
Relaxed Per-Stage Requirements
for Training Cascades of Classifiers

Dariusz Sychel and Przemysław Klęsk and Aneta Bera1

Abstract. Historically first training algorithms for cascades of clas-
sifiers were guided by constant per-stage requirements (constraints)
imposed on false alarm and detection rates. Those constant values
were calculated according to the geometric mean rule, implied by a
pair of final requirements predefined for the whole cascade.

We provide and prove a theoretical result demonstrating that the
presence of slack between the constant requirements and actual rates
observed while learning, allows to introduce new relaxed require-
ments for each successive stage and still complete the training pro-
cedure successfully (with final requirements satisfied). The relaxed
requirements can be met more easily, using fewer features. This cre-
ates a potential possibility to reduce the expected number of features
used by an operating cascade — the crucial quantity we focus on
in the paper. Taking advantage of the relaxation, we propose new
stage-wise training algorithms that apply two approaches: uniform
or greedy. They differ in the way the slack cumulated so far becomes
“consumed” later on.

Reported experimental results pertain to cascades trained to work
as face or letter detectors, with Haar-like features or Zernike mo-
ments being the input information, respectively. The results confirm
shorter operating times of cascades obtained by the proposed tech-
nique, owing to the reduction in the number of extracted features.

1 Introduction

Cascades of classifiers were in principle designed to work as clas-
sifying systems that operate under the following specific conditions:
(1) very large number of incoming requests, (2) significant imbalance
of classes. The natural scenario where these two conditions appear
are detection procedures. Images, video sequences or sound data can
be analyzed in order to detect some target objects or events of inter-
est. Typically, detection procedures perform dense data scans using a
sliding window, and thereby generate thousands of requests for clas-
sification in short periods of time. Apart from computer vision, cas-
cades can be also applied in various batch classification jobs. In such
scenarios, we expect the classification system to process in the back-
ground large portions of data incoming on regular basis, e.g.: medical
samples, shopping transactions, satellite photos, system logs, etc..

The second condition pointed out — imbalance of classes —
should not be seen as a difficulty but rather a favorable setting that
makes the whole concept viable. Namely, a cascade should vary its
computational efforts depending on the contents of an object to be
classified. Obvious negatives (non-targets) should be recognized fast,
using only a few extracted features. This is because negative objects

1 Faculty of Computer Science and Information Technology, West Pomera-
nian University of Technology, ul. Żołnierska 49, 71-210 Szczecin, Poland,
email: {dsychel,pklesk,abera}@wi.zut.edu.pl

constitute a vast majority of all objects (e.g. background regions in
computer vision applications). On the other hand, positive objects
(targets) or the ones resembling them, should be allowed to employ
more time and computations based on hundreds or even thousands of
features.

There exist a certain average value of the computational cost in-
curred by an operating cascade (in between the two mentioned ex-
tremes). This quantity can be defined mathematically as an expected
value (we do this in Section 2.3) and, in fact, calculated explicitly for
a given cascade in terms of:
- number of features applied on successive stages,
- false alarm rates on successive stages,
- detection rates (sensitivities) on successive stages,
- probability distribution from which the data is drawn.
Since the true probability distribution underlying the data is typically
unknown in practice, the exact expected value cannot be determined.
Interestingly though, it can be very accurately approximated using
just the first two pieces of information in the list.

Training procedures for cascades are time-consuming. For a suit-
ably complex problem the training may take days or even weeks
to complete. As Viola and Jones noted in their pionieering works
[22, 23], cascade training is a difficult combinatorial optimization
problem which involves the following parameters: number of cas-
cade stages, number of features on successive stages, selection of
those features, and finally decision thresholds. It is worth to remark
that this problem has not been ultimately solved yet. Viola and Jones
tackled it by imposing: the number of stages (say K stages) and the
final requirements the whole cascade should meet in order to be ac-
cepted by the user. These requirements were defined by a pair of
numbers (A,D), where A denotes the largest allowed false alarm
rate (FAR), and D the smallest allowed detection rate (sensitivity).
Due to probabilistic properties of cascade structure, one can apply
the geometric mean to translate the final requirements onto another
pair of numbers — per-stage requirements — (amax, dmin), where
amax=A

1/K and dmin=D
1/K . If each stage satisfies such require-

ments then the whole cascade also satisfies the final requirements.
Many modifications to cascade training have been introduced

over the years. Most of them try out different: feature selection ap-
proaches, subsampling methods, or are simply tailored to a particular
type of features [9, 4, 13, 10, 21]. It is fair to remark that Haar-like,
HOG and LBP features are by far the most common ones in litera-
ture. Some authors obtain modified cascades by designing new boost-
ing algorithms that underlie the training process [18, 17, 15].

