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Abstract. In supervised learning, the generative approach is an im-
portant one, which obtains the generative model by learning the joint
probability between features and categories. In quantum mechanics,
Quantum Entanglement (QE) can provide a statistical correlation be-
tween subsystems (or attributes) that is stronger than what classical
systems are able to produce. It inspires us to use entangled systems
(states) to characterize this strong statistical correlation between fea-
tures and categories, that is, to use the joint probability derived from
QE to model the correlation. Based on the separability of the density
matrix of entangled systems, this paper formally clarifies the man-
ifestation of the strong statistical correlation revealed by QE, and
implements a classification algorithm (called ECA) to verify the fea-
sibility and superiority of the correlation in specific tasks. Since QE
arises from the measurement process of entangled systems, the core
of ECA is quantum measurement operations. In this paper, we use
the GHZ [25] and W [22] states to prepare the entangled system and
use a fully connected network layer to learn the measurement oper-
ator. It can also be understood as replacing the output layer of the
Multi-Layer Perceptron (MLP) with a quantum measurement oper-
ation. The experimental results show that ECA is superior to most
representative classification algorithms in multiple evaluation met-
rics.

1 Introduction

In machine learning, supervised learning is an important learning
method, and is also the most widely used learning method in the in-
dustrial field. Therefore, continuous in-depth research on supervised
learning methods will directly promote greater progress in industrial
technology. An important approach in supervised learning is the gen-
erative one, which obtains the generative model by learning the joint
probability between features (or attributes) and categories (or labels).
In quantum mechanics, Quantum Entanglement (QE) is an important
quantum resource and has no classical counterpart and therefore has
been receiving continuous theoretical attention ever since the birth of
quantum mechanics. QE plays very important roles in quantum in-
formation processing, such as Quantum Teleportation [5, 28], Dense
Coding [34, 32], Error Correction [8, 12], Cryptography [24, 6], and
Computation [17, 7].
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Quantum mechanics theory has some characteristics that are not
possessed by classical theory, such as observational behavior affects
the observed system [10, 40] and the observations of the system are
affected by the observed context [29]. These differences (or advan-
tages) may help us improve and perfect the current classical models
and algorithms.

QE can provide a statistical correlation between subsystems (or at-
tributes) that is stronger than what classical systems are able to pro-
duce [48]. It inspires us to use quantum entangled systems (states) to
characterize this strong statistical correlation between features and
categories, that is, to use the joint probability derived from QE to
model the correlation. This paper uses the joint probability derived
from QE to implement a classification algorithm (called ECA) to
learn the strong statistical correlation between features and categories
and between features. In the existing work, QE is mostly related to
quantum acceleration [35] or non-local correlation [37], but these
topics are not discussed in this paper. This paper constructs a classi-
fication algorithm based on pure mathematical forms of QE and does
not assume that between features and categories or between features
have non-locality. In other words, we focus on the superiority of the
mathematical form of quantum mechanics.

QE arises from the measurement process of entangled systems
(states), so the core of ECA is quantum measurement operations. In
this paper, we use the GHZ [25] and W [22] states to prepare the en-
tangled system and use a fully connected network layer to learn the
parameters of the measurement operator. It can also be understood as
replacing the output layer of the Multi-Layer Perceptron (MLP) with
a quantum measurement operation. Since ECA is simulated on clas-
sical computers, it is not able to verify the algorithm under the large
datasets. The main difficulty in its existence is that the resources re-
quired by the algorithm will increase exponentially due to the tensor
operation [35]. Experiments are performed on three classic machine
learning datasets. The experimental results show that ECA is supe-
rior to most representative classification algorithms in multiple eval-
uation metrics.

The main contributions are listed as follows: 1) Based on the sep-
arability of the density matrix of entangled systems, this paper de-
composes the joint probability derived from QE into two parts, the
classical probability part and the quantum probability part, so that
we can clarify the essential reason of the strong statistical correlation
revealed by QE, that is, a quantum interference term for classical
probability is added. 2) According to the analysis conclusions, this
paper uses the joint probability derived from QE to implement a clas-
sification algorithm, and fully validates it on three machine learning
datasets.
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2 Related Work

Since the birth of statistics, new classification algorithms and their
various improvement methods have emerged, which are widely used
in all areas of life. We briefly mention some important classical clas-
sification algorithms, and mainly focus on the learning methods in-
spired by quantum mechanics.

