 2,
dS(i)/d(i) = |I−(i)∩S|/d(i) 6 T which implies |I−(i)\(I−(i)∩
S)|/d(i) > 1−T . Then since I−(i)\(I−(i)∩S) = I−(i)∩(N\S),
we have |I−(i)∩ (N \ S)|/d(i) = dN\S/d(i) > 1− T . Hence, by
Definition 2,N \ S ∈ C1T ({i}).

Thus, we have proved the above claim.
Now suppose C 6∈ CkT ({i}). Let C ∈ MCkT ({Ck}) (Note that

such Ck always exists.). It follows from C ∈ MCkT ({Ck}) that
there is a sequence C0, C1, . . . , Ck such that C = C0 and Ci ∈
MC1T (Ci+1) for 0 6 i 6 k − 1. Thus i 6∈ Ck and by Definition 3
Ci−1 6∈ C1T ({j}) for all j ∈ N \ Ci and 0 6 i 6 k − 1. It then
follows from the above claim that N \ Ci ∈ MC1T (N \ Ci+1) for
0 6 i 6 k−1 which impliesN\C ∈ CkT (N\Ck). Since i ∈ N\Ck,
we haveN \ C ∈ CkT ({i}).

An easy consequence of the complementary property is that S is a
maximal level k controlling set forR iff their complements also form
such an relationship.

Corollary 1. Let S,R ⊆ N . Then S ∈ MCkT (R) iff N \ S ∈
MCkT (N \R) for all k.

Therefore, for the opinion diffusion in Figure 1, it follows from
{1, 2, 3} ∈ MC11/2({3, 4, 5, 6}) that {4, 5, 6} ∈ C11/2({1, 2, 7}).

An interesting special case of the controlling relationship is for a
set to control itself. With the notion of maximal controlling set, we
can capture such self controlling sets more concisely.

Definition 4. Let S ⊆ N . Then S is a self controlling set if
S ∈ MCk(S) for some k. Furthermore, S is a resistant set if
S ∈MC1T (S).

Note that N is trivially a self controlling as well as a resistant set. A
crucial property of a self controlling set is that it cannot control N ,
unless it is itselfN .

Lemma 3. Let S ⊂ N . If S is a self controlling set, then S 6∈
CkT (N ) for all k.

Proof. Suppose S is a self controlling set. Then S ∈ MCtT (S) for
some t. Let’s assume S ∈ CkT (N ) for some k. Then there are two
cases.

Case 1, k 6 t: Since N ∈ ClT (N ) for all l, it follows from S ∈
CkT (N ) and Lemma 1 (point 4) that S ∈ CtT (N ). But S ∈MCtT (S)
and S ⊂ N , so we have a contradiction.

Case 2, k > t: Then S ∈ CkT (N ) implies there is a sequence
S0, S1, . . . , St, . . . Sk such that S = S0, Sk = N , and Si ∈
C1T (Si+1) for 0 6 i 6 k − 1. Since S ∈ MCtT (S), we have
St ⊆ S. It then follows from Lemma 1 (point 2) that S ∈ Ck−t

T (N ).
If k−t 6 t, then we have a contradiction as in Case 1. Otherwise, we
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can keep repeating the above steps to obtain S ∈ ClT (N ) for some
l 6 t.

Since both cases lead to contradiction, we conclude that S 6∈
CkT (N ) for all k.

Consequently, a self controlling set is able to “block” all other sets
from controlling N , except for N itself. That is, unless R is N , R
cannot control N whenever R is a maximal controlling set for a self
controlling set. The blocking behaviour turns out to be the corner-
stone for several main results in the paper.

Lemma 4. Let R,S ⊂ N . If S is a self controlling set and R ∈
MCtT (S) for some t, then R 6∈ CkT (N ) for all k.

Now let’s turns our attention to the most “resistant” kind of self con-
trolling set—the resistant set. We can show that a resistant set can
never be controlled by individuals outside the resistant set.

Lemma 5. Let S ⊂ N . If S is a resistant set, then N \ S 6∈ CkT (S)
for all k.

Proof. Suppose S is a resistant set. Thus we have S ∈ MC1T (S).
It then follows from Lemma 1 (point 4) and Definition 3 that S ∈
MCkT (S) for all k. Since S ∈ MCkT (S) for all k, it follows from
Corolloary 1 that N \ S ∈ MCkT (N \ S) for all k which means
N \ S 6∈ CkT (S) for all k.

