
Dynamic Thresholding
for Learning Sparse Neural Networks

Jin-Woo Park and Jong-Seok Lee∗

Abstract. This paper proposes a method called Dynamic Thresh-
olding, which can dynamically adjust the size of deep neural net-
works by removing redundant weights during training. The key idea
is to learn the pruning threshold values applied for weight removal,
instead of fixing them manually. We approximate a discontinuous
pruning function with a differentiable form involving the thresholds,
which can be optimized via the gradient descent learning procedure.
While previous sparsity-promoting methods perform pruning with
manually determined thresholds, our method can directly obtain a
sparse network at each training iteration and thus does not need a
trial-and-error process to choose proper threshold values. We exam-
ine the performance of the proposed method on the image classifica-
tion tasks including MNIST, CIFAR10, and ImageNet. It is demon-
strated that our method achieves competitive results with existing
methods and, at the same time, requires smaller numbers of training
iterations in comparison to other approaches based on train-prune-
retrain cycles.

1 Introduction

In recent years, ‘going deeper’ has been a driving force of the de-
velopment of neural network architectures. Constructing deeper net-
works can be interpreted as using more parameters to solve a given
task, thus is expected to bring performance improvement. However,
this is considered as a significant problem in many practical use cases
such as mobile and embedded applications. Networks having huge
amounts of model parameters are difficult not only to be stored but
also to be run on such cases with limited computing and memory
resources.

To solve this problem, there have been many studies to com-
press and accelerate network architectures. Pruning is one of the
approaches, referring to cutting off redundant weights in a neural
network to reduce the number of weight parameters. Typically, the
importance of the weights in the network is measured, unimportant
weights are removed, where it is often assumed that smaller weights
are less important, and then the pruned network is retrained, which
is repeatedly applied [7, 8].

Recently, a variety of pruning methods have been developed
[6, 10, 12, 14, 17, 23]. These studies report good results in remov-
ing a significant portion of unimportant weights in networks, how-
ever, need a retraining process after the pruning step to recover the
performance (e.g., classification accuracy) comparable to that before
pruning. This causes a few limitations. First, the necessity of the re-
peated pruning-retraining cycle may impose computational burdens.

∗Yonsei University, Republic of Korea, email: {jin-woo.park, jong-
seok.lee}@yonsei.ac.kr

Second, the performance is not guaranteed to be recovered after re-
training. Third, it is not easy to determine the threshold value defin-
ing which weights to be pruned, which usually needs to be deter-
mined via trial-and-error.

Some recent studies propose ways to train structurally efficient
neural networks referred to as sparse neural networks. Unlike the
aforementioned pruning techniques, they promote structural sparsity
during training [13,15,16,18–20]. Many of these sparsity-promoting
techniques induce redundant weights to have near zero values during
training. However, they usually do not make weights exactly zero
and thus require an additional pruning step with a small threshold
(and often also a retraining step). As a result, most of the aforemen-
tioned limitations of the pruning methods still exist. For instance, the
methods in [13, 15] operate with steps of training with regulariza-
tion, pruning, and then retraining, which include limitations of the
uncertainty of the performance after retraining and the difficulty of
determining the threshold. The method in [18] also has the difficulty
of determining the threshold (see below and Figure 1).

In order to address the limitations of the previous approaches, we
propose dynamic thresholding, a novel technique for training sparse
neural networks from scratch with reduced trial-and-error in its learn-
ing process. We make the threshold parameters as trainable variables
by approximating the pruning step as a continuous pruning function
and train the threshold parameters with the gradient descent algo-
rithm. Therefore, the thresholds are dynamically changed so as to
prune or splice the weights during training. After the whole train-
ing procedure finishes, the final pruned network is directly obtained
without additional pruning and retraining steps. Our dynamic thresh-
olding method makes the thresholds themselves contribute to both
inducing the weights to have near zero values and removing small
weights. Therefore, we only need to consider to control the hyper-
parameter for sparsity, whereas the existing methods are required to
adjust the combination of the sparsity hyperparameter and pruning
thresholds.