In our view, a particularly elegant algorithm was proposed by
Saberian and Vasconcelos [15]. The authors try to optimize explic-
itly a Lagrangian representing the trade-off between cascade’s error
rate and the operating computational cost. The approach is based on

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

recursive formulas (both for the cascade response and the number of
applied features) that are translated from discrete non-differentiable
versions to smooth ones using a certain mathematical trick. The trick
replaces indicator functions (i.e. zero-one functions that signal if a
cascade stage is executed or not) by hyperbolic tangent functions
that are smooth. In consequence, the gradient descent optimization
can be performed. The resulting training procedure is not stage-wise.
All stages are potentially kept open. Each gradient step can either:
add a new weak classifier to any of the stages, or create a new
stage by cloning the last existing one (operation proven to be neu-
tral). The whole approach is analytically tractable, which is a great
property, but there are some drawbacks too. First of all, the gradi-
ent descent can get stuck in local optima [19]. Secondly, it is diffi-
cult to guess a good value for the Lagrange multiplier. Last, but not
least, the performed optimization is in a sense exhaustive. One has to
check all variational derivatives based on features at disposal for all
open stages to find the largest reduction of optimization criterion. In
other words, the algorithm proposed in [15] becomes more and more
complex as the training progresses. Successive steps require roughly
O (Kn) of work, where K is the current number of stages and n is
the number of features.

Despite the development of deep learning techniques, recent lit-
erature shows that cascades of classifiers are still widely applied in
detection systems or in expensive batch classification jobs. Let us
enumerate a few examples: crowd analysis and people counting [1],
human detection in thermal images [16], localization of white blood
cells [5], eye tracking [11, 6, 8], detection of birds near high power
electric lines [12].

The main contribution of this paper are two new cascade training
algorithms based on the so-called relaxed per-stage requirements.
Such requirements can be introduced by observing the actual rates
(false alarm rate and detection rate) obtained in the progress of the
algorithm, and the slack created by them with respect to final require-
ments. In Section 3 we prove a theorem that motivates the usage of
relaxed requirements. We analyze some properties implied by this
theorem and indicate how they can reduce the expected number of
features in an operating cascade. The new algorithms themselves are
stated in Section 4. The central role in both of them is played by the
geometric mean that is updated in a specific way — uniformly or
greedily — and allows to calculate relaxed requirements for subse-
quent stages. Experimental results, presented in Section 5, confirm
the usefulness of our approach.

2 Preliminaries
2.1 Notation
Throughout this paper we shall use the following notation:

• K — number of cascade stages,
• n = (n1, n2, . . . , nK) — numbers of features used on successive

stages,
• (a1, a2, . . . , aK) — FAR values on successive stages (false alarm

rates),
• (d1, d2, . . . , dK) — sensitivities on successive stages (detection

rates),
• A — required FAR for the whole cascade,
• D — required detection rate (sensitivity) for the whole cascade,
• amax = A1/K — per-stage FAR requirement (when calculated as

a geometric mean as in Viola-Jones’ approach),
• dmin = D1/K — per-stage sensitivity requirement (when calcu-

lated as a geometric mean as in VJ approach),

• F = (F1, F2, . . . , FK) — ensemble classifiers on successive
stages (the cascade),

• Ak — effective FAR observed up to k-th stage of cascade (Ak =∏
16i6k ai),

• Dk — effective sensitivity observed up to k-th stage of cascade
(Dk =

∏
16i6k di),

• p — true probability of the positive class (unknown in practice),
• 1 − p — true probability of the negative class (unknown in prac-

tice),
• # — set size operator (cardinality of a set),
• D— training data set,
• V — validation data set.

The probabilistic meaning of relevant quantities above is as fol-
lows. The final requirement on false alarm rate means that:

P (F (x)= + |y=−) 6 A. (1)

The final requirement on detection rate (sensitivity) means that:

P (F (x)= + |y=+) > D. (2)

Actual false alarm and detection rates observed during the training
procedure are, respectively, equal to

ak = 1−P (Fk(x)=− |y=−, F1(x)= · · ·=Fk−1(x)=+)

= P (Fk(x)= + |y=−, F1(x)= · · ·=Fk−1(x)=+) ,

dk = P (Fk(x)= + |y=+, F1(x)= · · ·=Fk−1(x) = +) . (3)

2.2 Classical cascade training (Viola-Jones style)

In algorithmic pseudocodes to follow in this paper we shall use
the ‖ symbol to denote concatenation of cascade stages. For ex-
ample, when the current cascade is F = (F1, . . . , Fk) then the
notation F‖Fk+1 should be understood as an extended cascade
(F1, . . . , Fk, Fk+1), but having no effect on F so far. Whereas,
F := F‖Fk+1 means that the next stage has been in fact appended
to the cascade, so that in effect it becomes F = (F1, . . . , Fk, Fk+1).

The classical cascade training algorithm presented below (Algo-
rithm 1) can be treated as reference for new propositions given in
this paper. Please note, in the final line of the pseudocode, that we re-
turn (F1, F2, . . . , Fk) rather than (F1, F2, . . . , FK). This is because
the training procedure can potentially stop early, when k < K, pro-
vided that the final requirements (A,D) for the entire cascade are
already satisfied i.e. Ak 6 A and Dk > D.

