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Abstract. It was recently shown that neural ordinary differential
equation models cannot solve fundamental and seemingly straight-
forward tasks even with high-capacity vector field representations.
This paper introduces two other fundamental tasks to the set that
baseline methods cannot solve, and proposes mixtures of stochastic
vector fields as a model class that is capable of solving these essential
problems. Dynamic vector field selection is of critical importance for
our model, and our approach is to propagate component uncertainty
over the integration interval with a technique based on forward filter-
ing. We also formalise several loss functions that encourage desirable
properties on the trajectory paths, and of particular interest are those
that directly encourage fewer expected function evaluations. Experi-
mentally, we demonstrate that our model class is capable of capturing
the natural dynamics of human behaviour; a notoriously volatile ap-
plication area. Baseline approaches cannot model this problem.

1 Introduction
Recent work has linked Residual Networks (ResNets) [7] to Ordinary
Differential Equations (ODEs) and demonstrated that ResNets may
be interpreted as Euler solutions to Initial Value Problems (IVPs)
[12, 22, 17]. This idea has been further developed with ResNets taken
to their continuous limit by [3] with the introduction of Neural ODEs
(NODEs). In their setting, Neural Networks (NNs) produce Vector
Field (VF) representations that are utilised by ODE solvers to learn
and calculate explicit flow trajectories through the feature space. The
resulting model can be seen to be of continuous depth since the ODE
solver will query the VFs at arbitrary levels that are unspecified in
advance. Their work also demonstrates efficient and scalable inference
with the adjoint trick.

Vector fields are defined as follows in the NODE paradigm

∇h(ti) = f(h(ti), ti;θ) (1)

where h(ti) ∈ RD is a hidden state at depth ti (base state h(t0) , x,
maximal depth tT ), f is a neural network of arbitrary architecture
and θ are its parameters. Subsequent hidden states are derived by
taking small steps from h(ti) in the direction of the vector field,
i.e. h(ti+1) = h(ti) + δti∇h(ti), and the step size δti is often
selected automatically by an ODE solver. The solution of this IVP is
obtained by repeatedly taking these steps until the output state h(tT )
is reached, and these outputs may undergo a final transformation,
e.g. through a softmax layer in classification tasks. The optimisation
objective is to adjust the dynamics of the ODE through θ to maximise
the data likelihood.
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A critical component of NODEs is the parametrisation of the VFs
and, since f is a neural network, the practitioner has the important re-
sponsibility of appropriately specifying its architecture. Even though
the VF representations will be non-linear (and arbitrarily ‘flexible’
depending on architecture choice), NODE models cannot model arbi-
trary problems. This was clearly demonstrated by [5] with a seemingly
straightforward task in one dimension. A simple and elegant extension
called Augmented NODEs (ANODEs) is proposed. These are exper-
imentally shown to be a more expressive and stable model choice
capable of solving the crossing problem.

Figure 1 illustrates NODE failure cases. Crossing [5] tasks cannot
be solved by NODEs since their advections constitute homomor-
phisms for which crossing is forbidden. However, ANODE models
find solutions by lifting the representation out of the original feature
domain. Additionally, neither NODE nor ANODE models can solve
splitting problems (where a single datapoint maps to more than one
target) or account for uncertainty and hence they always map to a
single target regardless of the variance of the system (c.f. scaling cases
in the figure).

The shortcomings of baseline approaches are addressed with a
probabilistic approach to ODE problems in this work. We use indoor
localisation as a motivating application which seeks to find a mapping
to a relative coordinate system. We propose the use of NODE-like
models to learn typical patterns of movement and later to deploy these
to forecast future behaviour. The three cases in fig. 1 are often encoun-
tered in behavioural modelling as follows: crossing: residents will
never take the exact same path between two locations, and exemplar
paths are likely to cross at least once; splitting: residents have the

(a) Crossing (b) Splitting (c) Scaling

(d) Crossing (t) (e) Splitting (t) (f) Scaling (t)

Figure 1. This figure illustrates failure cases for NODE models in their
original space (left) and particle evolution over the integration interval (right).
In these figures colour indicates class membership, the solid arrows link the
desired start (◦) and end (×+) positions of particles (i.e. ground truth data).
Dotted lines depict the learnt transportation by NODE models. The Gaussian
PDFs represent the predictive distributions of the proposed method.
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option to turn left, right, move forward or backtrack on their trajectory
with their latent intent behind their motion determining this decision;
and scaling: unobservable factors influence paths walked by residents,
and even under identical starting conditions a resident may move at
different speeds/directions along the same path.

Our main contribution is the introduction and exposition of
Stochastic VF Mixtures (SVFMs) within the NODE paradigm, and
the introduction of trajectory-focused losses that encourage simpler
and less distorted solutions. Their utility is primarily enabled by the
uncertainty that is posited on both the vector fields themselves and on
selection of vector fields from an ensemble, but is also supported by
loss functions that encourage simpler solutions to the IVP and capture
richer context in forecasting tasks. We demonstrate their capability
in solving the above three fundamental tasks where baseline models
fail. Although the proposed methods are developed specifically with
forecasting in mind, we also demonstrate their utility in classical
classification tasks.