Our experiments show that the proposed method achieves com-
petitive results compared to the previous methods while reducing the
burden of trial-and-error. As a representative result, Figure 1 com-
pares the learning processes of LeNet-300-100 in terms of the test
accuracy with respect to the training iteration for the existing sparse
variational dropout (VD) method [18] and the proposed method for
the MNIST classification problem (see Section 4 for more details).
The accuracy of a trained network is shown as a line, and the ac-
curacy of a pruned network is shown with a marker. In the case of
sparse VD, adjusting the threshold produces pruned networks with
different compression ratios from a single trained network, which
needs to be determined manually. In addition, a significant accuracy
loss occurs after pruning, and the amount of the loss is observable

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Figure 1: Comparison of the learning processes of LeNet-300-100
for the MNIST dataset between the sparse variational dropout (VD)
method [18] (black color) and our proposed dynamic thresholding
method (red color). Each line indicates the test accuracy of the
trained network. Each marker denotes the test accuracy of the pruned
network with a compression ratio of 50x, 60x, or 70x. Note that in
the case of sparse VD, multiple pruned networks having different
compression ratios are obtained from the trained network at a certain
training iteration using different threshold values determined manu-
ally. On the other hand, our method automatically adjusts the thresh-
old values during training. In addition, an accuracy loss occurs due to
pruning in the case of sparse VD, whereas our method does not have
such an issue. As a result, our method produces pruned networks
faster than sparse VD for the same compression ratios and similar
accuracy (marked with arrows of the same colors).

only after performing pruning. On the other hand, our method allows
us to monitor the compression ratio and the accuracy of the pruned
network immediately during training, which alleviates the necessity
of the trial-and-error procedure. Furthermore, any accuracy loss is
not involved due to pruning, which accelerates the overall process.
As a result, our method requires smaller numbers of training itera-
tions than sparse VD (e.g., 5600 vs. 6700 iterations for 60x (marked
with blue arrows), and 7400 vs. 9100 iterations for 70x (marked with
green arrows)), which results in faster training time of our method
(i.e., 341.6 vs. 448.9 seconds for 60x, and 451.4 vs. 609.1 seconds
for 70x).

The remainder of the paper is organized as follows. Section 2 re-
views the related work. Section 3 presents the proposed method in
detail. The experimental validation is shown in Section 4. Finally,
conclusion is given in Section 5.

2 Related Work
2.1 Neural Network Pruning
Neural network pruning typically repeats the train-prune-retrain pro-
cess to reduce the size of networks. Optimal brain damage [11] and
optimal brain surgeon [9] are the representative early attempts to
prune redundant parameters in neural networks. As deep neural net-
works became deeper and larger, pruning has been considered im-

portant as a way to reduce the size of networks and find efficient
network structures. Deep compression [7, 8] proposes to prune the
weights having small magnitudes, together with further compression
schemes including quantization and Huffman coding. Dynamic net-
work surgery (DNS) [6] also prunes weights based on their magni-
tudes, but it includes a step to recover pruned weight parameters dur-
ing retraining to achieve better sparsity. The method proposed in [5]
re-initializes the remaining weights after pruning to improve the clas-
sification performance of the pruned network.

To obtain simpler network structures after pruning, structured
pruning methods also have been proposed, including filter pruning
[12] and channel pruning [17]. They can produce more structured
networks compared to weight pruning methods, but the compression
performance tends to be lower than that of weight pruning.

There have been also studies on investigating the domains or cri-
teria to choose redundant weight parameters. For instance, the work
in [14] introduces a method to perform pruning in the frequency
domain. The method in [23] uses a channel selection criterion to
identify the channels’ contribution to the discriminative power. The
method in [10] uses reinforcement learning to determine the optimal
set of filters to be pruned.