The step “Adjust decision threshold” requires a more detailed ex-
planation. The real-valued response of any stage can be suitably
thresholded to obtain either some wanted sensitivity or FAR. Hence,
the resulting {−1,+1}-decision of a stage is, in fact, calculated as
the sign of expression2

Fk(x)− θk,

where θk represents the decision threshold. Suppose
(v1, v2, . . . , v#P) denotes a sequence of sorted, vi 6 vi+1,
real-valued responses of a new cascade stage Fk+1 obtained on
positive examples (subset P). Then, the dmin per-stage requirement
can be satisfied by simply choosing:

θk+1 = vb(1−dmin)·#Pc. (4)

2 zero value can be arbitrarily mapped to −1 or +1

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Algorithm 1 Cascade of classifiers training algorithm with constant
per-stage requirements

procedure TRAINVJCASCADE(D, A, D, K, V)
From D take subset P with all positive examples,
and subsetN with all negative examples.
F := (). . initial cascade — empty sequence
amax := A1/K , dmin := D1/K . . constant requirements
A0 := 1, D0 := 1, k := 0.
while Ak > A do

nk+1 := 0, Fk+1 := 0, Ak+1 := Ak.
ak+1 := Ak+1/Ak.
while ak+1 > amax do

nk+1 := nk+1 + 1.
Train new weak classifier f using P andN
Fk+1 := Fk+1 + f .
Adjust decision threshold θk+1 for Fk+1

to satisfy dmin requirement.
Use cascade F‖Fk+1 on validation
set V to measure Ak+1 and Dk+1.
ak+1 := Ak+1/Ak.

F := F‖Fk+1.
if Ak+1 > A then
N := ∅.
Use current cascade F to populate setN with
false detections sampled from non-face images.

k := k + 1

return F = (F1, F2, . . . , Fk).

2.3 Expected number of extracted features
2.3.1 Definition-based formula

A cascade stops operating after a certain number of stages. It does
not stop in the middle of a stage. Therefore the possible outcomes
of the random variable of interest, describing the disjoint events, are:
n1, n1 +n2, . . . , n1 +n2 + · · ·+nK . By the definition of expected
value, the expected number of features can be calculated as follows:

E(n) =
∑

16k6K

(∑
16i6k

ni

)(
p

 ∏
16i<k

di

 (1− dk)[k<K]

+ (1− p)

 ∏
16i<k

ai

 (1− ak)[k<K]

)
, (5)

where [·] is an indicator function.

2.3.2 Incremental formula and its approximation

By grouping the terms in (5) with respect to nk the following alter-
native formula can be derived:

E(n) =
∑

16k6K

nk

p ∏
16i<k

di + (1− p)
∏

16i<k

ai

 . (6)

Obviously, in practical applications the true probability distribu-
tion underlying the data is unknown. Since the probability p of the
positive class is very small (as already said, typically p < 10−4),
the expected value can be accurately approximated using only the
summands related to the negative class as follows:

Ê(n) =
∑

16k6K

nk

∏
16i<k

ai ≈ E(n). (7)

It is also interesting to remark that in the original Viola and Jones’
paper [23] the authors proposed an incorrect formula to estimate the
expected number of features, namely:

EVJ(n) =

K∑
k=1

nk

k−1∏
i=1

ri, (8)

where ri represents the “positive rate” of i-th stage. This is equivalent
to

EVJ(n) =

K∑
k=1

nk

k−1∏
i=1

(pdi + (1− p)ai). (9)

Please note that by multiplying positive rates of stages, one obtains
mixed terms of form di · aj that do not have any probabilistic sense.
For example for k = 3 the product under summation becomes

(pd1 + (1− p)a1) (pd2 + (1− p)a2) ,

with the terms d1a2 and a1d2 having no sense, because a fixed data
point does not change its class label while traveling along the cas-
cade.

3 Motivation theorem
The following theorem points out the possibility of relaxation of
per-stage requirements and thereby constitutes our base motivation
to propose new variations of cascade training algorithms.

Theorem 1 The presence of slack between constant per-stage re-
quirements (amax, dmin) and actual rates (ak, dk), k = 1, . . . ,K, ob-
served during cascade training —

ak = (1− εk)amax, dk = (1 + δk)dmin, (10)

where εk, δk represent slack variables denoting small numbers —
allows to introduce new relaxed requirements for each successive
stage and carry out a training procedure that still satisfies the final
requirements (A,D) for the whole cascade. In particular, when the
k-th stage is done, the following two pairs of relaxed bounds (uniform
and greedy) can be applied for the (k + 1)-th stage:

ak+1 6
amax

(1− ε6k)
1/(K−k)

, dk+1 >
dmin

(1 + δ6k)
1/(K−k)

, (11)

or

ak+1 6
amax

1− ε6k

, dk+1 >
dmin

1 + δ6k

, (12)

where 1− ε6k =
∏

16i6k

(1− εi) and 1 + δ6k =
∏

16i6k

(1 + δi).

Before going into the proof, the following remarks should be
made. The theorem states that slack variables εk, δk are small num-
bers, but it purposely does not specify their sign. Intuitively it seems
that εk, δk > 0. But as a matter of fact, when relaxed bounds are ap-
plied throughout the training procedure, some of εk, δk can become
negative too. To see this, consider for example the first two variables
ε1, ε2 and the bound (12). It implies that a2 = (1 − ε2)amax 6
amax/(1− ε1) and therefore:

ε2 >
−ε1
1− ε1

. (13)

Simultaneously note that ε1 > 0 since a1 = (1 − ε1)amax must
not exceed the original bound amax. Therefore, (13) informs that ε2

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

may, in particular, be negative. What is important though, is that the
‘effective’ slack variables ε6k, δ6k (resulting from the product rules)
should be guaranteed to be non-negative, so that the relaxation in
bounds (11), (12) indeed takes place. The following lemma states
this fact and is further used to prove the main theorem.

Lemma 1 ε6k > 0 and δ6k > 0 for all k = 1, . . . ,K and regard-
less of the bound applied: uniform (11) or greedy (12).