So far we have defined and explored controlling sets purely as
a graph-theoretic notion. It’s time to see how it relates and charac-
terizes opinion diffusion. Actually, for an opinion diffusion OD =
(G, T,O0), any pair of sets in the sequence 1O0 ,1O1 , . . . ,1Ot form
a maximal controlling set relationship. Recall that 1Oi uniquely de-
termines the opinion profile Oi.

Proposition 2. For an opinion diffusion OD = (G, T,O0),

1Ok ∈MCt−k
T (1Ot)

for all t > k.

Proof. By Lemma 1 (point 4), it suffices to show 1Ok ∈
MC1T (1Ok+1). It is clear from Definition 2 and the update rule
that 1Ok ∈ C1T (1Ok+1). Suppose i 6∈ 1Ok+1 , then Ok+1 = 0.
Then it follows from the update rule that either d1

Ok (i)/d(i) 6 T
when i 6∈ 1Ok or d1

Ok (i)/d(i) < 1 − T when i ∈ 1Ok .
Then we have by Definition 2 that 1Ok ∈ C1T ({i}) which means
1Ok ∈MC1T (1Ok+1).

An opinion diffusion stabilizes if it gets into an opinion profile Ot

and sticks with it. According to Proposition 2 this happens only if
1Ot is a resistant set. Furthermore, if the resistant set 1Ot isN , then
the opinion diffusion also converges at t. That is, an opinion diffusion
OD = (G, T,O0) stabilizes at t iff there is S ⊆ N (denoting the
set 1Ot ) such that S is a resistant set and either 1O0 or 0O0 controls
S; and the opinion diffusion converges at t iff either 1O0 or 0O0

controls N . Generalizing to arbitrary initial profiles, we obtain the
following conditions for the stabilization and convergence of opinion
diffusion.

Proposition 3. OD = (G, T,O0) stabilizes for all O0 iff for all
C ⊆ N , there is S ⊆ N such that S is a resistant set and either
C ∈MCkT (S) orN \ C ∈MCkT (S) for some k
OD = (G, T,O0) converges for all O0 iff for all C ⊆ N , either

C ∈MCkT (N ) orN \ C ∈MCkT (N ) for some k.

Note that the setC in Proposition 3 is intended to denote the set 1O0 .
We have completed our exploration of controlling set. Apart from

clarifying various aspects of the opinion diffusion process, it allows
us to investigate the process through static and pure graph-theoretic
terms without the need to deal with the iterated and dynamical nature
of opinion diffusion.

4 Guaranteeing Majority Dominating
In this section, we identify features of directed graphs that lead to
majority dominating opinion diffusion. Due to the PSPACE hardness,
we cannot expect to obtain sufficient and necessary features that are
easy to verify and generalize to all instances of opinion diffusion.
Our goal is instead to identify intuitively appealing and simple ma-
jority dominating features for typical instances of opinion diffusion.
We first characterize majority dominating opinion diffusions through
controlling set and then infer their implication to the indegree and/or
neighbourhood of the vertices as well as the existence of some con-
trolling relationships. As a complement to the majority to unanimity
problem, we also discuss opinion diffusion for which the initial opin-
ion profile is without a majority opinion.

Following the characterization of convergence, to ensure major-
ity dominating for all initial profiles, we need all sets of individuals
with cardinality greater than n · T (i.e., denoting the initial majority
opinion) to controlN .

Proposition 4. OD = (G, T,O0) is majority dominating for all O0

iff for all S ⊆ N with |S| > n · T , S ∈ CkT (N ) for some k.

According to the characterisation, to ensure majority dominating, it
suffices to identity features that guarantee any set of individuals with
cardinality greater than n · T controls N . We can derive an equiva-
lent formulation for such controlling relationships which reveals two
important intuitions for majority dominating. That is, firstly, any set
of individuals with cardinality greater than n·T and those maximally
controlled by one such set cannot be a self controlling set and, sec-
ondly, any set of individuals with cardinality less than n · (1 − T )
cannot control a set with cardinality greater than n · T .