These pruning techniques need to start from pretrained models,
and require a retraining process. Therefore, it is difficult to find a
satisfactory compression ratio without trial-and-error of selecting an
appropriate pruning threshold and retraining required to confirm the
sparsity of the pruned network.

2.2 Training Sparse Neural Networks

Another way to obtain economized network structures is to impose
sparsity during training from scratch. Many of them rely on regu-
larization techniques to induce weight values to shrink to zero. The
method proposed in [19] sets an additional binary gate variable to
control each weight connection, which is trained using the straight-
through-estimator technique. The method in [16] approximates and
minimizes the L0-norm of weights. Deep rewiring [2] uses a L1 reg-
ularizer, and randomly awakens dormant weights to retain the ini-
tially set sparsity level at every training step. Sensitivity-driven train-
ing [20] defines a term to quantify the effect of weight value change
to the final output of the network, which is used in the regularization
term. Similar to the case of pruning, some studies attempt to train
structured sparse networks. Structured sparsity learning [21] imposes
a regularizer on various sub-structures of the network (e.g., filters,
channels, etc.) to remove them. Network slimming [15] uses a scal-
ing factor for each channel of convolution layers and regularizes it to
promote channel sparsity. The work in [13] defines synaptic strength
to represent the strength of connection between the layer input and
output, which is regularized during training.

There also exist other types of sparse neural network train-
ing. Sparse variational dropout (sparse VD) [18] uses a variational
dropout technique to induce weights to be extremely small. The
learning-compression algorithm proposed in [3] iteratively alternates
a learning step and a compression step to solve the pruning task as an
optimization problem. Centripetal stochastic gradient descent [4] in-
duces multiple convolutional filters to become identical and merges
them.

Most of the aforementioned methods commonly have a limitation
in that they are only able to induce weights to small values instead of
making them have exactly zero values, thus additional thresholds to
remove weights need to be applied. This leads to the necessity of a
trial-and-error process to determine optimal hyperparameters.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

3 Proposed Method
Consider the structure of a neural network having total N weight
parameters, {wi}Ni=1. For each weight wi, a non-negative threshold
parameter is assigned, ti, to determine if the weight is to be pruned,
i.e., it is pruned if |wi| < ti.

The goal of our proposed dynamic thresholding is to directly train
the threshold parameters used for pruning as well as the weight pa-
rameters by gradient descent learning. To achieve this, the thresholds
are included in the loss function used for training through a pruning
function whose approximated version is differentiable. Let Φ(w, t)
denote the pruning function:

Φ(w, t) =
w

2
{sign(w − t)− sign(w + t) + 2}

=

{
0 , |w| < t

w , otherwise

(1)

Let Lc be the primary loss accounting for the classification perfor-
mance (e.g., cross-entropy). Then, the optimization problem that we
want to solve can be formulated as

{ŵi}, {t̂i} = arg min
{wi},{ti}

[
Lc ({Φ (wi, ti)}) + Lp

]
(2)

Here, the second term Lp is the loss promoting sparsity, which will
be explained later. The sparsified network is obtained by applying
the optimized thresholds {t̂} to the obtained weights {ŵ} using the
pruning function.

3.1 Promoting Sparsity
The sparsity of the network can be promoted by maximizing the val-
ues of the thresholds. Therefore, we use the following loss term†.

Lp = −λ
N∑
i=1

log ti (3)

where λ is a positive hyperparameter to control the relative impor-
tance of the sparsity promoting loss term. If λ is large, the contri-
bution of the Lp term becomes large and the threshold are forced
strongly to be large. Here, we use the logarithm to control the thresh-
olds easily, especially at the early stage of training where most of the
threshold values are very small.