Proof. It suffices to prove the lemma only for ε6k variables, the ar-
guments are analogical for δ6k with direction of all inequalities re-
versed. We first look at the uniform bound (11) and prove the lemma
by induction. Base: ε61 = ε1 > 0 follows from the bound on a1 =
(1−ε1)amax 6 amax/

∏
16i60(1−εi)

1/(K−0) since the empty prod-
uct in the denominator yields 1. Inductive step: suppose the lemma is
true for all indexes up to k, i.e. ε6k > 0. Then, to see that ε6k+1 > 0,
it suffices to show that 1− ε6k+1 = (1− ε6k)(1− εk+1) 6 1. From
bound (11) we have that:

ak+1 6
amax

(1− ε6k)1/(K−k)

(1− εk+1)amax 6
amax

(1− ε6k)1/(K−k)

(1− εk+1)(1− ε6k)
1/(K−k) 6 1

(1− εk+1)(1− ε6k) 6 1

1− ε6k+1 6 1. (14)

The third pass is true because the inductive assumption ε6k > 0
implies that expression (1 − ε6k)

1/(K−k) is a fraction raised to a
fractional power. Hence, omitting the power lowers the left-hand-
side. This proves the lemma correctness for the uniform bound. It
is easy to check that the inductive step for the greedy bound (12)
leads directly to inequality: (1 − εk+1)(1 − ε6k) 6 1 and the base
is satisfied as well.

Proof of Theorem 1. By virtue of lemma 1, note that when
ε6k, δ6k > 0 the denominators in both (11) and (12) cause that new
per-stage requirements can be met more easily than original ones.
We now limit the considerations only to the sequence of false alarm
rates a1, . . . , aK (the arguments are analogical for detection rates).
Suppose k training stages are already done. To satisfy the final re-
quirement the following inequality must hold

a1 · · · ak · ak+1 · · · aK 6 A

(1− ε1)amax · · · (1− εk)amax︸ ︷︷ ︸
k initial stages

·ak+1 · · · aK 6 aKmax

ak+1 · · · aK 6
aK−k

max∏
16i6k

(1− εi)
. (15)

Now, it is possible to see the two approaches to bound the remain-
ing rates ak+1, . . . , aK . The first is to let all of them consume uni-
formly the slack ‘cumulated’ so far

∏
16i6k(1 − εi) = 1 − ε6k.

To do so, think of a mean factor a∗ such that aK−k
∗ = ak+1 · · · aK

in (15). Now, the root of order K − k taken sidewise yields for-
mula (11) — the uniform bound. This approach can be interpreted
as an updated geometric mean on remaining false alarm rates. The
second approach is to let the very next rate ak+1 consume all the
slack and assume pessimistically the subsequent rates ak+2, . . . , aK
to be equal to the original bound amax. This leads to inequality
ak+1a

K−k−1
max 6 aK−k

max /(1 − ε6k) and yields formula (12) — the
greedy bound.

As regards the second approach, its greediness can be also well un-
derstood through the following consequence of relaxed bounds (12).

Corollary 1 If (k + 1)-th stage becomes trained according to the
greedy approach and the observed resulting ak+1 is not less but ex-
actly equal to the bound amax/(1− ε6k), then the next stage require-
ment for ak+2 tightens back to the original bound amax.

Proof. The result follows directly from (15) by: isolating out ak+2,
inserting the right hand side of (12) into ak+1 and setting ai = amax

for all i > k + 3.

The same argument is true for any two consecutive sensitivities dk+1,
dk+2.

Can relaxed per-stage requirements reduce the expected
number of extracted features?

Since relaxed per-stage requirements can be satisfied more easily —
with fewer features — one might be tempted to think that this leads
directly to a reduction of Ê(n). Unfortunately, this is not true in gen-
eral. Even though nk numbers in (7) can in fact be decreased in many
cases, note that the cost paid for that is an increase of false alarm rates
ak that are also present in formula (7). Moreover, note that each in-
creased ak contributes in a multiplicative manner to all subsequent
summands in the expectation. Therefore, we remark that the relax-
ation provides the necessary (but not sufficient) condition to reduce
the expected value.

4 Relaxed cascade training
4.1 Relaxed per-stage requirements expressed

without slack variables
At implementation level there is no need to explicitly calculate the
slack variables. The new per-stage requirements can be expressed
in terms of A,D constants and ai, di rates observed so far, that is
for i 6 k. It is easy to check that the following pairs of formulas
are equivalent counterparts of the right-hand-sides of (11) and (12),
respectively.

amax,k+1 =

 A∏
16i6k

ai

1

K−k

, dmin,k+1 =

 D∏
16i6k

di

1

K−k

.

(16)

amax,k+1 =
A

k+1
K∏

16i6k

ai
, dmin,k+1 =

D
k+1
K∏

16i6k

di
. (17)

4.2 Training algorithm
Formulas (16) and (17) can be directly applied to form variations of
the classical VJ cascade training procedure (Algorithm 1). It suffices
to use them as replacements of constant requirements (amax, dmin)
in every iteration of the main loop. Algorithm 2 demonstrates the
‘relaxed’ cascade training procedure.