In 1936, Fisher [23] proposed the famous Fisher discriminant anal-
ysis; in 1957, Rosenblatt [39] proposed the perceptron method; in
1958, Cox [14] proposed the logistic regression algorithm; in 1963,
Vapnik et al. [47] proposed the support vector machine algorithm; in
1967, Cover et al. [13] proposed the nearest neighbor classification
algorithm. See also [27, 41, 45].

Due to the limitation of the computing power and popularity of
quantum computers, a small number of researchers can implement
quantum algorithms on quantum computers, but most of them use
the simulation method on classical computers to complete the re-
search. Considering the advantages of quantum computer process-
ing high-dimensional vectors in large tensor product space, Lloyd et
al. [33] proposed a supervised and unsupervised quantum machine
learning algorithm for cluster assignment and cluster finding. This al-
gorithm reduces the time complexity of the classical algorithm from
the polynomial-time to the logarithmic-time. Similarly, Rebentrost
et al. [38] demonstrated that support vector machines implemented
on quantum computers can reduce the time complexity from the
polynomial-time to the exponential-time for classical sampling tasks.
From the perspective of quantum information, Dunjko et al. [21] pro-
posed an approach for the systematic treatment of machine learning.
See also [46, 9, 36, 2, 16].

Levine et al. [31] established a contemporary deep learning ar-
chitecture that effectively represents highly quantum entangled sys-
tems in the form of deep convolutional and recursive networks.
By constructing tensor network equivalents of these architectures,
they identify the inherent reuse of information in the network op-
eration as a key trait that distinguishes them from standard tensor
network-based representations, and that enhances their entanglement
capacity. Schuld et al. [43] interpreted the process of encoding in-
puts in a quantum state as a nonlinear feature map, mapping the
data into a quantum Hilbert space. According to the theory, two
quantum classification models are established, which use the vari-
ational quantum circuit as a linear model to explicitly classify the
data in Hilbert space. The quantum device estimates inner products
of quantum states to compute a classically intractable kernel. See
also [11, 20, 19, 1].

3 Theoretical Analysis and Verification

In order to have an intuitive understanding of the manifestation and
action mechanism of the strong statistical correlation revealed by QE,
we use the separability of the density matrix of entangled systems to
decompose the joint probability derived from QE into classical prob-
ability part and quantum probability part (called the quantum inter-
ference term) to clarify the essential reason for the strong statistical
correlation.

In 1927, von Neumann and Landau independently proposed the
concept of density matrix, and finally applied this concept to realize
the quantization of statistical thermodynamics. Due to the superpo-
sition of states in quantum mechanics, non-diagonal elements of the
density matrix appear, and it describes the coherent correlation be-
tween states. In fact, the decoherence process of the entangled system
is the process of gradually diagonalizing the density matrix. Because

the diagonal elements of the density matrix represent classic prob-
ability statistics between states, the off-diagonal elements represent
coherent correlation between states [15, 49]. The idea of treating the
diagonal part of the density matrix as a classical statistical descrip-
tion of states and the non-diagonal part as a coherence description
between states has been used in Ref. [44, 50].

Let us begin with an arbitrary two-qubit entangled state in the
bases σz|±〉 = ±|±〉6 that

|ψ〉 = α|++〉+ β| − −〉 (1)

where α and β are the normalization condition |α|2 + |β|2 = 1 but
α, β 6= 0. Without losing generality, α and β can be parameterized
as α = eiη sin ξ, β = e−iη cos ξ, but sin ξ, cos ξ 6= 0, where η and ξ
are two real parameters and i is the imaginary number with i2 = −1.

The density matrix of the entangled state, ρall = |ψ〉〈ψ|, can be
separated to two parts, i.e.,

ρall = ρc + ρq, (2)

in order to see the quantum correlation explicitly. The first part is

ρc = sin2 ξ|++〉〈++ |+ cos2 ξ| − −〉〈− − |, (3)

which describes two qubits obeying the classical (or local) statistics.
The other part is

ρq = sin ξ cos ξ
(
ei2η|++〉〈−−|+ e−i2η|−−〉〈++|

)
, (4)

which describes the quantum (or non-local) correlation between two
qubits.