Finally, the overall optimization problem is written as

{ŵi}, {t̂i} = arg min
{wi},{ti}

[
Lc ({Φ (wi, ti)})− λ

N∑
i=1

log ti

]
(4)

3.2 Global vs. Local Thresholds
The pruning threshold can be set at different scales. While we use
a separate threshold for each weight parameter in Equations 3 and
4, it is also possible to use a global threshold applied to all weights
or a threshold assigned to each layer. Using a global threshold or
layer-wise thresholds reduces the number of parameters to be trained.
On the other hand, individualized thresholds can consider the distin-
guished role of each weight at the cost of an increased number of
parameters. We compare these three cases experimentally in Section
4.
†Another possible choice of Lp is the L1-norm of the pruned weights,

i.e.,Lp = λ
∑N

i=1 |Φ (wi, ti)|, so that the magnitudes of the pruned weights
become small. However, we observed that Equation 3 promotes sparsity better
than this version in our preliminary experiments.

Figure 2: Graphical representation of the pruning function Φ(w, t)
(black line) and its approximation using the Gauss error function
with a temperature of 0.1 (red dashed line).

(a) Pruning a weight

(b) Splicing a pruned weight

Figure 3: Pruning and splicing mechanisms during training in the pro-
posed method. The black (or colored) lines indicate the pruning func-
tion before (or after) the update of the parameters.

3.3 Approximation of Pruning Function

The pruning function given in Equation 1 is not differentiable and
thus we cannot train w and t with the gradient descent optimization
technique. To resolve this issue, we propose to approximate the dis-
continuous pruning function with a differentiable one by substituting
the sign function with the Gauss error function having a temperature
parameter, i.e.,

Φ̃ (w, t) =
w

2

{
erf

(
w − t
τ

)
− erf

(
w + t

τ

)
+ 2

}
(5)

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

As temperature τ goes to 0, the Gauss error function becomes
sharper, and is mathematically identical to the sign function when the
temperature is equal to 0. Figure 2 compares the exact and approx-
imated pruning functions. For a weight smaller than the associated
threshold, our approximated pruning function reduces the gradient
flow to the weight, while it affects little on the gradient for a weight
larger than its threshold. In other words, the update of a weight de-
pends on whether it is pruned or not at each training iteration.

In each forward step, the pruning function Φ (·) is used to ob-
tain the output of the pruned network. In each backward step, we
update the weights and thresholds with their gradients computed by
the derivatives of the approximated pruning function Φ̃ (·) instead of
Φ (·).

3.4 Effect of Pruning Function
We analyze how the weight update and threshold update work to-
gether during training. The update rule of weight w at training itera-
tion k is expressed as

wk+1 =wk + ∆wk

=wk − α ∂L

∂wk

=wk − α∂Lc

∂pk
∂pk

∂wk

≈wk − α∂Lc

∂pk
∂

∂wk
Φ̃(wk, tk)

(6)

and the update rule of the associated threshold t is written as

tk+1 =tk + ∆tk

=tk − α ∂L
∂tk

=tk − α∂Lc

∂pk
∂pk

∂tk
− α∂Lp

∂tk

≈tk − α∂Lc

∂pk
∂

∂tk
Φ̃(wk, tk) + αλ

1

tk

(7)

where L = Lc + Lp denotes the total loss function (Equation 4), α
is the learning rate, and pk = Φ(wk, tk). Note that the last term of
Equation 7 is always positive, trying to increase the threshold value.
In certain conditions, the sign of ∆wk becomes the opposite to that
of ∆tk, and pruning of a weight remaining at the previous iteration
or splicing of a previously pruned weight can occur. To see this, the
gradients of the approximated pruning function in Equations 6 and 7
can be further expressed as

