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Abstract. Forecasting accurate traffic speed is of great importance
to advanced traffic management systems but challenging problem as
it is affected by many complex factors, such as events, inter-road traf-
fic, traffic lights, period and weather conditions. Traffic speed predic-
tion based on deep learning techniques has received much attention
in recent years. However, the power of deep learning methods has
not yet fully been exploited in traffic prediction in terms of the depth
of the model architecture. This paper designs a deep-learning-based
structure, called BiRNet, to forecast accurate traffic speed in each
and every region in a city. More specifically, we employ the resid-
ual neural network and the bi-directional recurrent neural network
to model the spatial and temporal closeness, respectively. A look-up
layer is introduced to model the spatial scale of the prediction area.
BiRNet learns to dynamically aggregate the output of these neural
networks which is further combined with external factor learning to
improve the spatially correlated time series data forecasting. Our ex-
tensive experiments on real-world trip data-sets generated in NYC’s
road network, show that our proposed deep learning algorithm sig-
nificantly outperforms the state-of-the-art learning algorithms.

1 Introduction
Fortunately, the positioning and wireless technologies have resulted
in significant amount of trajectory data in diverse range of domains
[31] which boosts traffic analysis such as travel time estimation. Al-
though all electronic maps and online car-hailing services provide
the travel time estimation such as Google Map, Uber and Didi, the
estimation quality is critical to the user experience of these applica-
tions. Traffic speed Prediction (TSP) is a crucial task to get accurate
travel time estimation. Therefore, the problem of TSP has attracted
many researcher’s attention and been widely studied in intelligent
transportation systems but providing an accurate speed prediction is
still very challenging.

In this paper, we aim to predict the future speed of each road seg-
ment in a large road network based on historical observations. For
this end, we propose a deep spatio-temporal and contextual neural
network called BiRNet, to provide accurate traffic speed prediction.

For each road segment, the fluctuation of its speed usually follows
some patterns.

Spatial Patterns: Different road segments have strong depen-
dency with each other. For example, a congestion in a given road will
affect surrounding areas especially adjacent roads. Likewise, speed
on a road tends to slow down if congestion occurs in its surrounding
area. Therefore, the traffic speed prediction model must deal with
spatial correlations among different road segments. For this reason,
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some recent studies adopted the convolutional neural network (CNN)
to learn traffic as images [15, 29]. They have achieved significant
success since CNN has shown a powerful ability to model similarity
between pixels [11], as a kind of spatial relations. However, this is in-
sufficient for TSP problem, since there are more patterns that should
be learned.

Temporal Patterns: The temporal information is also a key factor
that has a great impact on traffic speed prediction. For example, the
speed will be much more higher in the rush hours than the off-peak
hours as well as in the weekend. Thus, the traffic speed is highly
correlated with the time period in a year, a month and a day, rush
hour or holiday. These kind of patterns can be discovered by existing
time-series models, such as hybrid auto-regressive integrated mov-
ing average (H-ARIMA) [17] and support vector regression (SVR)
[22]. Recently, recurrent neural network (RNN) has demonstrated a
good performance in both stability and accuracy in terms of traf-
fic speed prediction [19, 16]. However, these models, which usually
treat traffic speeds as sequential data, ignore the spatial feature of
transportation networks.

Context Patterns: Some external factors, such as driver profile,
traffic lights, events and weather conditions may effect the traffic
speed prediction.

To tackle these challenges, our proposed spatio-temporal model,
BiRNet, fully investigates the potential of deep learning techniques
in terms of depth by jointly training residual neural networks and
recurrent neural networks together to combine their benefits and col-
lectively predict traffic speed in every region in a city. It balances
the memorization and representation abilities in one model and ef-
fectively alleviates the limitations in existing methods. Our contribu-
tions can be summarized as follows:

1. To learn the spatial traffic dynamics, BiRNet uses convolution-
based residual networks since it can effectively capture nearby
and distant spatial dependencies between roads in a city region.
To model the structure of the road network, we construct an adja-
cent road matrix. A look-up operation is used to embed the road
network structure in the model. This operation is used to learn
meaningful features from adjacent road matrix.

2. Thanks to its great success in sequence learning tasks, Recurrent
Neural Network (RNN) is adopted by BiRNet. More specifically,
a Bidirectional Long Short-Term Memory (Bi-LSTM) is used to
learn time-series patterns.

