24th European Conference on Artificial Intelligence - ECAI 2020

Santiago de Compostela, Spain

Abstraction for ASP Planning

Zeynep G. Saribatur !

Abstract. Humans are capable of abstracting away irrelevant de-
tails or distinguishing the common properties when studying prob-
lems. This is especially noticeable for planning problems, as humans
are able to disregard certain parts of the domain and focus on the
key elements important for finding a plan. Recently, the notion of ab-
straction has been introduced for Answer Set Programming (ASP),
a knowledge representation and reasoning paradigm widely used in
problem solving, with the potential to understand the key elements
of a program that play a role in finding a solution. This paper high-
lights the potential use of such an abstraction in getting to the essence
of planning problems, expressed in ASP, by disregarding irrelevant
details and computing abstract plans.

1 INTRODUCTION

Human reasoning and constructing explanations involve the use of
abstraction, by reasoning over the models of the world that are built
mentally [7]. Among the several interpretations on the meaning of
abstraction, one that comes up is the capability of abstract thinking.
This is achieved by removing irrelevant details and identifying the
“essence” of the problem [8]. The notion of relevance is especially
important in problem solving, since the problem at hand may become
too complex to solve if every detail is taken into account. Another
view on abstraction is the generalization aspect, which is the process
of distinguishing the common properties among the objects.

Inspired from this human ability, recently, we introduced the no-
tion of abstraction for ASP,> by means of clustering the elements of
the domain [11] or omitting certain atoms in the program [10], and
automatically constructing an over-approximation. The introduced
CEGAR-style [2] abstraction-&-refinement methodology starts with
an initial abstraction and refines it repeatedly using hints that are ob-
tained from checking the abstract answer sets, until a concrete solu-
tion (or unsatisfiability) is encountered. The methodology is imple-
mented in prototypical tools® and evaluated on different benchmarks.
Employing such an abstraction showed potential for aiding program
analysis as it allows for problem solving over abstract notions, by
achieving abstract answer sets that reflect relevant details only or by
detecting unsolvability at the abstract level. We recently showed the
similarity of the obtained abstractions in unsatisfiable grid-cell prob-
lems with the zooming-in ability of humans’ explanations [4].

Here, we highlight the potential use of domain abstraction for get-
ting to the essence of the planning problems expressed in ASP, by ab-
stracting over the unnecessary details. This ongoing research opens
a wide-range of applications where an understanding is needed, and
suggests human-inspired abstractions to tackle the challenges.

L Institute of Logic and Computation, TU Wien, Vienna, Austria, email:
zeynep @kr.tuwien.ac.at

2 In collaboration with Thomas Eiter and Peter Schiiller.

3 http://www.kr.tuwien.ac.at/research/systems/
abstraction/

2 BACKGROUND

We refer the readers to [1] for details on ASP.

ASP Planning. Planning is represented by adding a time variable
to the atoms, and introducing action atoms that cause changes over
time [9], in different ways. For example, the effects of moving a
block on top of another can be expressed with the rules

onB(B, B1,T + 1) < moveToBlock(B, B1,T). €))
~onB(B, Ba,T) ¢ onB(B, B1,T), B # Bs. (2)

where (1) and (2) show the direct and indirect effects, respectively.
Alternatively, all effects can be expressed as direct effects by altering
(2) to monB(B, B2, T') <~ moveToBlock(B, B1,T), B1 # Bs.
Action preconditions can be defined in different forms, e.g., the
condition that a block cannot sit on a smaller block can be expressed
as a constraint L <— onB(B, B1,T), B1<B. or alternatively, the re-
spective action can be forbidden if the precondition is not satisfied:

1+ moveToBlock(B, B1,T), not precondmtb(B, B1,T).
precondmtb(B, B1,T) < B < By, block(B), block(B1).

The law of inertia can also be elegantly described by the rule
onB(B, B1,T+1) < onB(B, B1,T), not —onB(B, B1,T+1).