∂

∂w
Φ̃ (w, t) =

1

2
{erf (w − t)− erf (w + t) + 2}

+
1√
π
w
(
e−(w−t)2 − e−(w+t)2

) (8)

and

∂

∂t
Φ̃ (w, t) = − 1√

π
w
(
e−(w−t)2 + e−(w+t)2

)
(9)

where we omit k and τ for simplicity. In Equation 8, both the first
and second terms are positive, thus the total gradient is always posi-
tive. On the other hand, the sign of Equation 9 is opposite to the sign
of w. When w > 0, Equation 9 becomes negative, meaning that ∆w
and ∆t are in the opposite directions if the last term in Equation 7

is relatively small. Figure 3 illustrates the effect of this mechanism,
showing the case where previously connected weight w is pruned
due to decreasing w and increasing t (Figure 3a), and the case where
previously pruned w becomes spliced due to increasing w and de-
creasing t (Figure 3b) (note that there are two other cases where the
status of w remains the same). For w < 0, the same mechanism can
happen in the left half-plane. Therefore, by training both the weights
and thresholds, the weight connections in the network are adjusted
via flexible pruning and splicing in our method.

4 Experiments

4.1 Experiment on Exclusive-OR Problem

First, we conduct an experiment for better understanding of how
the proposed dynamic thresholding method works. To monitor the
dynamic change of weight and threshold values, we consider an
exclusive-OR (XOR) problem that can be solved by a small-sized
network. The problem is to classify the input binary pairs (0, 0), (0,
1), (1, 0) and (1, 1) to their results of XOR calculation.

We train a two-layered fully connected network used in [6]. It has
two input nodes, five hidden neurons, and one output neuron. Thus,
the first and second layers of the network have 10 and 5 weight pa-
rameters, respectively. The sigmoid function is used as the activation
function in both layers. We randomly generate 20,000 samples of
input data by adding Gaussian noise. A half of them are used for
training and the rest for test. The network is trained using the Adam
optimizer for 10,000 iterations.

Figure 4 shows how the magnitudes of each weight (blue) and
its corresponding threshold (red) evolve during training. The pan-
els in the first and second rows are for the weights from the first
and second input nodes to the hidden neurons, respectively. The last
row shows the results for the weights from the hidden neurons to the
output neuron. The state where a weight is pruned (i.e., the weight
magnitude is smaller than its threshold) is indicated by gray color.
Four weights (weights 1, 2, 6 in layer 1, and weight 1 in layer 2) are
pruned at the end of the training procedure. At the beginning, most
of these weights have larger magnitudes than their thresholds, but
the thresholds are automatically adjusted to become larger than the
weight magnitudes. In the case of weight 4 in layer 1, the weight is
pruned at the beginning due to its threshold larger than the magni-
tude of the weight, but the weight magnitude exceeds the threshold
and thus the weight becomes spliced at about iteration 1000. It is par-
ticularly interesting to observe that for weight 7 in layer 1, the weight
is connected at the early stage of training, then pruned at about iter-
ation 1300, but spliced again at about iteration 3000. These demon-
strate that our method has a capability of dynamically determine the
network structure during training.

4.2 Experiments on Image Classification

In order to evaluate the effectiveness of the proposed method, we per-
form image classification experiments. In particular, we follow the
test protocols (datasets and network architectures) commonly used
in previous studies [6,8,16,18–20] in order to facilitate performance
comparison with them. We use LeNet-300-100 and LeNet5 on the
MNIST dataset, VGG-like on the CIFAR10 dataset, and AlexNet on
the ILSVRC-2012 (ImageNet) dataset. The performance measures
are the test classification accuracy loss (i.e., the absolute accuracy
difference of the original and sparse networks) and the compression
ratio (i.e., the ratio of the number of weights in the original network

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Figure 4: Evolution of each weight magnitude (blue) and the associated threshold (red) during training for the XOR problem. The x-axis is
the number of iterations and the y-axis is the value. The gray area indicates the state where the threshold is larger than the magnitude of the
corresponding weight and thus pruning of the weight occurs.

and the number of remaining weights in the pruned network). Our
implementation is based on Tensorflow [1].