2 Proposed methods
This section outlines an approach for modelling VF mixtures and
stochastic VFs. Additionally, several loss functions are introduced
that encourage desirable properties for our models.

2.1 Vector field mixtures
The graphical model representing the basic VF unit is shown in
fig. 2(a). The input variables (t and h(t)) are denoted by shaded
nodes indicating that these values are observed, whereas the output
node (∇h(t)) is unshaded, indicating that it is latent. The assumption
here is that the i-th VF is conditionally independent of its history given
its hidden state. In what follows we use the notation fg(h(t), t;θ(g))
to represent a NODE unit on an example latent variable g, whereas
f (k)(·) specifically defines the k-th VF from the VF Mixture (VFM).

t h(t)

∇h(t)

Neural network

(a) VF unit

t h(t)

∇h(t)

Neural network

π(t)

K mixture

(b) VFM unit

Figure 2. Architecture of VF and VFM units.

Using gate notation [13], a VFM with K components is shown in
fig. 2(b). The new latent variable, π(t) ∈ 4K (where 4K defines
the K-simplex) is a discrete probability distribution over component
membership. The manner in which this distribution is specified is a
key consideration with these models. Two approaches for defining
π(t) and propagating membership belief over the integration interval
are outlined below.

Pick and stick. This operates under the assumption that compo-
nent membership is constant over the forecast horizon, i.e. π(ti) =
π(t∗) ∀ i (0 ≤ i ≤ T ). Several choices for specifying t∗ may be
considered, but if mixture dynamics are well specified at t0 we can
set

π(t∗) = π(t0) = fπt0
(h(t0), t0;θ(πt0

)) (2)

Forward filtering. Forward filtering is a technique used in dy-
namic systems to estimate belief based on a history of evidence, and it
is often used in dynamic models like Hidden Markov Models (HMMs)
[15] and Conditional Random Fields (CRFs) [19]. It is incorporated
into our model directly by modeling transition and emission dynamics
of component membership as follows

Ψ(ti) = fΨ(h(ti), ti;θ
(Ψ)) (3)

ψ(ti) = fψ(h(ti), ti;θ
(ψ)) (4)

where ψ(ti) and each of the K rows of Ψ(ti) ∈ 4K . Forward
filtering aggregates belief as follows

π(ti) ∝ Ψ(ti)
> (ψ (ti)� π (ti−1)) (5)

where � depicts the Hadamard product, > the matrix transpose, and
equality is achieved with normalisation. A complementary interpre-
tation of forward filtering is that of a Recurrent NN (RNN) [25] that
grows probabilistically through the forecasting horizon.

2.2 Stochastic vector fields
Uncertainty is introduced to VFs with the mean (µ(t) =
gµ(fz(t), t;θ(µ))) and variance (τ (t) = gτ (fz(t), t;θ(τ))) gen-
erating functions that both arise from a common representation
fz(t) = gz(h(t), t;θ(z)), see fig. 3. It will be convenient to de-

t h(t)

μ(t)

Neural network

τ(t)

Figure 3. Architecture of the SVF unit.

compose VFs into the length (v(t)) and orientation (u(t)) of the VF
and to impose uncertainty on these separately:

u(t) ∼ Ns
(
µ(u)(t), τ (u)(t)

)
(6)

log v(t) ∼ N
(

logµ(v)(t), τ (v)(t)
)

(7)

whereµ(u)(·), τ (u)(·),µ(v)(·) and τ (v)(·) are the mean and variance
representations of the direction and length variables respectively,N (·)
is a Gaussian distribution and Ns(·) is a distribution defined on a
D-sphere. Samples from both distributions can be transformed into
VFs with the inverse transformation to that used above, ∇h(t) =
exp{v(t)}u(t).

In principle one may wish to constrain the variance of Stochastic
VF (SVF) to ensure that u(t) ·µ(u)(t) > 0 since, with large variance,
samples from the directional distribution (eq. (6)) will be reversed with
respect to the expected direction of the VF. We believe this directional
preservation property is important since the expected inductive bias
of the SVF for each sample is continued. This tends to give lower
variance solutions. A similar motivation led to us imposing uncertainty
on length in the log domain. Although noise can be imposed on VFs
without the decomposition (e.g. see [14]), the proposed decomposition
naturally orientates the distribution along the expected direction of
the VF.
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2.3 Loss functions
The complexity of IVP solutions in the NODE framework is typically
reported with the Number of Function Evaluations (NFE) metric.
NFEs are influenced by the total distance and the ‘straightness’ of
the solution trajectory, and here we introduce and motivate losses
that encourage fewer NFEs. In so doing, we achieve solutions that
preserve a significant amount of the original topology of the data
(since the majority of the data remains stationary) but we also expose
a link between NFE minimisation and the variance of VFs over the
solution path.

2.3.1 NFE losses

The two losses discussed in this subsection directly relate to NFE
reduction since they target short solution paths and low-variance VFs.