In the experimental section, we whall refer to Algorithm 2 cou-
pled with formula (16) by the name UGM (standing for: Updated
Geometric Mean), whereas for Algorithm 2 coupled with (17) we
shall use the name UGM-G (Updated Geometric Mean – Greedy).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Algorithm 2 Cascade of classifiers training algorithm with relaxed
per-stage requirements

procedure TRAINRELAXEDCASCADE(D, A, D, K, V)
From D take subset P with all positive examples,
and subsetN with all negative examples.
F := () . initial cascade — empty sequence
A0 := 1, D0 := 1, k := 0.
while Ak > A do

Fk+1 :=TRAINSTAGE(P ,N , K, k, V , F).
F := F‖Fk+1.
if Ak+1 > A then
N := ∅.
Use current cascade F to populate setN with
false detections sampled from non-face images.

k := k + 1

return F = (F1, F2, . . . , Fk).

procedure TRAINSTAGE(P ,N , K, k, V , F)
nk+1 := 0, Fk+1 := 0, Ak+1 := Ak.
Calculate relaxed per-stage requirements
(amax,k+1, dmin,k+1) using (16) or (17).
ak+1 := Ak+1/Ak.
while ak+1 > amax,k+1 do

nk+1 := nk+1 + 1.
Train new weak classifier f using P andN .
Fk+1 := Fk+1 + f .
Adjust decision threshold θk+1 for Fk+1

to satisfy dmin,k+1 requirement.
Use cascade F‖Fk+1 on validation
set V to measure Ak+1 and Dk+1.
ak+1 := Ak+1/Ak.

return Fk.

5 Experiments

5.1 Learning algorithm and general settings

In all experiments we apply RealBoost+bins [14] as the main learn-
ing algorithm, producing ensembles of weak classifiers as successive
cascade stages. Each weak classifier is based on a single selected
feature. The response of such a classifier is real-valued, calculated
according to the logit transform with a binning mechanism.

Experiments on two collections of images are carried out. Firstly,
we test the proposed approaches in face detection task, using Haar-
like features as the input information. Secondly, we experiment with
synthetic images representing letters (computer fonts originally pre-
pared by T.E. de Campos et al. [7]). The letters are placed randomly
on a set of backgrounds and we treat the ‘A’ letter as our target object.
In that second group of experiments we expect to detect our targets
regardless of their rotation (rather than in upright position). To do so,
we apply rotationally invariant features based on Zernike moments
(ZMs) as the input information [3]. In both cases, feature extraction
is backed with integral images (complex-valued for ZMs).

In all experiments we used a machine with Intel Core i7-4790K
4/8 cores/threads, 8MB cache. For clear interpretation of time mea-
surements, we report detection times using only a single thread [ST].
The software has been programmed in C#, with key computational
procedures implemented in C++ as a dll library.

5.2 “Face detection” — Haar-like features

Training faces were cropped from 3 000 images, looked up using
Google Images search engine. The training set contained 7 258 face
examples. We preset our features space to contain 14 406 Haar-like
features3. The test set contained 3 014 faces from Essex facial images
collection [20, 2] and validation sets contained 1 000 face examples.
The number of negatives in the test set was constant and equal to
1 000 000. In order to reduce training time, the number of negatives
in training and validation sets was gradually reduced for successive
cascade stages, as described in Table 1. Detection times of different
cascades were determined as averages from 1000 executions.

Table 1. “Face detection”: experimental setup.

train data
quantity / parameter value additional information
no. of positive examples 7 258 windows with faces
no. of negative examples 139 373/42 742/27 742 on 1st stage / 2nd stage / rest
train set size 146 631/50 000/35 000 examples in total

on 1st stage / 2nd stage / rest
validation data

no. of positive examples 1 000 windows with faces
no. of negative examples 40 000/25 000− P on 1st stage / rest
test set size 41 000/25 000 examples in total

on 1st stage / rest
test data

no. of positive examples 3 014 windows with faces different
scales, skin tones, glasses [20]

no. of negative examples 1 000 000
test set size 1 001 000 examples in total

detection procedure (scanning with a sliding window)
no. of repetitions 1000
image resolution 600× 480
no. of detection scales 5 images scanned with 5 different

sizes of window
window growing 1.2 window widths and heights
coefficient increase by≈ 20% per scale
smallest window size 48× 48
largest window size 100× 100
window jumping 0.05 window jumps equal to≈5%
coefficient of its width and height

Fig. 1 shows visual examples of detection outcomes obtained by
two best detectors (in terms of the expected number of features),
trained to satisfy A = 10−4 and A = 10−5 FAR requirements.

Tables 3, 4 constitute a detailed comparison of all cascades ob-
tained in face detection experiments, respectively for K = 5 and
K = 10 stages. The final FAR requirements (A) were imposed to be
either: 10−3, 10−4 or 10−5 (that last setting only for cascades with
10 stages). Every row in the tables corresponds to some cascade,
represented by two sequences: a sequence of feature counts nk (top),
and a sequence of false alarm rates ak (bottom). Apart from accuracy
measures, we report for each cascade its theoretical expected value
Ê(n) calculated according to formula (7). This value can be com-
pared against an avarage observed on the test set — column avg(n).

Let us comment now on results for cascades with K = 5 stages.
First of all it is worth noting that all trained cascades satisfied the
imposed final requirements. As Table 3 shows, the relaxed greedy
bound — UGM-G — produced the best cascades (marked with dark
gray), having the smallest expectations: 14.7220 and 23.9587 re-
spectively for A = 10−3 and A = 10−4. The second-best approach
(light gray) was not consistent — for A = 10−3, it was the classical
VJ cascade yielding the expectation 15.3571, whereas forA = 10−4

it was UGM yielding 24.9455.
As regards cascades with K = 10 stages, results reported in Ta-

ble 4 indicate similar tendencies. Again, the smallest expectations
were achieved by the UGM-G cascades trained using the relaxed

3 generated for 6 wavelet templates, 72 scales and 72 anchoring points

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

A = 10−4

A = 10−5

Figure 1. “Face detection”: detection examples. False alarms marked in
yellow.

greedy bound, regardless of the FAR requirements. The UGM cas-
cade placed itself second in all experiments.