3.1 Measuring Density Matrix
From the definition of projective measurement in quantum mechan-
ics theory [35], a projective measurement is described by an observ-
able, M , a Hermitian operator on the state space of the system being
observed. The observable has a spectral decomposition,

M =
∑
m

mMm (5)

where Mm is the measurement operator (or projector) onto the
eigenspace of M with eigenvalue m. The possible outcomes of the
measurement correspond to the eigenvalues, m, of the observable.
Upon measuring the state |ψ〉, the probability of getting result m is
given by

P (m) = 〈ψ|Mm|ψ〉 = Tr[Mm(|ψ〉〈ψ|)] (6)

where Tr denotes a matrix function, that is, the trace of the matrix.
Suppose that the observables of the two subsystems of the entan-

gled system |ψ〉 are a and b, respectively, and they are defined as:

Mr =

[
cos θr e−iφr sin θr

eiφr sin θr − cos θr

]
(7)

where θ and φ are two arbitrary real parameters, and r ∈ {a, b}. Its
spectral decomposition is Mr =M+

r −M−r . The probability of the
combination is obtained as:

Pall(+a,+b) = Tr[(M+
a ⊗M+

b )ρall], (8)

6 We here adopt the widely used Dirac notations, in which a unit vector ~v
and its transpose ~vT are denoted as a ket |v〉 and a bra 〈v|, respectively.
σz denotes Pauli matrix, and Pauli matrix refers to four common matrices,
which are 2×2 matrix, each with its own mark, namely σx ≡ X , σy ≡ Y ,
σz ≡ Z and I .
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which can be separated to classical (local) probability part and quan-
tum (non-local) probability part (called a quantum interference term)

Pall(+a,+b) = Tr[(M+
a ⊗M+

b )(ρc + ρq)] (9)

= Tr[(M+
a ⊗M+

b )ρc]+Tr[(M
+
a ⊗M+

b )ρq] (10)

= Pc(+a,+b) + Pq(+a,+b) (11)

where ⊗ denotes the tensor (Kronecker) product.
Accordingly, the probability of other combinations, i.e.,

Pc(±a,±b), Pc(∓a,±b), Pq(±a,±b) and Pq(∓a,±b), can
also be obtained. Then under the outcome-independent base vectors
|+ a,+b〉, |+ a,−b〉, | − a,+b〉 and | − a,−b〉, the average values
of a and b in the classical and quantum cases are

〈ab〉c=Pc(+a,+b)−Pc(+a,−b)−Pc(−a,+b)+Pc(−a,−b) (12)

=cos θa cos θb (13)

and

〈ab〉q=Pq(+a,+b)−Pq(+a,−b)−Pq(−a,+b)+Pq(−a,−b) (14)

=sin θa sin θb sin 2ξ cos(φa + φb + 2η), (15)

respectively, and 〈·〉 is the quantum mechanical symbol of the aver-
age value.

3.2 Main Conclusions and Critical Value
The theoretical tool for verifying QE is the Bell inequality [3]. Vio-
lating (or Destroying) Bell inequality is a sufficient condition for the
existence of QE, that is, it belongs to the category of quantum prob-
ability. Bell inequality has many well-known promotion forms, the
first of which is the Clauser-Horne-Shimony-Holt (CHSH) inequal-
ity [30]. The form of the CHSH inequality is simpler and more sym-
metrical than many other Bell inequalities that are later proposed.
The specific form of the CHSH inequality is

|E(QS) + E(RS) + E(RT )− E(QT )| ≤ 2 (16)

where E(·) denotes the average value, and Q, R, S and T denote
observables.

Based on the CHSH inequality, we can confirm the category of
each part of the joint probability derived from QE, and we can draw
the following conclusion:

Conclusion 1. Pc(·) belongs to the category of classical probability.

Conclusion 2. Pq(·) belongs to the category of quantum probability,
so it can be called a quantum interference term for classical proba-
bility.

Conclusion 3. Pall(·) = Pc(·) + Pq(·) belongs to the category of
quantum probability.