4.2.1 Experimental Setup

We perform the image classification experiments with following
specifications. For the MNIST dataset, we train the fully connected
network, LeNet-300-100, and the convolutional neural network,
LeNet5. The weights of both networks are randomly initialized with
a standard deviation of 0.01, and no dropout technique is used. We
train them using the Adam optimizer for 10,000 iterations with a
learning rate of 0.001. The batch size is set to 100. In addition, we
test different scales of thresholds, i.e., global, layer-wise, and indi-
vidual thresholds.

For the CIFAR10 dataset, we test our method using individual
thresholds for the VGG-like architecture [22] having 13 convolu-
tional and two fully connected layers. We train the network using
the Adam optimizer for 100 epochs. The learning rate is initially set
to 0.1 and is reduced by 10 times at every 25 epochs. The batch size
is set to 128. The weight decay is used with a parameter of 5×10−4.
We set λ = 1.8× 10−4.

Finally, we apply our method using individual thresholds to
AlexNet with the ImageNet dataset to examine if our method suc-
cessfully works for a large network structure and dataset. The mo-
mentum optimizer is used for training for 150 epochs with a batch
size of 128. The learning rate is initially set to 0.01 and reduced by 10
times at epochs 70, 115, and 140. We set the momentum and weight
decay parameters to 0.9 and 10−4, respectively. The value of λ is set
to 2× 10−5.

For these experiments, we observed that if we use threshold t di-
rectly in the pruning function in our method, too many weights are
removed in the very early stage of training because the threshold in-
creases fast via training. Therefore, we restrict t to be bounded up to
1 using a sigmoid function, which is sufficient considering the scales
of weight values in our experiments. Using a sigmoid function also
keeps the threshold to be always positive. The initial value of t is set
to 0.0067 (= sigmoid(−5)) in all experiments. We observed that the
initial value of the threshold is not critical thanks to flexible pruning
and splicing in our method.

4.2.2 Results

First, the case using a separate threshold for each weight is compared
to the cases with a global threshold and layer-wise thresholds on the
MNIST dataset. Table 1 shows the results of training LeNet-300-
100. As expected, learning individual thresholds yields significantly
improved compression performance. Therefore, all the remaining ex-
periments are conducted with individual thresholds.

Table 1: Performance of different scales of the pruning
thresholds for LeNet-300-100 on MNIST

Scale Top-1 acc. loss Compression ratio
Global 0.25%p 17x

Layer-wise 0.33%p 23x
Individual 0.36%p 81x

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Table 2: Accuracy losses and compression ratios of different methods for image classification problems

Dataset MNIST CIFAR10 ImageNet
Architecture LeNet-300-100 LeNet5 VGG-like AlexNet

Method Top-1
acc. loss

Compression
ratio

Top-1
acc. loss

Compression
ratio

Top-1
acc. loss

Compression
ratio

Top-1
acc. loss

Compression
ratio

Iterative pruning [8] −0.05%p 12.2x −0.03%p 11.9x - - −0.01%p 9.1x
DNS [6] −0.29%p 56x 0.00%p 108x - - 0.31%p 17.7x

Srinivas et al. [19] - - 0.01%p 24x - - 0.31%p 10.3x
Sparse VD [18] 0.28%p 68x −0.05%p 280x −0.0%p 65x - -

Sensitivity-driven [20] 0.31%p 103x −0.02%p 51x - - - -
L0 regularization [16]* 0.28%p 12.2x 0.20%p 70x - - - -
Dynamic Thresholding 0.36%p 81x −0.03%p 151x −1.2%p 102x 0.82%p 11.7x
* Results reported in [20]