Proposition 5. For all S ⊆ N with |S| > n · T , S ∈ CkT (N ) for
some k iff

1. if |S| > n · T or there is R such that |R| > n · T and
R ∈ MCk(S) for some k, then S is not a self controlling
set; and

2. if |R| < n ·(1−T ) and |S| > n ·T , thenR does not control
S.

Proof. ⇒: Suppose for all S with |S| > n · T , S controls N . For
condition 1, it follow from Lemma 4 (point 2) that we have a contra-
diction if S is a self controlling set. For condition 2, assume to the
contrary thatR controls S. Since |S| > n ·T , S controlsN . Then as
R controls S, it follows from Lemma 1 (point 4) that R controls N .
Since R controls N , it follows from Lemma 1 (point 5) that N \ R
does not controlN . As |N \R| = n−|R| > n−n ·(1−T ) = n ·T ,
it follows from the premises that N \ R controls N . So we have a
contradiction.
⇐: We prove the contrapositive, that is if there is S such that |S| >

n ·T and S does not controlN , then either condition 1 or condition 2
is violated. Since there is a finite number of individuals, the sequence
S,C1, C2, . . . where S ∈ MC1(C1) and Ci ∈ MC1(Ci+1) for all
i > 1 either runs into a cycle or end with some Ck = ∅ which
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does not control any individual. In the former case, since S does
not controlN , S controls some R ⊂ N that is a self controlling set,
which violates condition 1. In the latter case, since S ∈MCk(∅) and
N \ ∅ = N , it follows from Corollary 1 that N \ S ∈ MCk(N ).
Then since |S| > n · T implies |N/S| < n · (1− T ), condition 2 is
violated.

For condition 1, according to Lemma 4, self controlling sets have
the effect of blocking control over N . Therefore, we cannot bear to
have too many self controlling sets if the goal is to gain control over
N . For condition 2, it shows that there cannot be any switch of the
majority opinion if (G, T,O0) is majority dominating for all O0.
That is, if the initial majority opinion is 1, then any of the subsequent
opinion profiles cannot have a majority opinion of 0.

Next, we give an implication of the characterising controlling rela-
tionship, which reveals the lower bound on the size of some “neigh-
bourhood.” The closer T is to 1/2, the more informative the condi-
tion is.

Proposition 6. If for all S ⊆ N with |S| > n · T , S ∈ CkT (N ) for
some k, then

|I−(S) ∪ I+(S) ∪ I−(I+(S))| > n · T

for all S such that i, j ∈ S implies I+(i) ∩ I+(j) = ∅ and I−(i) ∩
I−(j) = ∅, and |S| > 2n · T − n + 1 for when n · T is an integer,
and |S| > 2dn · T e − n otherwise.

Proof. Suppose S controls N for all S with |S| > n · T . Then
there is R such that S ∈ C1(R) and R controls N . It follows from
Proposition 5 (condition 1) that d(i) > 1/(1 − T ) for all i ∈ N .
Note that if d(i) 6 1/(1− T ), then {i} is a resistant set. Assume to
the contrary that |I−(S) ∪ I+(S) ∪ I+(I+(S))| 6 n · T . Suppose
n · T is an integer. Let A ⊆ N be such that |A| = n · T + 1 and
I−(S) ∪ I+(S) ∪ I+(I+(S)) ⊆ A. We will show A \ S ∈ C1(R).
Let j ∈ R. There are three cases.

Case 1, j 6∈ I+(S): then dA\S(j) = dA(j) which means A \S ∈
C1({j}).

Case 2, j ∈ I+(S)\S: Then it follows from I−(I+(S)) ⊆ A that
dA(j) = d(j). Then since, for all i, j ∈ S, I+(i) ∩ I+(j) = ∅, we
have dA\S(j) = dA(j)− 1. It then follows from d(i) > 1/(1− T )
for all i ∈ N that dA\S(j)/d(j) = (dA(j) − 1)/d(j) = 1 −
1/d(j) > 1− 1/(1/(1− T )) = T . Hence A \ S ∈ C1({j}).

Case 3, j ∈ S: Then it follows from I−(S) ⊆ A that dA(j) =
d(j). Then since, for all i, j ∈ S, I−(i) ∩ I−(j) = ∅, we have
dA\S(j) = dA(j) − 1. It then follows from d(i) > 1/(1 − T ) for
all i ∈ N that dA\S(j)/d(j) = (dA(j)− 1)/d(j) = 1− 1/d(j) >
1− 1/(1/(1− T )) = T . Hence A \ S ∈ C1({j}).