Domain Abstraction. Abstraction is on over-approximating a
given program IT, with vocabulary A, by constructing a simpler pro-
gram I’ with a vocabulary reduced to .A’, and ensuring that the re-
sults of reasoning on the original program are not lost.

Definition 1 II’ is an abstraction of II, if there exists a mapping m :
A — A, where |A|>|A’|, such that for any answer set I of I,
I' ={m(a) | « € I} is an answer set of II'.

In [11], we introduced (domain) abstraction mappings m: D — D
for non-ground programs II with domain (Herbrand universe) D
and a set D (|D|<|D|) that divides D into clusters {d€ D |
m(d) =d} of elements seen as equal. Any such mapping m nat-
urally extends to the Herbrand base A= HBr of II by m(p(ci,
.y¢en))=p(m(c1),...,m(cn)). We showed how to construct an
abstract program that achieves an abstraction over the abstract atoms.
Planning problems usually contain objects that actions have direct
effect on, e.g., the blocks that can be moved, and objects only in-
volved in the decision making, e.g., the table on which a block can
be moved. Domain abstraction can be used to abstract over them.

3 ABSTRACTING OVER DETAILS

We first show how an abstraction can be achieved over the details of
objects that are only involved in the decision making. For demonstra-
tion, we consider two extended well-known planning domains.*

4 Encodings can be found in http://www.kr.tuwien.ac.at/
staff/zeynep/pub/ecai20_supp.pdf

24th European Conference on Artificial Intelligence - ECAI 2020

Santiago de Compostela, Spain

m
lb_1| |b3] 7

51 15} o) t2

(a) Blocksworld with multiple tables

piQd pig
p0O ny p0O
O h ho nO G, bk
2| 78 pa0d

(b) Package delivery with checkpoints

Figure 1. Initial states (concrete I abstract)

Multi-table blocksworld [11]: Figure 1(a) illustrates an example
instance, where the blocks need to be piled up on table ¢; as a stack
where b; is above b2 and b is above b3. Although reaching the goal
state does not depend on which tables the blocks are moved to before
moving to t1, the planner has to consider all such possible move-
ments. An abstraction over the tables (Figure 1(a)-right) which dis-
tinguishes the chosen table ¢ and clusters the remaining tables into
to (in short {{t1}/%1, {t2,...,tn}/t2}) makes it possible to com-
pute a plan where the blocks are moved to the abstract table cluster
t> before reaching the goal state. This shows the human-interpreted
essence on the irrelevancy of the tables other than the goal table.

Package delivery with checkpoints: Figure 1(b) illustrates an ex-
ample instance, where the packages in location /; need to be carried
to location 10, by passing through a middle point; through which
point the truck passes does not make a difference in reaching the
goal state. For the abstract initial state with the abstraction mapping
{{l1}/l1, {l2,...,lo}/l2,l10/13} (Figure 1(b)-right) we get

{loa’d(p43 Zl7 1)’ load(p?n Zlv 2)7 lOCI,d(pl, Zl, 3)7 lOCLd(pQ, Zla 4)7
drive(ig, I, 5), drive([l, s, 6), unload(ps, ls, 7),
unload(p1, ls, 8), unload(pa, s, 9), unload(p2, s, 10)}

which describes a plan that loads all the packages,moves to the mid-
dle cluster location {1, moves to the goal location ls, and unloads
the packages. Furthermore, this is a faithful abstraction (without any
spurious abstract solutions) when the abstract answer sets are pro-
jected to the actions load, unload, drive.

The above-mentioned abstractions can be automatically computed
by our methodology [11], given an initial abstraction that clusters
the domain elements into one. The obtained abstractions are able to
disregard details that are not of importance for the essence of the
plan feasibility. The faithful abstractions give an understanding of
the problem by realizing its focus points.

4 COMPUTING ABSTRACT PLANS

In ASP encodings, abstracting only over the objects causes to com-
pute plans with the original fime domain and thus have abstract ac-
tions such as load(p, 1, 1) which can not be mapped back to original
actions that can load all packages in p in one step.