Table 2 summarizes the results of the proposed dynamic thresh-
olding method and the previous methods. The best and second best
methods in terms of the compression ratio are marked with red and
blue colors, respectively. Overall, our method achieves competitive
performance, showing the best or second best compression ratios
for all cases. The sparse VD method [18] shows the best compres-
sion ratio for LeNet5, but is inferior to ours for LeNet-300-100 and
VGG-like. The sensitivity-driven method [20] records the best com-
pression ratio for LeNet-300-100, but is far worse for LeNet5 than
our method. In contrast, our method consistently shows good per-
formance over various problems and network architectures. In par-
ticular, the result on the ImageNet dataset shows that the proposed
method can successfully train a relatively large network structure
with a large dataset even from scratch without using a pretrained
model. The DNS method [6] shows better compression performance
than ours, but is outperformed by our method for both LeNet-300-
100 and LeNet5. Furthermore, DNS takes longer training time, i.e.,
230 training epochs (90 epochs for pretraining and 140 epochs dur-
ing pruning) for training AlexNet ImageNet, whereas our method
takes only 150 epochs for training from scratch. The iterative prun-
ing method, showing a lower compression ratio than our method for
AlexNet, also requires training for over 960 epochs [8].

Together with the result shown in Figure 1, these results confirm
that the proposed dynamic thresholding method can train sparse neu-
ral networks from scratch with good compression ratios without the
necessity of a trial-and-error procedure to determine the thresholds
manually, and furthermore, it reduces the training time.

4.2.3 Analysis

We examine further about the change of threshold and weight val-
ues during the training process. Figure 5 shows how the threshold
values change over the training iterations for the VGG-like network
trained on the CIFAR10 dataset. It is observed that the threshold val-
ues tend to increase, which promotes sparsity more and more. Fur-
thermore, they become more and more different depending on the
associated weights, indicating that they individually adapt to the as-
sociated weights.

Figure 6 shows the numbers of remaining weights in percentage
with respect to the training epoch for AlexNet trained on the Im-
ageNet dataset. It is seen that our method successfully induces the
network to become more and more compact during training. More-
over, the flexibility is also observed, i.e., the level of sparsity does
not monotonically increases but adaptively fluctuates, showing that

Figure 5: Distribution of the thresholds during training by the pro-
posed dynamic thresholding method for VGG-like trained on the CI-
FAR10 dataset.

the dynamic pruning-splicing mechanism works effectively. Despite
such a dynamic process, the classification accuracy, which is the pri-
mary objective of training, desirably increases monotonically (Figure
7).

5 Conclusion
In this paper, we proposed the dynamic threshold technique that can
obtain pruned neural networks without the necessity of trial-and-
errors of pruning threshold selection via simultaneous learning of the
weights and thresholds. The dynamic mechanism of pruning-splicing
during training was analyzed theoretically and experimentally. The
experimental results showed that the proposed method successfully
produces good performance in terms of accuracy and compression
ratio reliably across different network architectures and datasets. It
was also shown that our method converges fast in comparison to the
existing methods.

ACKNOWLEDGEMENTS
This work was supported by Basic Science Research Pro-
gram through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science and ICT (MSIT)
(NRF2016R1E1A1A01943283). In addition, this work was also sup-
ported by the Institute of Information & communication Technology
Promotion (IITP) grant funded by MSIT (R7124-16-0004, Develop-
ment of Intelligent Interaction Technology Based on Context Aware-
ness and Human Intention Understanding).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Figure 6: Percentage of the remaining weights in each layer with respect to the training epoch for AlexNet trained by the proposed method on
the ImageNet dataset.

Figure 7: Top-1 and top-5 accuracy of AlexNet trained on the Ima-
geNet dataset during training by the proposed method.

REFERENCES

[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al., ‘Tensorflow: A system for large-scale machine
learning’, in Proceedings of the USENIX Symposium on Operating Sys-
tems Design and Implementation, pp. 265–283, (2016).

[2] Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Leg-
enstein, ‘Deep rewiring: Training very sparse deep networks’, in Pro-
ceedings of the International Conference on Learning Representations,
(2018).

[3] Miguel A. Carreira-Perpiñán and Yerlan Idelbayev, “‘Learning-
Compression” algorithms for neural net pruning’, in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp.
8532–8541, (2018).

[4] Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong Han, ‘Cen-
tripetal SGD for pruning very deep convolutional networks with com-
plicated structure’, in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 4943–4953, (2019).