Therefore, A \ S ∈ C1(R) and it follows from Lemma 1 (point
4) that A \ S controls N . Since |S| > 2n · T − n + 1, |A \ S| <
n · T + 1 − (2n · T − n + 1) = n · (1 − T ). Then according to
Proposition 5 (condition 2), we have a contradiction.

The proof is similar for when n · T is not an integer.

The condition states that for any set S with certain lower bound of
cardinality where all its individuals do not influence or are influenced
by the same individual, its close neighbourhood occupies a majority
of vertices. The intuition for the lower bound of cardinality is that (for
the case when n · T is an integer, and the other case is similar) it is
the number of vertices that needs to be taken away to turn a set with a
majority number (i.e., n · T +1) of vertices into one with a minority

number (i.e., n · (1 − T )) of vertices. The close neighbourhood is
formed to make sure the removal of all vertices in S does not affect
what the neighbourhood controls when the size of the neighbourhood
is less than n · T . Note that as T gets closer to 1/2, the lower bound
of cardinality gets smaller. Hence we have an indication of the size
of the close neighbourhood of a relatively smaller set of vertices. If
T is exactly 1/2 and n is odd, then the lower bound is 1. Thus we
can derive that the close neighbourhood of a single vertex already
occupies the majority of vertices. This means, for this threshold, the
directed graphs that guarantee majority dominating opinion diffusion
have to be very dense.

Furthermore, we characterize majority dominating opinion diffu-
sion that stabilizes at time 1, because, in many real-time applications,
the rapid convergence of an opinion diffusion is imperative. As a par-
ticular case for Proposition 4, we have that opinion diffusion is ma-
jority dominating and stabilizes at time 1 for all initial profiles iff for
all S ⊆ N with cardinality greater than n·T it is a level 1 controlling
set for N . We can show that, for this to happen, the indegree of all
vertices has to be greater than n−1/(1−T ) when n ·T is an integer
and otherwise greater than (n− dn · T e)/(1− T ).

Proposition 7. OD = (G, T,O0) is majority dominating for all O0

and stabilizes at time 1, iff

d(i) > n− 1/(1− T )

when n · T is an integer, otherwise

d(i) > (n− dn · T e)/(1− T ).

for all i ∈ N .

Proof. ⇒: Suppose S ∈ C1(N ) for all S with |S| > n · T . That is,
if i ∈ N and |S| > n · T then dS(i)/d(i) > T when i ∈ N \ S and
dS(i)/d(i) > 1− T otherwise.

Let i ∈ N . If d(i) < n · (1 − T ), then there is S ⊂ N such
that S ∩ I−(i) = ∅ which means dS(i)/d(i) = 0. Hence we have
d(i) > n · (1− T ). There are two cases.

Case 1, n · T is an integer: Then there is S ⊂ N such that |S| =
n · T + 1, N \ I−(i) ⊂ S, and i ∈ N \ S. Thus dS(i) = |S| −
|N \ I−(i)| = n · T + 1 − n + d(i). Since dS(i)/d(i) > T ,
(n·T+1−n+d(i))/d(i) > T which implies d(i) > n−1/(1−T ).

Case 2, n · T is not an integer: Then there is S ⊂ N such that
|S| = dn · T e, N \ I−(i) ⊂ S, and i ∈ N \ S. Thus dS(i) =
|S| − |N \ I−(i)| = dn · T e − n + d(i). Since dS(i)/d(i) > T ,
(dn · T e − n + d(i))/d(i) > T which implies d(i) > (n − dn ·
T e)/(1− T ).
⇐: Suppose, for all i ∈ N , d(i) > n−1/(1−T ) when n·(1−T )

is an integer and d(i) > (n− dn · T e)/(1− T ) otherwise. So there
are two cases:

Case 1, n · T is an integer: Due to Lemma 1 (point 2), it suffices
to show for all S ⊂ N with |S| = n · T + 1, S ∈ C1(N ), that is
dS(i)/d(i) > T if i ∈ N \ S and dS(i)/d(i) > 1 − T otherwise.
Let S ⊂ N , |S| = n · T + 1, and i ∈ N . Then since dS(i) >
|S|− |N \I−(i)| = n ·T +1−n+d(i), dS(i)/d(i) > (n ·T +1−
n+d(i))/d(i) = (n·T+1−n)/d(i)+1 = 1−(n−n·T−1)/d(i) >
1− (n− n · T − 1)/(n− 1/(1− T )) = T .