3. To provide more accurate prediction, BiRNet combines residual
neural networks and Bi-LSTM in a rational way to make use of
their advantages. In addition, BiRNet dynamically aggregates the
output of the aforementioned networks with external factors learn-
ing.

4. We conduct extensive experiments on real-world large-scale trip
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data-sets on NYC’s road network generated by thousands of main
links. The proposed approach clearly outperforms state-of-the-art
methods for traffic speed prediction.

2 Related Work

In recent years, number of intelligent traffic speed prediction sys-
tems have been proposed where the algorithms were relied on statis-
tics theories. Authors in [18, 10] proposed a spot speed measurement
methods based on loop detectors to measure traffic stream speeds
over road segments at fixed locations along a road. However, the ap-
proach proposed in [20] falls into the line of route-based method fac-
ing the route mapping challenge as well as the data sparsity problem.
Regression models are the most commonly used method to estimate
traffic and are based on regression analysis. A support vector regres-
sion (SVR) based-method is used in [1, 23] to perform large scale
traffic prediction. Authors in [12] conducted analysis on Taxi trajec-
tories and used Random Forest (RF) based-approach to improve the
traffic prediction.

Nevertheless, these techniques were unsatisfying to predict the ac-
curate traffic speed since they ignore the important spatio-temporal
and contextual features of transportation networks. Due to the large
number of factors having direct impact on the traffic delay, there
are no accurate mathematical models describing the relationship be-
tween the traffic speed and its influencing factors. Therefore, the TSP
becomes a complex problem due to the large number of factors that
could affect traffic dynamics. For this reason, many researchers have
recently been attracted towards machine learning and more specifi-
cally deep learning methods.

Deep learning techniques have been successfully applied to vari-
ous applications [27, 19] to determine complex non-linear relation-
ships between variables. Specially, artificial Neural Networks (NN)
have been widely used in traffic engineering. Authors in [26] devel-
oped a back propagation neural network (BPNN)-based approach to
predict trip-oriented travel time for Origin-Destination pairs in urban
network. As one of famous deep learning techniques, RNN achieves
great success in sequence learning tasks [24]. In [8], the author intro-
duced LSTM which enables RNN to learn long-term sequence infor-
mation. Interest in LSTM has greatly increased in recent years and
have been successfully applied to solve traffic problems [21, 6, 4]
since it can automatically reserve historical sequence information
in its model structure. Authors in [28] introduced a bidirectional
LSTM-based approach by utilizing backward information to improve
the memory capability. These methods achieved better results than
statistical methods. However, these attempts still mainly focus on the
temporal correlations of traffic evolution at a single location. There-
fore, convolutional neural networks have been successfully applied
in TSP [30, 15] considering the spatial correlations from the road
network. To have a very deep structure modeling the spatial features,
authors in [29, 13], proposed the residual learning (ResNet). Authors
in [14] proposed a spatio-temporal model using both convolutional
and recurrent neural networks.

Compared to existing TSP models, our hybrid architecture fully
investigates the potential of deep learning techniques in terms of
depth by taking advantages of both residual component and bi-LSTM
blocks. This combination is exploited in a rational way to learn spa-
tial and temporal patterns, respectively and then improve accuracy.

3 Methodology
In this section, the components and the architecture of the proposed
BiRNet are described in details. We first define the TSP problem and
give out the formulation of network-based traffic speed prediction.

3.1 Network-wide Traffic Speed Data
A vehicle speed and position at a certain time can be provided by a
vehicle trajectory recorded by a dedicated GPS device car. For each
road segment, we compute the average traffic speed from the GPS
pings as shown in Figure 1.

Figure 1: Average Traffic Speeds

The input of TSP problem at one location can be represented by
the vectorXt which is a sequence of speed values x with n historical
time steps where

Xt = [xt−n, xt−(n−1), . . . , xt−2, xt−1, xt] (1)

But, the traffic speed at one location can be impacted by nearby
and faraway locations. For this reason, we design a spatio-temporal
matrix as the input of our model. Traffic speed of road r at time t can
be defined as xr,t. Let |R| be the number of roads in a given network
R, the matrix can be expressed as follows:

Xr,t =


xr1,t−n . . . xr1,t−1 xr1,t
xr2,t−n . . . xr2,t−1 xr2,t

...
. . .