5.3 “Synthetic A letters” — Zernike moments
We remind that a synthetic data set containing capital letters from the
modern English alphabet [7] was prepared for this experiment. Fig. 2
gives an overview on the source graphical material, whereas Tab. 2
lists details of the experimental setup.

Table 2. “Synthetic A letters”: experimental setup.

train data
quantity / parameter value additional information
no. of positive examples 20 384 windows with letter ’A’
no. of negative examples 50 546 windows with letters other than ’A’

plus random samples of backgrounds
on each stage after resampling

train set size 70 930 examples in total
validation data

no. of positive examples 1 000 windows with letter ’A’
no. of negative examples 10 000 windows with letters other than ’A’

plus random samples of backgrounds
on each stage after resampling

test set size 11 000 examples in total
test data

no. of positive examples 20 000 windows with letter ’A’
no. of negative examples 1 000 000 windows with letters other than ’A’

plus random samples of backgrounds
test set size 1 020 000 examples in total

detection procedure (scanning with a sliding window)
no. of repetitions 1000
image resolution 600× 480 imposed resolution
no. of detection scales 5 images scanned with 5 different

sizes of window
window growing 1.2 window widths and heights
coefficient increase by≈ 20% per scale
smallest window size 100× 100
largest window size 208× 208
window jumping 0.05 window jumps equal to≈5%
coefficient of its width and height

Our goal was to detect targets (‘A’ letters) regardless of their rota-
tion. In training images, the letters were allowed to rotate randomly

(a) (b) (c)

Figure 2. Objects and backgrounds used in “Synthetic A letters” data.
Positives: letters A (a), negatives: other letters (b) + backgrounds (c).

A =10−3

A =10−4

Figure 3. “Synthetic A letters”: detection examples.

within a limited range of ±45◦. In test images, the letters were al-
lowed to rotate randomly within the full range of 360◦. As features,
we applied 540 modules of Zernike moments (see [3] for details).

Fig. 3 presents examples of detection outcomes obtained by best
detectors trained to satisfy 10−3 and 10−4 FAR requirements.

Table 5 presents a comparison of obtained cascades. Despite the
small number of features (comparing to the previous experiment),
the proposed methods still allow to reduce the expected number of
features. FAR and sensitivity measures obtained on the validation
set, satisfy the final requirements regardless of the training method.
Accuracy measures observed on the test set are slightly worse. The
best expected values of the number of feature were again obtained
by the UGM-G approach: 2.5682 for A = 10−3, and 3.7318 for
A = 10−4. UGM approach took second places.

5.4 Parallelization
We remarked that for clear interpretation of results, time measure-
ments are reported for single threaded executions [ST], even though
we normally apply multiple threads. Time gains that we report for the
smallest expectations, may seem very small in ST mode. It should
be explained that an improvement of e.g. a 10ms [ST] constitutes
a 6.5% difference per thread and allows for approximately 1 frame
more. With 4 threads we observe approximately 46ms–46ms reduc-
tions, implying 2 FPS more. Common 8-threaded machines or GPUs
with even more threads scale the gain further.

6 Conclusion
In our opinion, training a cascade of classifiers should be always car-
ried out with the primary focus on the expected number of extracted
features, because this quantity reflects directly how fast a cascade
operates. In this paper we have demonstrated that the expected value
can be improved by relaxation of per-stage requirements. This is
achieved by taking advantage of the slack present between the worst-
case constant requirements and the actual rates (detection / FAR)

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Table 3. “Face detection” — cascades with K = 5 stages for different training approaches.

Training Cascade Expected Validation Test Detection time

alghorithm value FAR
sensiti-

vity FAR
sensiti-

vity avg(n)
image

[ST][ms]
window
[ST][µs]

Requirements:
0.001000 0.9500 (windows per image: 130 971)

VJ
9

0.2468,
18

0.2214,
26

0.2299,
30

0.2468,
38

0.2370 15.3571 0.000735 0.9520 0.000711 0.9572 16.21 89 0.680

UGM
9

0.2468,
17

0.2516,
32

0.2450,
29

0.2303,
29

0.2798 15.7243 0.000980 0.9510 0.000980 0.9555 16.58 90 0.687

UGM-G
9

0.2468,
16

0.2548,
21

0.2234,
22

0.2635,
39

0.2606 14.7220 0.000964 0.9510 0.000966 0.9575 15.50 88 0.675

Requirements:
0.000100 0.9500 (windows per image: 130 971)

VJ
18

0.1516,
38

0.1582,
40

0.1452,
67

0.1533,
82

0.1509 24.9947 0.000081 0.9520 0.000051 0.9456 26.85 128 0.975

UGM
18

0.1516,
38

0.1582,
40

0.1452,
52

0.1656,
81

0.1694 24.9455 0.000098 0.9510 0.000079 0.9466 26.80 126 0.963

UGM-G
18

0.1516,
32

0.1647,
33

0.1487,
60

0.1685,
100

0.1843 23.9587 0.000115 0.9510 0.000081 0.9509 25.50 126 0.959

Table 4. “Face detection” — cascades with K = 10 stages for different training approaches.