Moreover, based on the above analysis, we can also obtain the crit-
ical value of the correlation between the subsystems of the entangled
system when the CHSH inequality is broken, that is, the values of
the off-diagonal elements of the density matrix when the CHSH in-
equality is broken. From this, we can define a density matrix ρ with
off-diagonal elements as the independent variable 0 ≤ x ≤ 1

2
, i.e.,

ρ = ρc + ρq (17)

with
ρc =

1

2
(|++〉〈++ |+ | − −〉〈− − |) (18)

and
ρq = x(|++〉〈− − |+ | − −〉〈++ |). (19)

Calculated to get
〈ab〉c = cos θa cos θb (20)

and
〈ab〉q = 2x sin θa sinb cos(φa + φb). (21)

From the numerical analysis, when θQ = 0, θr = π
2

, θS = 5π
4

,
θT = 7π

4
and φQ = φR = φS = φT = 0,

|〈QS〉all+〈RS〉all+〈RT 〉all−〈QT 〉all| =
√
2(2x+ 1). (22)

Therefore, when x ≈ 0.207, it is the critical value of off-diagonal
elements when the CHSH inequality is broken.

3.3 Discussions
The above analysis shows that the joint probability derived from QE
can violate the Bell inequality, that is, it belongs to the category of
quantum probability. Moreover, the joint probability can be divided
into the classical probability part and the quantum probability part
(called the quantum interference term), i.e., Pall(·) = Pc(·)+Pq(·),
and the quantum interference term can also violate the bell inequality.

From Eqs. 13 and 15, we can get the following conclusions: 1)
The phase of the entangled state, namely e±iη , is independent of the
classical probability part, but together with the azimuth angles φ of
the observables determine the quantum interference term. 2) When
the quantum interference term is not zero, the azimuth angles φ of
the observables again describe the correlation between observables
in a manner different from the polar angles θ. It can be seen that
because quantum mechanics uses complex numbers, it is possible
to describe a strong statistical correlation between observables. 3) It
can be seen from the quantum interference term that when the quan-
tum interference term is not zero, the interference term contains all
parameters including the observables and the entangled system. The
form of quantum interference terms can explain many (strange) phe-
nomena in the quantum field, such as the observables of the system
are affected by the observed context [29].

The significance of the section is as follows:

• The joint probability derived from QE is given;
• The classical probability and quantum probability parts are clearly

divided, and the quantum probability part can be called the quan-
tum interference term for classical probability;

• The quantum interference term is formalized, and the components
and their relationships are clarified.

4 The Classification Algorithm with QE
It can be known from quantum mechanics theory that QE occurs in
the measurement process of entangled systems, so the overall struc-
ture of ECA will unfold around the measurement process of entan-
gled systems. For the entangled system to be measured, it can be
known from the analysis of the theoretical section that both the prob-
ability amplitude and phase information of the entangled system act
on the quantum interference term, and its effect can be covered by
the azimuth angle of the observables. Therefore, we use certain en-
tangled states to represent the measured system, such as the GHZ
and W states. For the observable of the subsystems, it can be known
from the analysis of the theoretical section that the polar angle of the
observable is related to both the classical probability term and the
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quantum interference term, and the azimuth angle is only related to
the quantum interference term. Therefore, for targeted learning the
strong statistical correlation, We will mainly learn the azimuth angle
related only to the quantum interference term, that is, the azimuth
angle is learned from the features and categories, and the polar an-
gle is expressed as a learnable weight variable, that is, the degree of
freedom.

The following sections will describe in detail the construction
method of both the entangled system and its observable, the model
structure of ECA, and the parameter learning process of ECA.

4.1 Define Entangled System

We first give formal definitions of the GHZ and W states and use
them to construct the entangled system of ECA.

Definition 1. The Greenberger-Horne-Zeilinger state (GHZ state) is
a entangled state that involves at least three subsystems (particles).
It was first studied by Daniel Greenberger, Michael Horne and Anton
Zeilinger in 1989 [25]. In the case of each of the subsystems being
two-dimensional, i.e., qubits, it is

|GHZ〉 = 1√
2

(
|0〉⊗N + |1〉⊗N

)
(23)

whereN is the number of qubits. The GHZ state is a maximally quan-
tum entangled state.