...
...

xr|R|−1,t−n . . . xr|R|−1,t−1 xr|R|−1,t

xr|R|,t−n . . . xr|R|,t−1 xr|R|,t

 (2)

As in equation 2, the row vector contains traffic speed in the same
road from continuous time intervals (from t to t-n), the columns con-
tain traffic speed in all |R| roads at the same time interval. Note that
Xr,t is of dimension |R| × n.

In this paper, we would like to predict the estimated traffic speed
of all roads in a network at a future time. More formally, given Xr,t

and z where z is the number of intervals, we want to predict Xr,t+i

for 1 ≤ i ≤ z.

3.2 Model Architecture
As shown in Figure 2, the architecture of BiRNet is comprised of four
major components which are: (i) several residual layers to model the
spatial evolution, (ii) a recurrent layer and more specifically, we use
the Bi-LSTM component to model the temporal dependency, (iii) a
periodicity extraction layer and (iiii) a context extraction layer mod-
eling the external influence such as weather and holidays..
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For learning spatial patterns, BiRNet employs Residual units since
it has very deep structure that can effectively capture the spatial traf-
fic dynamics from nearby and distant regions. As an input, residual
layers take the traffic speed matrix Xr,t. This component shares the
same road network topology with a convolutinal neural network in
each residual unit. Such structure captures the spatial traffic dynam-
ics of the surrounding areas. After extracting the spatial patterns, we
reshape these features to be suitable for time-series learning and feed
into RNN layer and more specifically, a Bi-LSTM as a deeper variant
of RNN for sequence modeling.

Figure 2: BiRNet: A Hybrid Architecture.

In addition, the traffic speed prediction is directly affected by pe-
riodicity features. For instance, a traffic congestion occurring at 8am
will be almost the same as tomorrow at 8am. It means that traffic
conditions during morning rush hours may be similar on consecutive
workdays/weeks, repeating every 24 hours. Hence, we feed the speed
vectors of periodic time intervals into fully-connected layers (FC) to
capture such temporal dynamics.

For the external learning, we extract context factors such as
weather, event, holiday and so on from external data-sets, feeding
them into FC layers. By a Tanh function, the outputs are aggregated.

3.3 Spatial Features Extraction
Thanks to its good performance on capturing spatial features from
adjacent pixels, convolution neural network has been widely used in
image data analysis [11]. Since traffic evolution is restricted by the
road network, i.e., the speed of a given road is impacted by the traf-
fic in adjacent road segments, we thus design a convolution layer
that embed the topology of road network into convolution to capture
more meaningful spatial features. To have a super deep convolution
structure of 100 layers, even over-1000 layers, we use the deep resid-
ual learning [9] which has shown state-of-the-art results on multiple
challenging recognition tasks, including image classification, local-
ization, segmentation and object detection[9].

The Road Network as Graph: LetR be the set of road segments

(a) Road Network (b) Adjacent Road Matrix

Figure 3: Road Network and Adjacent Road Matrix.

r. We use r.s and r.e to represent the start and end of the road r ∈
R. To represent the road network topology (Figure 3a), we use an
adjacent road matrix as shown in Figure 3b, denoted by A, which
records all adjacent roads for each road r ∈ R by Ar where

Ar = {r, r′ ∈ R|r.s = r′.e or r.e = r′.s} (3)

Then A contains all Ar|r ∈ R and has the dimension of |R|×D,
where D = max{|Ar|, ∀r ∈ R}, i.e., the maximum number of ad-
jacent roads for all roads in R. For the road network represented in
Figure 3, we have |R| = 9 and D = 4 since we consider the directly
connected roads to r and also r itself. Since the adjacent segment
sets for different roads have different sizes, we pad each empty col-
umn in A with a virtual road which has no adjacent roads and has a
very small speed value so that when it is scaled, its value becomes
-1. During training and testing we are including virtual road in the
input training data, but on the output of training data, we remove this
virtual road, so our network is not learning to predict virtual road but
it is acting as padding in our data-set.

Residual Unit: The components of the residual unit are given in
the Figure 4. This later contains three combinations of ”LK + Conv +
BN”. First, we feed the speed matrix Xr,t into the residual block. A
look-up layer (LK) is required to embed the road network topology.
A stack of convolutions is used in a single residual unit to understand
connections between locations with a far distance. We attempt Batch
Normalization (BN) after Conv layer for faster training speed.

Figure 4: Residual Unit.