Training Cascade Expected Validation Test Detection time

alghorithm value FAR
sensiti-

vity FAR
sensiti-

vity avg(n)
image

[ST][ms]
window
[ST][µs]

Requirements:
0.001000 0.9500 (windows per image: 130 971)

VJ
4

0.4521,
6

0.4491,
16

0.4849,
13

0.4204,
11

0.4966,
17

0.4722,
14

0.4522,
21

0.4933,
24

0.4990,
45

0.4679 12.3741 0.000505 0.9560 0.000512 0.9552 13.91 73 0.561

UGM
4

0.4521,
6

0.4491,
14

0.5040,
10

0.5093,
13

0.5151,
10

0.5061,
13

0.4726,
18

0.5298,
29

0.5161,
17

0.5586 11.9447 0.000980 0.9500 0.001009 0.9575 13.34 72 0.551

UGM-G
4

0.4521,
6

0.4435,
5

0.5892,
14

0.5058,
8

0.4905,
12

0.5225,
17

0.5042,
16

0.4746,
14

0.5431,
34

0.4516 10.7018 0.000899 0.9510 0.000902 0.9522 11.51 67 0.512

Requirements:
0.000100 0.9500 (windows per image: 130 971)

VJ
6

0.3546,
13

0.3914,
24

0.3939,
16

0.3945,
34

0.3256,
43

0.3615,
38

0.3907,
46

0.3977,
33

0.3865,
41

0.3940 16.0108 0.000060 0.9550 0.000057 0.9492 17.38 89 0.678

UGM
6

0.3546,
13

0.3914,
24

0.3939,
16

0.3945,
34

0.3256,
40

0.4000,
34

0.3926,
32

0.4397,
42

0.4533,
47

0.3927 15.9898 0.000086 0.9510 0.000076 0.9542 17.35 88 0.671

UGM-G
6

0.3546,
12

0.4135,
15

0.4104,
21

0.4010,
34

0.4093,
19

0.3991,
30

0.3940,
47

0.3970,
29

0.4057,
40

0.3941 14.9437 0.000099 0.9510 0.000105 0.9545 16.26 82 0.625

Requirements:
0.000010 0.9500 (windows per image: 130 971)

VJ
9

0.2768,
20

0.2924,
32

0.2911,
40

0.2904,
37

0.2996,
79

0.2995,
61

0.2909,
95

0.2851,
192

0.3066,
132

0.3137 18.5492 0.000005 0.9550 0.000005 0.9393 20.35 95 0.728

UGM
9

0.2768,
20

0.2924,
32

0.2911,
38

0.3241,
41

0.3031,
44

0.3339,
64

0.3311,
78

0.3197,
63

0.3254,
81

0.2975 18.5122 0.000008 0.9510 0.000016 0.9403 20.12 91 0.694

UGM-G
9

0.2768,
19

0.3529,
25

0.3200,
35

0.3005,
29

0.3202,
46

0.3053,
56

0.3032,
46

0.3581,
60

0.3103,
83

0.2965 18.2789 0.000009 0.9510 0.000007 0.9382 19.52 90 0.689

Table 5. "Synthetic A letters" — cascades with K = 5 stages for different training approaches.

Training Cascade Expected Validation Test Detection time

alghorithm value FAR
sensiti-

vity FAR
sensiti-

vity avg(n)
image

[ST][ms]
window
[ST][µs]

Requirements:
0.001000 0.9500 (windows per image: 18 752)

VJ
2

0.2115,
2

0.2128,
3

0.1893,
5

0.2180,
7

0.2098 2.6136 0.000389 0.9540 0.000869 0.9313 2.56 127 6.77

UGM
2

0.2115,
2

0.2128,
3

0.1893,
4

0.2926,
5

0.3910 2.5911 0.000975 0.9500 0.002340 0.9244 2.50 125 6.67

UGM-G
2

0.2115,
2

0.2128,
2

0.2954,
3

0.2313,
5

0.2812 2.5682 0.000865 0.9500 0.002016 0.9351 2.50 124 6.61

Requirements:
0.000100 0.9500 (windows per image: 18 752)

VJ
3

0.1497,
4

0.1460,
5

0.1444,
8

0.1368,
10

0.1206 3.7393 0.000052 0.9530 0.000163 0.9411 3.84 157 8.37

UGM
3

0.1497,
4

0.1460,
5

0.1444,
7

0.1546,
10

0.1939 3.7350 0.000094 0.9510 0.000295 0.9413 3.78 153 8.16

UGM-G
3

0.1497,
4

0.1460,
5

0.1444,
6

0.1881,
8

0.1525 3.7318 0.000091 0.9510 0.000212 0.9427 3.73 147 7.84

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

observed during training. Both the mathematical considerations and
practical experiments confirmed that this idea can lead to faster clas-
sifiers satisfying the same final requirements.

One of the plans for our future research is to incorporate the pre-
sented idea into a “branch-and-bound” search technique and to train
cascades via both relaxation and searching.

ACKNOWLEDGEMENTS

This work was financed by the National Science Centre, Poland. Re-
search project no.: 2016/21/B/ST6/01495.