Definition 2. The W state [22] is an entangled state of three qubits,
which has the form

|W 〉 = 1√
3
(|001〉+ |010〉+ |100〉) . (24)

The notion of the W state has been generalized for N qubits, which
has the form

|W 〉 = 1√
N

(|10 . . . 0〉+ |01 . . . 0〉+ . . .+ |00 . . . 1〉) . (25)

Figure 1. Graphical description of the entanglement relationship of the W
and GHZ states. This figure is referenced from Ref. [4]. a) and b) represent
the dot-line structure diagrams of the W and GHZ states, respectively, while

c) and d) are visualized to give an example diagram.

There has been a lot of discussion about the entanglement relation-
ship and strength of the W and GHZ states, and we will not repeat
it here. In order to enable the reader to have a preliminary under-
standing of the W and GHZ states, Fig. 1 given by Ref. [4] is cited
here.

4.2 Define Observable of Entangled System
In quantum mechanics, the properties of the system are called ob-
servables and are represented by Hermitian operators (matrices),
e.g., Eq. 7. Therefore, for the classification task, we can respectively
represent features and categories with observables, e.g., Mfea and
Mcat. Because of this, ECA can only be used to solve the two-class
(binary) classification task. Of course, the method of adding the num-
ber of qubits of the categories can be used to solve the multi-class
classification task, but this is not the focus of this paper. Spectral
decomposition of the observables Mr yields two measurement oper-
ators,

Mr(θr, φr) =M+
r (θr, φr)−M−r (θr, φr), (26)

that is, M+
r (θr, φr) and M−r (θr, φr).

In this paper, we use the azimuth angle φ to represent the feature
k of the instance, and the polar angle θ to represent the degrees of
freedom of k, that is, a learnable weight variable, so the measurement
operators of k areM+

k (θk, φk) andM−k (θk, φk), respectively. In this
paper, we define the polar angle as a fixed value, that is, θ = π

2
, in

order to reduce the number of learning parameters. Of course, there
are advantages to using learnable variables, but the learning difficulty
increases accordingly. We use the determined measurement operators
to represent the categories of the instance,

M+
cat =

1

2

[
1 1
1 1

]
,M−cat =

1

2

[
−1 1
1 −1

]
, (27)

that is, θ = π
2

and φ = 0. In fact, any set of eigenstates of the
observable can be used to represent the categories, as long as they
meet the orthogonality. The reason why we need to select a set of
orthogonal bases to represent the categories is because the positive
and negative examples of the two-class classification task are often
binary opposition.

Now we can formally define the measurement operator for the en-
tangled system. Assuming that each instance has N features and one
category, the measurement operator of the entangled system can be
defined as

M+(θ, φ) =

N⊗
k=1

M+
k (θk, φk)⊗M+

cat (28)

and

M−(θ, φ) =
N⊗
k=1

M+
k (θk, φk)⊗M−cat. (29)

Here we can also useM−k to instead of theM+
k in the above formula,

Eqs. 28 and 29, they have the same effect.
ApplyingM+ andM− separately to the entangled system, e.g.,

the GHZ state, yields probability values that are the positive and neg-
ative examples,

P+ = 〈GHZ|M+|GHZ〉 (30)

and
P− = 〈GHZ|M−|GHZ〉. (31)

4.3 Model Structure of ECA
The above sections have given the core parts of ECA, namely Eqs. 30
and 31. For the feature-related parameter φr , we use a fully con-
nected network layer to learn. Formally, we can also think of ECA
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as the MLP that replaces its output layer with the quantum measure-
ment process. Moreover, in order to reproduce the scene required to
generate quantum entanglement, we train three sets of measurement
operators at the same time to obtain the results of different measure-
ment situations. In order to make the reader understand the overall
structure of ECA more clearly, here we use the pseudo-code to dis-
play, that is, Algorithm 1.

Algorithm 1 Predicts Data by ECA

Input: x ∈ RN
Output: y ∈ {+1,−1}
1: Define ws ∈ RN∗N and bs, vs, θs ∈ RN , s = 1, 2, 3, the value

of which is determined by the training process;
2: |GHZ〉 = 1√

2
(|0〉⊗(N+1) + |1〉⊗(N+1));

3: φs = ReLU(ws ∗ x+ bs) ∗ vs, s = 1, 2, 3;
4: P+

s = 〈GHZ|M+(θs, φs)|GHZ〉, s = 1, 2, 3;
5: P−s = 〈GHZ|M−(θs, φs)|GHZ〉, s = 1, 2, 3;
6: if 1