Look-up Operation: Given the traffic speed data recorded in
Xr,t, the topology of road network represented by the adjacent road
matrix A is embedded as follows:

X (l) = LK(X
(l)
r,t , A) (4)

This operation [25] aims to perform a look-up in the embedding ma-
trix and return the embedding of A. An embedding matrix would
look like a vector of speed values of the adjacent roads in A from
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the speed matrix Xr,t. X (l) represents the result of the look-up op-
eration and contains not only the speed values of |R| roads over n
time-slots, but also the speed values of their adjacent roads and has
the dimension |R| ×D × n. Note that the virtual added road is act-
ing as a placeholder in LK operation. Figure 5 describes the LK result

Figure 5: Look-Up Operation.

with more details. To model traffic conditions, LK constructs a ten-
sor X (l) ∈ R|R|×D×n, with the three dimensions standing for road
segments, adjacent roads and time-slots, respectively. As shown in
Figure 5, an entry X (l)(i, j, k) = x denotes the speed value of the
jth adjacent road of the road i in time-slot k.

Convolution: The input of the convolution layer is traffic road
tensor X (l). We use a 3D convolution layer to extract the features
of Spatial matrix as shown in Figure 6. Output layer is to generate
the prediction result. At an arbitrary l-th layer, we use k(l) filters to
convolve and concatenate all matrices to get X (l+1). The k-th matrix
convolved by the k-th filter can be formulated as follows

X l,k = [xl,k1 , . . . , xl,ki , . . . , xl,k|R|] (5)

where
xl,ki = f

(
LK(X

(l−1)
r,t , A) ∗W l,k + bl,k

)
(6)

Figure 6: 3D Convolution.

Here, ∗ denotes the convolution operation which uses the k-th fil-
ter W l,k, f is an activation function, e.g. the rectifier ReLU f(x) =
max(0, x) which has achieved a training effectiveness in reducing
the problem of gradient vanishing, W l,k and bl,k are the learnable
parameters in the l-th layer with the k-th filter. We use a 3D filter of
dimension 1 × D × 2 where D is the columns number of adjacent
road matrix A. This filter aims at emphasizing the spatial features of
adjacent roads.

To model large citywide dependencies and connect far roads, we
still need deep networks to have more consecutive layers. To address
this issue, we employ residual learning [9] in our model. We stack
several residual units as follows:

X
(l+1)
r,t = X

(l)
r,t + F

(
X

(l)
r,t , θ

(l)) (7)

where X(l)
r,t and X(l+1)

r,t are the input and output of the l-th residual
unit, respectively; F is the residual function, e.g. a stack of three
combinations of ”LK + Conv + BN” as shown in Figure 4 and θ(l)

includes all learnable parameters in the l-th residual unit.

3.4 Temporal Features Extraction
AfterK residual units, we use the RNN model to learn the long-term
temporal patterns considering the surrounding area. On top of the K
residual units, we get the output tensor XK ∈ Rp×|R|×fK where
fK is the number of the convolution filters at the last K-th Conv
layer and p is the period (the number of days/weeks). We reshape
XK in the way of time sequence to feed into RNN layer. We get a
tensor X ′ ∈ R|R|×n×fK representing the road speed vectors for all
n time-slots, where

X ′i,t = XK [t, i, :] (8)

As a variant of RNN, LSTM is good at learning long time-series
patterns avoiding the problem of vanishing gradient [2]. Compared
with LSTM, bidirectional LSTM (Bi-LSTM) [7] utilizes additional
backward information and thus enhances the memory capability. We
follow the same way to capture the temporal information of every
time interval.

Traffic speed prediction is affected by daily, weekly, or occasional
events. For instance, traffic patterns on Monday and Friday may be
very different though both are workdays. Thus, to learn the long and
short term traffic dynamics, we train the speed vector X ′i,t which
records the speed on road ri ∈ R for n time-slots.

The structure of a bidirectional LSTM can be represented by two
type of connections, one going forward in time, which helps us learn
from previous representations and another going backwards in time,
which helps us learn from future representations.

When feeding X ′i,t into Bi-LSTM, we get the i-th hidden states
−→
h i and

←−
h i of the forward and backward layers, respectively. We

then concatenate these two states to get the i-th hidden state hi =

[
−→
h i,
←−
h i].