REFERENCES
[1] S. S. A. Abbas, P. O. Jayaprakash, M. Anitha, and X. V. Jaini, ‘Crowd

detection and management using cascade classifier on ARMv8 and
OpenCV-Python’, in 2017 International Conference on Innovations in
Information, Embedded and Communication Systems (ICIIECS), pp. 1–
6, (March 2017).

[2] Faizan Ahmad, Aaima Najam, and Zeeshan Ahmed, ‘Image-based Face
Detection and Recognition: “State of the Art”’, IJCSI International
Journal of Computer Science Issues, 9, (2013).

[3] A. Bera, P. Klęsk, and D. Sychel, ‘Constant-Time Calculation of
Zernike Moments for Detection with Rotational Invariance’, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 41(3),
537–551, (2019).

[4] L. Bourdev and J. Brandt, ‘Robust Object Detection via Soft Cascade’,
in Proceedings of the 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05) - Volume 2 - Vol-
ume 02, CVPR ’05, pp. 236–243. IEEE Computer Society, (2005).

[5] R. A. Maulana Budiman, B. Achmad, Faridah, A. Arif, Nopriadi, and
L. Zharif, ‘Localization of white blood cell images using Haar cascade
classifiers’, in 2016 1st International Conference on Biomedical Engi-
neering (IBIOMED), pp. 1–5, (Oct 2016).

[6] L. Cuimei, Q. Zhiliang, J. Nan, and W. Jianhua, ‘Human face detection
algorithm via Haar cascade classifier combined with three additional
classifiers’, in 2017 13th IEEE International Conference on Electronic
Measurement Instruments (ICEMI), pp. 483–487, (Oct 2017).

[7] T. E. de Campos et al., ‘Character recognition in natural images’, in
Proceedings of the International Conference on Computer Vision The-
ory and Applications, Lisbon, Portugal, pp. 273–280, (2009).

[8] N. L. Fitriyani, C. Yang, and M. Syafrudin, ‘Real-time eye state de-
tection system using Haar cascade classifier and circular Hough trans-
form’, in 2016 IEEE 5th Global Conference on Consumer Electronics,
pp. 1–3, (Oct 2016).

[9] J. Gama and P. Brazdil, ‘Cascade Generalization’, Machine Learning,
41(3), 315–343, (2000).

[10] J. Li and Y. Zhang, ‘Learning SURF Cascade for Fast and Accurate Ob-
ject Detection’, in Proceedings of the 2013 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR ’13, pp. 3468–3475. IEEE
Computer Society, (2013).

[11] Y. Li, X. Xu, N. Mu, and L. Chen, ‘Eye-gaze tracking system by Haar
cascade classifier’, in 2016 IEEE 11th Conference on Industrial Elec-
tronics and Applications (ICIEA), pp. 564–567, (June 2016).

[12] J. Lu, X. Xu, X. Li, L. Li, C. Chang, X. Feng, and S. Zhang, ‘Detec-
tion of bird’s nest in high power lines in the vicinity of remote campus
based on combination features and cascade classifier’, IEEE Access, 6,
39063–39071, (2018).

[13] M. Pham and T. Cham, ‘Fast training and selection of Haar features
using statistics in boosting-based face detection’, in Computer Vision,
2007. ICCV 2007. IEEE 11th International Conference on, pp. 1–7,
(2007).

[14] B. Rasolzadeh et al., ‘Response Binning: Improved Weak Classifiers
for Boosting’, in IEEE Intelligent Vehicles Symposium, pp. 344–349,
(2006).

[15] Mohammad Saberian and Nuno Vasconcelos, ‘Boosting Algorithms for
Detector Cascade Learning’, Journal of Machine Learning Research,
15, 2569–2605, (2014).

[16] C. H. Setjo, B. Achmad, and Faridah, ‘Thermal image human detec-
tion using Haar-cascade classifier’, in 2017 7th International Annual
Engineering Seminar (InAES), pp. 1–6, (Aug 2017).

[17] Chunhua Shen, Peng Wang, Sakrapee Paisitkriangkrai, and Anton
van den Hengel, ‘Training Effective Node Classifiers for Cascade Clas-
sification’, International Journal of Computer Vision, 103(3), 326–347,
(2013).

[18] Chunhua Shen, Peng Wang, and Anton van den Hengel, ‘Optimally
Training a Cascade Classifier’, CoRR, abs/1008.3742, (2010).

[19] D. Sychel, P. Klęsk, and A. Bera, ‘Notes on Expected Computational
Cost of Classifiers Cascade: A Geometric View’, in Proceedings of the
7th International Conference on Pattern Recognition Applications and
Methods - Volume 1: ICPRAM. SciTePress, (2018).

[20] University of Essex. Face Recognition Data. https://cswww.
essex.ac.uk/mv/allfaces/faces96.html, 1997. [Online;
accessed 11-May-2019].

[21] N. Vallez, O. Deniz, and G. Bueno, ‘Sample selection for training cas-
cade detectors’, PLos ONE, 10, (2015).

[22] P. Viola and M. Jones, ‘Rapid Object Detection using a Boosted Cas-
cade of Simple Features’, in Conference on Computer Vision and Pat-
tern Recognition (CVPR’2001), pp. 511–518. IEEE, (2001).

[23] P. Viola and M. Jones, ‘Robust Real-time Face Detection’, Interna-
tional Journal of Computer Vision, 57(2), 137–154, (2004).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