3

∑S
s P

+
s > 1

3

∑S
s P
−
s then

7: return +1;
8: else
9: return −1;

10: end if

4.4 Parameter Learning Process of ECA
Machine learning often uses the loss function to evaluate the pros
and cons of the model, and also uses the loss function to improve
the performance of the model. This process of improvement is called
optimization. ECA uses the classical cross-entropy loss function,

H(p, q) = −
∑
x

p(x) log q(x), (32)

to act on its loss function. Since Adam (adaptive moment estimation)
is a clear range of learning rates per iteration, making the parame-
ters change smoothly, we use Adam as the optimizer for ECA. In
fact, Adam is also the most commonly used optimizer in mainstream
learning algorithms.

The pseudo-code of the training process of ECA is shown in Al-
gorithm 2.

5 Experiments
To evaluate the effect of ECA, we conduct two groups of comparative
experiments which are compared with standard MLP and compared
with most representative classification algorithms. Moreover, to ver-
ify the impact of different entangled states on ECA, e.g., the GHZ
and W states, we also conduct the comparative experiment.

5.1 Datasets and Evaluation Metrics
The experiments are conducted on three most frequently used
and most popular machine learning datasets from UCI [18], i.e.,
Abalone7, Wine Quality8 (Red) and Wine Quality8 (White). The
statistics of each dataset are given in Tab. 1. Since the performance
of ECA will be verified under the two-class classification task, the
above multi-class datasets need to be adjusted to meet the require-
ments of the task.
7 http://archive.ics.uci.edu/ml/datasets/Abalone
8 http://archive.ics.uci.edu/ml/datasets/Wine+Quality

Algorithm 2 Training Process of ECA
Input: Training Set D
D = {(xi, yi)|xi ∈ RN , yi ∈ {[0, 1], [1, 0]}}Mi=1.

1: Initialise ws ∈ RN∗N and bs, vs, θs ∈ RN , s = 1, 2, 3, the
parameters that need to be learned;

2: |GHZ〉 = 1√
2
(|0〉⊗(N+1) + |1〉⊗(N+1));

3: repeat
4: for each (xi, yi) in D do
5: φs = ReLU(ws ∗ xi + bs) ∗ vs, s = 1, 2, 3;
6: P+

s = 〈GHZ|M+(θs, φs)|GHZ〉, s = 1, 2, 3;
7: P−s = 〈GHZ|M−(θs, φs)|GHZ〉, s = 1, 2, 3;
8: if 1

3

∑S
s P

+
s > 1

3

∑S
s P
−
s then

9: Pi = [0, 1];
10: else
11: Pi = [1, 0];
12: end if
13: Calculate the cross-entropy of Pi and yi, i.e. Eq. 32; Use

the optimizer Adam to minimize H(Pi, yi) and update pa-
rameters.

14: end for
15: until Epochs

Abalone is a dataset that predicts the age of abalone. We divide the
age less than 10 into one class, and the others into another. The reason
for dividing the datasets in this way is that the number of instances
(samples) in two categories can be as close as possible, making the
data unbiased.

Wine Quality (WQ) is a dataset that scores on wine quality. The
score is between 0 and 10. We divide the scores less than or equal to
5 into one class, and the others into another.

All experiments use the 5-fold Cross-Validation method to divide
the training set and test set. The experimental evaluation metrics, F1-
score, Accuracy and AUC (Area Under Curve), are taken as the aver-
age of 5 results.

Table 1. Dataset Statistics: For each dataset, the number of instances
(samples) and the number of attributes are given in the table. The number of

positive and negative samples is shown in parentheses.

Dataset Instances Attributes

Abalone 4177 (2096+2081) 8
Wine Quality (Red) 1599 (855 + 744) 11
Wine Quality (White) 4898 (3258+1640) 11

5.2 Compared with Standard MLP
Since ECA uses a fully connected network layer to learn the param-
eters of the measurement operator, which is similar in form to a stan-
dard MLP, we first compare the effects of ECA and MLP under the
same settings. Both ECA and MLP use Adam as an optimizer for
the model and set up similar structures, that is, they have the same
number of parameters.