For a given LSTM cell, the input gate, the forget gate, the output
gate and the input cell state can be calculated using the following
equations:

it =σg

(
wiX

′
i,t + uiht−1 + bi

)
ft =σg

(
wfX

′
i,t + ufht−1 + bf

)
ot =σg

(
woX

′
i,t + uoht−1 + bo

)
gt =tanh

(
wgX

′
i,t + ught−1 + bg

) (9)

where wi, wf , wo and wg the weight matrices mapping the hidden
layer input to the three gates and the input cell state, while ui, uf ,
uo and ug are the weight matrices connecting the previous cell out-
put state to the three gates and the input cell state. bi, bf , bo and bg
are four bias vectors. The σg is the gate activation function, e.g. the
Sigmoid function σ(a) = 1/(1 + e−a), and the tanh is the hy-
perbolic tangent function. Then the memory cell and hidden state are
updated as:

ct =ft ∗ ct−1 + it ∗ gt
ht =ot ∗ tanh(ct)

(10)

The forward layer output sequence,
−→
h i, is iteratively calculated us-

ing inputs in a positive sequence from time t−n to time t, while the
backward layer output sequence,

←−
h i, is calculated using the reversed

inputs from time t − n to time t. The Bi-LSTM layer generates an
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output vector, YT in which each element is calculated by using the
following equation:

Yi = σ(
−→
h i,
←−
h i) (11)

where σ function is used to combine the two output sequences. Sim-
ilar to the LSTM layer, the final output of a Bi-LSTM layer can be
represented by the Spatio-Temporal vector YST in which the last el-
ement is the predicted speed for the next time iteration such as

YST = [Yi,t−n, . . . , Yi,t, Yi,t+1] (12)

3.5 Context and Periodicity Learning
In addition to the spatial and temporal factors, the traffic speed pre-
diction is affected by many complex factors such as weather condi-
tions, holidays and Periodicity. We extract and learn these informa-
tion to have more accurate prediction.

Context Extraction Layer: Observations on traffic dynamics
have demonstrated that the traffic speed is significantly influenced
by both weather conditions and holidays [14, 29]. This is because
the traffic speed in the heavy rain will be slower than that in sunny
days because of safe driving. On the other hand, the traffic speed
during holidays can be different from during normal days. In our
experiment, the holidays can be directly extracted from our data-
set, however, weather data are extracted from public data-sets us-
ing a parser. We incorporate the attributes of the weather conditions
(rainy/sunny/windy etc.), holidays and the time information (day of
the week). Note that these factors are categorical values which can
not feed to the neural network directly. In our model, we use one hot
encoding method to convert categorical data to a low-dimensional
integer vector. Formally, a fully connected layer is adopted to extract
context information and get YC .

Periodicity Extraction Layer: If we consider a single road seg-
ment, we can observe that the traffic dynamic changes periodically.
We mainly consider three kinds of periodicity:

• Inter-time-intervals Periodicity: The traffic condition in a region is
affected by recent time intervals, both near and far. For instance,
a traffic congestion occurring at 8am will affect that of 9am. We
construct Xi to describe the time-intervals dependency.

• Daily Periodicity: we can see the daily periodicity denoted byXd,
especially at weekdays, i.e., the traffic average speed at a certain
time interval (17:00pm-17:15pm) of Wednesday can be similar to
the next following day, in the absence of special condition.

• Weekly Periodicity: at a certain time interval (8:00pm-8:30pm) of
Monday, the traffic speed shows a similar trend at the same time
interval of the previous Monday on previous weeks, which is the
weekly periodicity denoted by Xw.

Using a fully connected layer, we train Xi, Xw and Xd to get Yi,
Yw and Yd, respectively. The speed prediction respecting the period-
icity factor YP is obtained such as YP = Yw⊕Yd⊕Yi where⊕ is the
concatenation of the results to get YP . Then, as shown in Figure 2,
we integrate it with YC from the context learning to get the external
vector YE that has the same shape of YST .

3.6 Fusion
Using the spatio-temporal learning is not enough to get more accu-
rate speed prediction. For this reason, we merge the output of the first
two components, i.e., stacked residual neural networks and bidirec-
tional LSTM, with that of the external component as shown in Figure

2. Finally, the predicted value at the t-th time interval, denoted by Ỹt,
is defined as

Ỹt = tanh(WST ◦ YST +WE ◦ YE) (13)

where ◦ is Hadamard product (i.e., element-wise multiplication),
WST and WE are the learnable parameters.

To predict Yt, our model can be trained by minimizing mean
squared error L(θ) between the predicted speed matrix and the true
speed vectors such as

L(θ) = ||Yt − Ỹt||22 (14)

where θ are all learnable parameters in BiRNet model.