Case 2, n·T is not an integer: Due to Lemma 1 (point 2), it suffices
to show for all S ⊂ N with |S| = dn ·T e, S ∈ C1(N ). Let S ⊂ N ,
|S| = dn · T e, and i ∈ N . Then since dS(i) > |S| − |N \ I−(i)| =
dn · T e − n + d(i), dS(i)/d(i) > (dn · T e − n + d(i))/d(i) =
(dn · T e − n)/d(i) + 1 = 1− (n− dn · T e)/d(i) > 1− (n− dn ·
T e)/(n− dn · T e)/(1− T ) = T .
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Proposition 7 confirms that we can characterize the one-step conver-
gence of majority dominating opinion diffusion through bounding
the indegree of vertices. For illustration, let T be 1/2. Then the inde-
gree of an vertex has to be greater than n− 2 if n is even and greater
than n − 1 if n is odd. In other words, an vertex can only tolerate
one missing incoming edge if n is even and if n is odd, it cannot
tolerate any missing incoming edge, that is the directed graph has to
be complete.

So far our focus has been on lifting the initial majority opinion to
the unanimous opinion. But what if there is no majority opinion to
begin with? Majority dominating rules out the possibility of an ini-
tial minority opinion becoming the unanimous opinion, but nothing
is said about those without a majority opinion. For the rest of this
section, we look into such opinion diffusions.

Since, in an opinion diffusion, the individuals aggregate their opin-
ions through majority voting, if there is no majority opinion to begin
with, one of the most sensible thing to do is for them to hold on to
their initial opinions. That is an opinion diffusion stabilizes and the
stabilized opinion profile is the initial one, whenever there is no ini-
tial majority opinion. For the ease of presentation, we denote such
property of opinion diffusion as tie preserving.

It is not hard to see that, an opinion diffusion is tie preserving iff
it stabilizes at time 0. It then follows from Lemma 5 that ensuring
tie preserving is the same as ensuring 1O0 or 0O0 is a resistant set
(which prevents any change to the initial profile). Hence, we have the
following characterization in which the cardinality constraint dictates
that the set S (denoting 1O0 or 0O0 ) neither form a majority nor a
minority ofN .

Proposition 8. OD = (G, T,O0) is tie preserving for all O0 iff S
is a resistant set for all S ⊆ N with n · (1− T ) 6 |S| 6 n · T .

By taking advantage of the properties of resistant set we can also
characterize tie preserving by bounding the indegree of vertices. That
is the indegree of all vertices has to be either no more than 1/(1−T )
or no less than bn · T c/T .

Proposition 9. S is a resistant set for all S ⊆ N with n · (1−T ) 6
|S| 6 n · T iff either d(i) 6 1/(1− T ) or d(i) > bn · T c/T for all
i ∈ N .

Proof. ⇐: Suppose, for all i ∈ N , either d(i) 6 1/(1 − T ) or
d(i) > bn · T c/T . We first show that for all S with n · (1 − T ) 6
|S| 6 n · T , dS(i)/d(i) 6 T for all i ∈ N \ S. Let S be such that
n · (1− T ) 6 |S| 6 n · T , and i ∈ N \S. Then there are two cases.

Case 1, d(i) 6 1/(1−T ): Then dS(i)/d(i) 6 (d(i)−1)/d(i) =
1− 1/d(i) 6 1− 1/(1/(1− T )) = T .

Case 2, d(i) > bn · T c/T : Then, since |S| 6 n · T , we have
dS(i)/d(i) 6 bn · T c/d(i) 6 bn · T c/(bn · T c/T ) = T .

Now let S be such that n · (1− T ) 6 |S| 6 n · T . Then n · (1−
T ) 6 |N \ S| 6 n · T . By the above result dN\S(i)/d(i) 6 T for
all i ∈ S. Since d(i) = dN\S(i) + dS(i), we have dS(i)/d(i) =
(d(i) − dN\S(i))/d(i) = 1 − dN\S(i)/d(i) > 1 − T . Moreover,
by the above result, dS(i)/d(i) 6 T for all i ∈ N \ S. Therefore S
is a resistant set.
⇒: Suppose for all S with n · (1 − T ) 6 |S| 6 n · T , S is a

resistant set. This means for all i ∈ N \ S, dS(i)/d(i) 6 T for all
such S. Let i ∈ N . Then there are two cases.