5.2.1 Baselines

The MLP has an input layer, a hidden layer and an output layer. The
input layer has N input neurons (nodes), where N is the number
of features (attributes) of the instance; the hidden layer also has N
neurons and its activation function is ReLU (Rectified Linear Unit);
the output layer has one neuron and its activation function is Sigmoid.
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Like ECA, the optimizer Adam is used to learn the parameters of the
MLP.

5.2.2 Hyper-Parameter Settings

ECA has three hyper-parameters, which are learning rate, mini-batch
and training epoch, respectively. ECA uses the same settings on three
datasets, i.e., the learning rate is 0.0001, the mini-batch is 1 and the
training epoch is 500. The entangled system uses the GHZ state.

The MLP also has three hyper-parameters, which are identical to
ECA. The MLP uses the same settings on three datasets, i.e., the
learning rate is 0.0001, the mini-batch is 1 and the training epoch is
500. Their weights are initialized to a truncated positive distribution,
and the biases are initialized to 0.01. In this section, we use the test
set divided by the Cross-Validation method as the validation set.

5.2.3 Experiment Results

Fig. 2 exhibits the training and verification accuracy of both ECA and
MLP on datasets Abalone, WQ (Red) and WQ (White). The experi-
mental results basically verifies the effectiveness of ECA, and it also
shows that ECA has a significant improvement in the experimental
effect compared to its auxiliary model, namely MLP.
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Figure 2. Under the three datasets Abalone, WQ (Red) and WQ (White),
the accuracy curves of ECA and the MLP on the training set (left column)

and verification set (right column), respectively.

5.3 Compared with Classical Algorithms

5.3.1 Baselines

We have selected some representative classification algorithms for
comparison experiments, including Logistic Regressive (LR), Naive
Bayesian Model (NBM), K-Nearest Neighbor (KNN), Support Vec-
tor Machine (SVM), Linear Discriminant Analysis (LDA), Quadratic
Discriminant Analysis (QDA) and Multi-Layer Perceptron (MLP).

5.3.2 Hyper-Parameter Settings

The hyper-parameters of ECA are exactly the same as those of Ex-
periment 5.2. The entangled system uses the GHZ state.

The hyper-parameters in the baselines are set to: in LR, ‘penalty’
is L2; in SVM, ‘C’ is 1.0 and ‘kernel’ is rbf ; in KNN, ‘n-neighbors’
is 5; in LDA, ‘solver’ is svd; in MLP, ‘activation’ is relu , ‘solver’
is adam and ‘alpha’ is 0.0001. Other hyper-parameters not listed use
the default value of the framework scikit-learn9.

5.3.3 Experiment Results

Tab. 2 exhibits the experiment results on datasets Abalone, WQ (Red)
and WQ (White) respectively, where bold values are the best perfor-
mances out of all algorithms. From the experimental results, three
metrics of ECA on three datasets are significantly better than the ma-
jority of other algorithms. It verifies the effectiveness of ECA from
a broader perspective. The experimental results in this section can
basically show that the joint probability derived from quantum en-
tanglement has certain effectiveness and superiority in classical clas-
sification tasks, and also show that the strong statistical correlation
revealed by quantum entanglement has certain utility and contribu-
tion in specific tasks.

Table 2. Experiment results on Abalone, WQ (Red) and WQ (White)
Dataset. The best-performed values for each dataset are in bold.

Dataset Algorithm F1-score Accuracy AUC

Abalone

LR 0.7690 0.7699 0.7708
NBM 0.7392 0.7349 0.7345
KNN 0.7747 0.7749 0.7842
SVM 0.7670 0.7536 0.7542
LDA 0.7769 0.7792 0.7601
QDA 0.7429 0.7593 0.7558
MLP 0.7617 0.7693 0.7584
ECA 0.7971 0.7957 0.7958

WQ (Red)

LR 0.7568 0.7217 0.7404
NBM 0.7361 0.7210 0.7292
KNN 0.6718 0.6497 0.6428
SVM 0.7281 0.7098 0.7095
LDA 0.7506 0.7367 0.7224
QDA 0.7430 0.7135 0.7146
MLP 0.6930 0.7141 0.7438
ECA 0.7898 0.7810 0.7818

WQ (White)

LR 0.8233 0.7380 0.6797
NBM 0.7807 0.7066 0.6683
KNN 0.7805 0.6939 0.6407
SVM 0.8256 0.7472 0.6731
LDA 0.8261 0.7527 0.6863
QDA 0.8172 0.7452 0.6953
MLP 0.7976 0.7057 0.6918
ECA 0.8287 0.7672 0.7271

5.4 Comparison of Different Entangled Systems
To verify the impact of different entangled systems on the experi-
mental results, we select the GHZ and W states respectively for the
comparative experiment. The hyper-parameter setting of ECA in the
experiment was exactly the same as that of Experiment 5.2.