4 Experiment
To evaluate the performance of our deep learning model BiRNet, we
conduct a series of experiments on road networks in New York City.
In this section, we first discuss the setup of our experiments, then we
present the baseline methods and finally, we discuss the experimental
results.

4.1 Data Description
In our experiment, we used the following data-sets to test our BiRNet
model. Details are given as follows:

• UIUC New York City Traffic Estimates2: a public data-set, on
which we extract spatial features and conduct our following ex-
periments. This data-set covers 700 million taxi trips from 2010 to
2013 in New York City. It contains accurate hourly average traffic
speed measurement for almost all road segments of the NYC road
networks. The road network includes about 261 thousand main
links and 96 thousand nodes. Only holidays information are used
for the context learning. Among the data of the year 2013, three
months data are used for evaluating the model, the last three weeks
are test set.

Preprocessing: We represent the road network as a directed graph
composed of road segments and nodes, each node is an intersection
of the road network. Each directed link is a road segment connecting
two nodes. A road/street consists of multiple links, two-way streets
are often represented as two directed links with opposite directions.
We calculate the average traffic speed for each link at a particular
hour. To learn the short-term traffic periodicity, we divide a day δ
into different time-bins (e.g. an hour is a bin in our experiments). An
hour is also divided by 4 time-slots τ , (e.g., each is 15 minutes).

To scale the data into the range [−1, 1], we use the Min-Max nor-
malization method and then, for comparison with real speed data, we
re-scale the predicted value back to the normal values. For external
factors, a binary vector is given by one-hot coding to transform and
represent the holidays, the weather conditions and the time-stamp
of the day. We also scale the Temperature and Wind speed into the
range [0, 1] by Min-Max normalization. We use tanh in the output of
the BiRNet model as our final activation (see Equation 13). We train
our network with the following hyper-parameters setting: mini-batch
size (48), learning rate (0.0001) with adam optimizer, 1 × D filters
(32) and 2× D filters (16) in each Convolution layer. Afterwards, we
continue to train the model on the full training data for a fixed num-
ber of epochs (e.g., 100, 500, 1000 epochs). To learn the periodicity
dynamics, we empirically fix it to one-day and one-week.

2 https://lab-work.github.io/data/
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(a) Training Accuracy (b) Validation Accuracy (c) Training Loss (d) Validation Loss

Figure 7: Training Statistics.

4.2 Benchmarks
Several prevailing algorithms are chosen for comparisons with our
proposed model BiRNet.

• SVR [22]: Support Vector Regression (SVR) is a powerful regres-
sion method.

• ARIMA [17]: Auto-Regressive Integrated Moving Average
(ARIMA) is a well-known model for predicting future values in
a time series.

• RNN [24]: A recurrent neural network (RNN) is a method to a
temporal sequence values.

• GRU [5]: Gated Recurrent Unit (GRU) is an improved version of
standard recurrent neural network to keep information from long
ago, without washing it through time or remove information which
is irrelevant to the prediction.

• LSTM [16]: Long short-term memory (LSTM) were developed to
deal with the vanishing gradient problems that can be encountered
when training traditional RNNs.

• Bi-LSTM [3]: Using bidirectional LSTM will run the inputs in
two ways, one from past to future and one from future to past to
measure the backward dependency of traffic data prediction.

• DCNN [15]: uses convolution, pooling and fully connected layers
to predict traffic speed.

• ST-ResNet [29]: uses residual network to model three temporal
properties for traffic prediction.

• LC-RNN [14]: uses convolution, RNN and fully connected layers
for speed prediction.

4.3 Performance
Evaluation Metrics:

We measure our method by Root Mean Square Error (RMSE),
Mean Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE) as follows:

RMSE =

√
1

n
Σn

t=1

(
yt − ŷt

)2
(15)

MAE =
1

n
Σn

t=1|yt − ŷt| (16)

MAPE =
100%

n

n∑
t=1

∣∣∣∣yt − ŷtyt

∣∣∣∣ (17)

where ŷt and yt are the predicted value and real value, respectively;
n is the number of all predicted values.

Results on New York City Data-set: The Figure 8a shows the
RMSE and MAE of the most existing models solving the traffic speed
prediction problem. Our proposed model BiRNet outperforms the ex-
isting approaches.
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Figure 8: Results on NYC Data-set.