[5] Jonathan Frankle and Michael Carbin, ‘The lottery ticket hypothesis:
Finding sparse, trainable neural networks’, in Proceedings of the Inter-
national Conference on Learning Representations, (2019).

[6] Yiwen Guo, Anbang Yao, and Yurong Chen, ‘Dynamic network surgery
for efficient DNNs’, in Advances In Neural Information Processing Sys-
tems, pp. 1379–1387, (2016).

[7] Song Han, Huizi Mao, and William J. Dally, ‘Deep compression: Com-

pressing deep neural network with pruning, trained quantization and
Huffman coding’, in Proceedings of the International Conference on
Learning Representations, (2016).

[8] Song Han, Jeff Pool, John Tran, and William Dally, ‘Learning both
weights and connections for efficient neural network’, in Advances in
Neural Information Processing Systems, pp. 1135–1143, (2015).

[9] Babak Hassibi and David G. Stork, ‘Second order derivatives for net-
work pruning: Optimal brain surgeon’, in Advances in Neural Informa-
tion Processing Systems, pp. 164–171, (1993).

[10] Qiangui Huang, Shaohua Kevin Zhou, Suya You, and Ulrich Neumann,
‘Learning to prune filters in convolutional neural networks’, in Pro-
ceedings of the IEEE Winter Conference on Applications of Computer
Vision, pp. 709–718, (2018).

[11] Yann LeCun, John S. Denker, and Sara A. Solla, ‘Optimal brain dam-
age’, in Advances in Neural Information Processing Systems, pp. 598–
605, (1989).

[12] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Pe-
ter Graf, ‘Pruning filters for efficient convnets’, in Proceedings of the
International Conference on Learning Representations, (2017).

[13] Chen Lin, Zhao Zhong, Wu Wei, and Junjie Yan, ‘Synaptic strength
for convolutional neural network’, in Advances in Neural Information
Processing Systems, pp. 10170–10179, (2018).

[14] Zhenhua Liu, Jizheng Xu, Xiulian Peng, and Ruiqin Xiong,
‘Frequency-domain dynamic pruning for convolutional neural net-
works’, in Advances in Neural Information Processing Systems, pp.
1051–1061, (2018).

[15] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng
Yan, and Changshui Zhang, ‘Learning efficient convolutional networks
through network slimming’, in Proceedings of the IEEE International
Conference on Computer Vision, pp. 2755–2763, (2017).

[16] Christos Louizos, Max Welling, and Diederik P. Kingma, ‘Learning
sparse neural networks through l0 regularization’, in Proceedings of
the International Conference on Learning Representations, (2018).

[17] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin, ‘Thinet: A filter level
pruning method for deep neural network compression’, in Proceedings
of the IEEE International Conference on Computer Vision, pp. 5068–
5076, (2017).

[18] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov, ‘Variational
dropout sparsifies deep neural networks’, in Proceedings of the Inter-
national Conference on Machine Learning, pp. 2498–2507, (2017).

[19] Suraj Srinivas, Akshayvarun Subramanya, and R. Venkatesh Babu,
‘Training sparse neural networks’, in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Workshops, pp.
138–145, (2017).

[20] Enzo Tartaglione, Skjalg Lepsøy, Attilio Fiandrotti, and Gianluca
Francini, ‘Learning sparse neural networks via sensitivity-driven reg-
ularization’, in Advances in Neural Information Processing Systems,
pp. 3882–3892, (2018).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

[21] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li,
‘Learning structured sparsity in deep neural networks’, in Advances in
Neural Information Processing Systems, pp. 2074–2082, (2016).

[22] Sergey Zagoruyko. 92.45% on CIFAR10 in Torch, 2015.
[23] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo,

Qingyao Wu, Junzhou Huang, and Jin-Hui Zhu, ‘Discrimination-aware
channel pruning for deep neural networks’, in Advances in Neural In-
formation Processing Systems, pp. 883–894, (2018).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