Case 1, d(i) 6 n·T : Then there is S ⊆ N such that |S| = bn·T c,
i 6∈ S, and I−(i) \ {i} ⊆ S, which implies dS(i) = d(i) − 1 and
dS(i)/d(i) 6 T . It follows from dS(i) = d(i)−1 and dS(i)/d(i) 6
T that d(i) 6 1/(1− T ).

Case 2, d(i) > n · T : Then there is S such that |S| = bn · T c,
i 6∈ S, and S ⊆ I−(i) which implies dS(i) = |S| = bn · T c and
dS(i)/d(i) 6 T . It follows from dS(i) = bn · T c and dS(i)/d(i) 6
T that d(i) > bn · T c/T .

For illustration, let the threshold be 1/2. Then the indegree of all
vertices has to be either no more than 2 or no less than n (n− 1) if n
is odd (resp. even). In other words, for any individual, either almost
no other individuals influence it or almost all the other individuals
influence it.

5 Related Work

Traditionally, the process of information exchange among a net-
work of individuals are studied in economics and social sciences
[16] for which many formal models such as the DeGroot model
[10] and the threshold model [15] are proposed. In artificial in-
telligence the process has been investigated from the standpoints
of belief revision and merging [22, 23, 7, 8, 24], reasoning about
knowledge and belief [17], and more intensitively multiagent sys-
tems [1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 14].

The current work is mostly inspired by the recent endeavours in
multiagent systems on opinion diffusion and in particular those of
[4, 9, 14]. [14] works with a version of opinion diffusion in which
the individuals may apply different methods in aggregating opinions
on multiple issues. Most significantly, they show that if the underly-
ing network is without a cycle (excluding self-loop) and every indi-
vidual’s aggregation method satisfies a monotonicity property, then
the opinion diffusion converges w.r.t. all initial opinion profiles. Fur-
thermore, they show that in the case that the individuals follow the
majority rule in aggregating opinions, then convergence can also be
guaranteed with cycles in the underlying network, provided that the
cycles are vertex-disjoint, and all their nodes have an even number
of incoming edges. [4] extends the work by applying various forms
of constraints on the possible opinion profiles. With a similar setting,
[9] emphases on stabilisation. They propose to characterize opinion
diffusion from a modal logic perspective and form several stabiliza-
tion conditions in terms of properties of wining and veto coalitions
that can be expressed in the modal logic of µ-calculus.

The current work also finds connections in discrete mathematics
[3, 18, 20, 21]. These works assume a network of individuals formal-
ized as an undirected graph, and tries to identify a subset of individu-
als that can force all individuals to have the same opinion as theirs in
an opinion diffusion. They call such subsets of individuals dynamic
monopolies which are the sets that control N in our terminology.
Many efforts have been given to construct graphs which contain a
small dynamic monopoly and to establish lower bound on the size of
dynamic monopolies. For instance, [3] proves that for every n, there
exist a graph with at least n vertices containing a dynamic monopoly
of size 18.

The current work is most closely related to that of [18] which iden-
tifies graphs that ensure majority dominating opinion diffusion and
they call such a graph majority consensus computer. Assuming undi-
rected graphs and a fixed threshold of 1/2, they provide a variety of
results including that the diameter of a majority consensus computer
is less than four, has a trivial min-cut and a non-unique max-cut.
Since we work with directed graphs and arbitrary threshold, some of
our results generalize theirs (i.e., Proposition 6).
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6 Conclusion
In this paper, we motivated, formalized and studied the majority to
unanimity problem of opinion diffusion. We first gave a thorough
investigation on the notion of controlling set which is proven to be
useful in deriving network features that lead to various desirable be-
haviours of opinion diffusion. By exploiting the notion of controlling
set, we articulated conditions for guaranteeing the majority dominat-
ing property through bounding indegree of vertices and the size of
some neighbourhoods. For future work, we plan to generalize our re-
sults to the asynchronous mode of opinion update and multiple issues
with constraints on the possible opinion profiles.
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