More methods are shown in Table 1. First we compare our model
with 9 other benchmarks using NYC data-set. The time interval is
15 min and the number of intervals to be predicted is 2. We ob-
serve that our proposed BiRNet model is better than 9 benchmarks, it
outperforms nine well-known existing methods. In addition, to ana-
lyze the effect of the different components in our model, we propose
the structures BiRNet\P , BiRNet\C and BiRNet\LK that remove
the components: periodicity learning, context learning and spatial
learning, respectively. Results of BiRNet\LK shows that discarding
look-up layer may reduce the accuracy achieved by BiRNet. That
means, the topology of road network captured by our look-up layer
improves the results and demonstrates the effectiveness of taking spa-
tial dependency into consideration. In addition, comparing BiRNet
to BiRNet \ P and BiRNet\C, we can observe that the result is fur-
ther promoted using periodicity and context learning components,
respectively, pointing out that external extraction layer is beneficial
for speed prediction.

The default parameter of the number of predicted intervals, de-
noted p, is 2. Figure 8b shows the comparative performances for
LSTM, DCNN, ST-ResNet and BiRNet varying the number of pre-
dicted intervals from 1 to 4. As shown in the figure, BiRNet achieves
the best performance when varying p. Note that the performance
becomes worse with larger p since the correlation between speed
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(a) Residential Road (b) Trunk Road

(c) Motorway (d) Motorway

Figure 9: Deep Analysis on different road types.

[ht]

Methods RMSE MAE MAPE
SVR 3.452 3.132 0.367

ARIMA 4.763 4.612 0.385
RNN 1.954 1.277 0.128
GRU 1.909 1.243 0.132

LSTM 1.969 1.291 0.173
Bi-LSTM 2.180 1.367 0.136

DCNN 2.151 1.541 0.158
ST-ResNEt 1.849 1.269 0.131
LC-RNN 1.808 1.216 0.125

BiRNet [ours] 1.740 1.186 0.122
BiRNet\P 1.797 1.231 0.124
BiRNet\C 1.781 1.222 0.124

BiRNet\LK 1.756 1.205 0.122

Table 1: Results on NYC Data-set.

in time intervals being predicted and speed in current moment de-
creases.

Deep analysis:
In the following, we first describe some training statistics and then
present our model performance for different type of roads.
In Figure 7, we can see how our model did over time (10 epochs).
First, we show accuracy behaviour on training and validation set in
Figures 7a and 7b, respectively. Interestingly enough, our validation
accuracy still continued to hold. Figures 7c and 7d show the shape of
training and validation loss, respectively. Loss is the measure of error,
the lower the loss, the better a model. It clearly looks that validation
loss is improving over epochs.

We analyze the traffic pattern at different scenarios. Figure 9
shows the model performance on different road types (motorways,
residential ways and trunk ways) on different days (weekday and
weekend). This is a traffic speed prediction at 8:15 am on testing
set from 25-th December to 31-st December 2018. The days in the
figures are in chronological order, i.e., 25-th December 2018 is Tues-
day, etc. The accuracy of our model over different road type is the
difference between predicted speed values and real values. We use
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Figure 10: Results on NYC Data-set.
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10 epochs for training the model. Through Figure 9, we can observe
the performance of our model on residential road, trunk road and
motorways. On different road type, the BiRNet model has a good
performance on Tuesday, 25-th December 2018, which shows our
model capacity to learn special pattern as holidays. For residential
and trunk roads, the accuracy value slightly increases over week days
but decreases on Saturday and Sunday which shows that our model
is good at learning temporal patterns in both residential and trunk
roads. For motorways, our model has shown a similar behaviour and
the accuracy values slightly increases and decreases over days.

In summary, from the above experimental result on NYC data set,
we can observe that BiRNet achieves the best performance compared
with the state-of-the-arts. Moreover, the fusion of spatial dependency
on the road network, temporal evolution and contextual information
are the key factor to more learn the traffic speed behaviour.

5 Conclusion

This paper proposes a novel deep learning based traffic speed pre-
diction method that can extract spatio-temporal traffic features using
a look-up layer to embed the road network and learn surrounding
area dynamics. The model also integrates external information such
as periodicity, holidays and weather data. We evaluate our model on
two road networks in NYC, achieving performances which are sig-
nificantly beyond nine existing methods, confirming that our model
is applicable to the traffic speed prediction problem.
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