The experimental results are exhibited in Fig. 3. It can be seen
from the experimental results that the influence of different entan-
glement systems on the experimental results is not obvious. If the

9 https://scikit-learn.org/stable/index.html
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entangled system is a general superposition state, that is, there is no
entanglement, ECA will not have the ability to learn. It also proves
that ECA has the ability to learn entanglement features.
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Figure 3. Under the three datasets Abalone, WQ (Red) and WQ (White),
the accuracy curves of ECA on the GHZ and W states, respectively. The left
column is the result of the training set, and the right column is the result of

the validation set.

6 Discussions

In this section, we mainly discuss three questions (Q) and give the
answers (A) from the author.

Q: Can quantum mechanics theory be applied to the field of ma-
chine learning (or pattern recognition)?

A: Although quantum mechanics theory is generally regarded as
microphysical theory, its connotation is about information rather than
physics. Since Hardy [42, 26], the information nature of quantum
mechanics has been increasingly clarified: it can be proved that quan-
tum mechanics can be formally derived from 4-5 general informa-
tion processing axioms which are conceptually natural and techni-
cally concise. Moreover, if a specific limitation is imposed on the set
of information processing axioms derived from quantum mechan-
ics, a special case of quantum mechanics, namely classical probabil-
ity theory, can be derived. Therefore, the law of quantum mechanics
should not only be regarded as the law of the microphysical world,
but should be regarded as the general law of information processing.

Q: Can classical computers simulate (or reproduce) QE?
A: Although it has experienced rapid development in recent years,

quantum computer technology is still in its infancy compared with
mature classic computer technology. Recently, Google’s paper pub-
lished in Nature magazine announced the realization of quantum
hegemony, but it is only a prototype, and it will take some time to
achieve the goal of serving general scientific research. Recurring QE
or performing quantum computation on a classical computer requires
more computational power than quantum computers to construct as-
sociations and constraints between computational units, but it does
not indicate that classical computers cannot simulate QE.

Q: How to prove the existence of QE in the classification algo-
rithm?

A: The study of QE is still in its infancy, many of the theories
are still not perfect, and many phenomena are still unclear. The ver-
ification of QE at this stage can only be proved by the violation of
the inequality proposed by the classical theory, that is, Bell inequal-
ity. However, it is a sufficient but unnecessary condition to prove the
existence of QE by violating Bell inequality. For this difficulty, this
paper can only be used to construct the classification algorithm from
the formalization of QE that violates Bell inequality, and prove that
the algorithm’s infrastructure can violate Bell inequality.

7 Summary and Outlook
Quantum entanglement is an important quantum resource and has no
classical counterpart and therefore has been receiving continuously
theoretical attention ever since the birth of quantum mechanics. In
this paper, in order to clarify the manifestation and action mecha-
nism of the strong statistical correlation revealed by quantum entan-
glement, we quantify it as a quantum interference term for classical
probability based on the separability of the density matrix of entan-
gled system. In fact, some other quantum phenomena in quantum
mechanics have taken the same approach. Moreover, we use the for-
mal framework of quantum entanglement to construct a classification
algorithm (called ECA) to verify the role of strong statistical corre-
lation in classical classification tasks. Due to the limitations of sim-
ulating quantum algorithms on classical computers, ECA can only
be tested on some lightweight machine learning datasets. The ex-
perimental results show that ECA is superior to most representative
classification algorithms in multiple evaluation metrics.

The research in this paper has achieved some meaningful results,
but there are also some shortcomings. We list the shortcomings of
the algorithm to facilitate colleagues to study together. 1) Need to
propose better optimization algorithms and optimizers in the com-
plex domain. 2) Further clarify the physical meaning of the quantum
interference term or further theoretical analysis. 3) Excavate the ap-
plicable scene of the entanglement phenomenon and test the utility
of the quantum interference term.
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