Abstracting also over the fime makes it possible to talk
about abstract instances of actions that abstract from the con-
crete order of action execution. For the Package Delivery (with
two locations I1,l> and no checkpoints), consider two ab-
straction mappings Mypackage = {{p1,...,pa}/D} and Miime =

{{1,...,4}/t1,{5}/t2,{6,...,9}/{3}. The constructed abstract
program computes the abstract plan & : load(p, lo, t1), drive(ly,
la, t2), unload(p, l2, t3) which abstracts over the order of package
loading/unloading by having abstract actions over time clusters.

The abstraction over time steers the plan computation through the
time clusters. Note that even if further packages are added, the plan
¢ will still be feasible, given that m¢;me is adjusted to the extended
time domain. Automatically finding a suitable abstraction over the
objects and the time remains a challenge.

5 DISCUSSION

The potential of the newly introduced notion of ASP abstraction in
getting to the essence of planning problems positions our work also
within interest to the Planning community, who has been studying
over decades ways of getting rid of symmetry and computing gen-
eralized plans, such as [13] and, recently, [6, 12], with a focus on
PDDL-based representations and classical planning.

By approaching from the ASP perspective, we allow for further
expressivity that can represent complex planning problems. Investi-
gating how to incorporate such abstractions in action languages [5],
that represent dynamic domains via transition systems, will give us
an understanding of these abstractions in the state space, and make
it possible to connect our work also to the long-standing abstraction
methods in planning, e.g., abstraction by omission [10] and pattern
databases [3] are both on projections.

The plans obtained by the abstraction can be used to reach the goal
state from any original instance that can be mapped to the abstract
initial state. How these plans fit to the area of generalized planning
from the ASP perspective remains an interesting open question.

ACKNOWLEDGEMENTS
This work was supported by the FWF project W1255-N23.

REFERENCES

[1] Gerhard Brewka, Thomas Eiter, and Mirosaw Truszczyski, ‘Answer set
programming at a glance’, Comm. of the ACM, 54(12), 92-103, (2011).
[2] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Hel-
mut Veith, ‘Counterexample-guided abstraction refinement for sym-
bolic model checking’, JACM, 50(5), 752-794, (2003).
[3] Stefan Edelkamp, ‘Planning with pattern databases’, in ECP, (2001).
[4] Thomas Eiter, Zeynep G. Saribatur, and Peter Schiiller, ‘Abstraction
for zooming-in to unsolvability reasons of grid-cell problems’, in
XAI@IJCAI, (2019).
[5] Michael Gelfond and Vladimir Lifschitz, ‘Action languages’, Elect.
Trans. on Al 3(16), (1998).
[6] LenIllanes and Sheila A. Mcllraith, ‘Generalized planning via abstrac-
tion: Arbitrary numbers of objects.’, in AAAI (2019).
[7]1 Philip N. Johnson-Laird, Mental models: Towards a cognitive science
of language, inference, and consciousness, number 6, Harvard Univer-
sity Press, 1983.
[8] Jeff Kramer, ‘Is abstraction the key to computing?’, Comm. of the ACM,
50(4), 36-42, (2007).
[9] Vladimir Lifschitz, ‘Answer set programming and plan generation’,
AlJ, 138(1-2), 39-54, (2002).
[10] Zeynep G. Saribatur and Thomas Eiter, ‘Omission-based abstraction for
answer set programs’, in KR, pp. 42-51, (2018).
[11] Zeynep G. Saribatur, Peter Schiiller, and Thomas Eiter, ‘Abstraction for
non-ground answer set programs’, in JELIA, LNCS, 576-592, (2019).
[12] Silvan Sievers, Gabriele Roger, Martin Wehrle, and Michael Katz,
‘Theoretical foundations for structural symmetries of lifted PDDL
tasks’, in ICAPS, volume 29, pp. 446-454, (2019).
[13] Siddharth Srivastava, Neil Immerman, and Shlomo Zilberstein, ‘A new
representation and associated algorithms for generalized planning’, ALJ,
175(2), 615-647, (2011).