Transportation Loss (TLoss) TLoss is defined as follows

LTLoss =
1

T

T∑
i=1

‖h(ti)− h(ti−1)‖22 (8)

The minimal possibleLTLoss between h(t0) and h(tT ) is ‖h(tT )−
h(t0)‖22 and this is achieved when all VF evaluations point in the same
direction, i.e.∇h(ti) = ∇h(t0)si ∀si ∈ R+.

Variance Loss (VLoss) VFs can be encouraged to point in the
same direction by regularising their variance. Letting E[∇h(t)] =
1
T

∑T
i=1∇h(ti) be the expected VF, VLoss is defined as

LVLoss =
1

T

T∑
t=1

‖∇h(ti)− E [∇h(t)]‖22 (9)

Combined transportation distance and directional variance losses
are termed Transport & Variance Loss (TVLoss).

2.3.2 General losses

The losses in this subsection are specified for the learning over mixture
distributions and forecasting.

Mixture Density Loss (MDLoss) SVFM models produce mix-
ture distribution as outputs, and these are reconciled into a mixture
density loss as follows

LMDLoss = − log

K∑
k=1

p
(
h (t) |µ(k) (t) , τ (k) (t)

)
π(k) (t) (10)

where p is the density of the output distribution. MDLoss resembles
those in mixture density networks [1].

Forecasting Loss (FLoss) In forecasting problems, a datapoint
is a sequence of T ′ measurements and timestamps. We define X ∈
RT

′×D to be the matrix of measurements and tX ∈ RT
′

to be the
corresponding timestamps. Forecasting loss is then defined as

LFLoss =
1

T

T∑
i=1

` (h(ti), interp (X, tX, ti)) (11)

where interp is an interpolation function that estimates data at ti,
and ` is a secondary loss that penalises h(ti) that are far from the
interpolated target. We choose cubic interpolation in our experiments
and the choice of ` dependent on the model; mean squared error is
used with baseline methods and MDLoss is used with the SVFMs.

2.3.3 The case for low-variance VFs

Aligned VFs are encouraged by the variance reduction loss discussed
above. Here we expand on the computational gains achieved when
solving IVPs with aligned VFs.

We formalise this analysis with Runge-Kutta-based iterative em-
bedded ODE solvers. These can be characterised by their Butcher
tableau [2] that defines the coefficients, temporal offsets and evalua-
tion weighting of VFs. The Butcher tableau of an order s embedded
solver is often tabulated as

c1 a11 a12 . . . a1s
c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass
b1 b2 . . . bs
b∗1 b∗2 . . . b∗s

and for a given state, h(tn), the next output is given by

h(tn+1) = h(tn) + h

s∑
i=1

biki (12)

where the intermediate vector field evaluations are defined as

ki = f

(
h(tn) +

s∑
j=1

aijkj , tn + cih

)
(13)

and where a, b and c are as defined in the tableau above, h is the step
size for that iteration, and f is defined in eq. (1). The final row of the
tableau is used to estimate truncation error as follows

h∗(tn+1) = h(tn) + h

s∑
i=1

b∗iki (14)

etn+1 = h(tn+1)− h∗(tn+1)

= h

s∑
i=1

(bi − b∗i )ki (15)

The step size h is adjusted dynamically when deriving the solution
to be close to a specified tolerance value. If the error is too high, h is
reduced and the iteration is repeated. If the error below the tolerance,
h is accepted but the step size may be increased for the next iteration.

If VLoss is incorporated and successfully aligns all VFs then each
can be seen as a scaled version of the principal direction, k̄, i.e.

e(tn+1) = hk̄

s∑
i=1

(bi − b∗i ) (16)

Notice that the truncation error has become independent of the
intermediate evaluation points with the alignment. By design

∑
i bi =

1 and
∑
i b
∗
i = 1 and so the truncation error tends to 0 in the equation

above. This allows solutions to be discovered with just one step.
Although the systems characterised by eq. (16) are not particularly
interesting in general, we introduce it since it is minimal in the sense
of NFE requirements. In other words, for a given tolerance, larger step
sizes can be afforded with aligned VFs. Our experiments demonstrate
these savings clearly when these losses have been incorporated, which
can be seen to tend towards this limiting case. Interestingly, this
suggests a link between transportation and variance losses since under
the conditions of eq. (16) both are minimal.
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3 Sampling and SVFM relationships

h(t0)

h(t1) h(t2)

h(t3)

∇1h(t0)
∇2h(t0)

∇3h(t0)

∇1h(t1)

∇2h(t1)

∇3h(t1)

∇3h(t2)

∇2h(t2)
∇1h(t2)

(a) Mixture

(b) Length (c) Direction

Figure 4. Illustration of three forms of uncertainty.

Figure 4(a) illustrates branching patterns that are characteristic of
VFM solutions. The initial state h(t0) is shown by the red node on
the bottom left, and its trajectory to h(t3) is highlighted in red. At
each evaluation position one of three VFs is dynamically sampled
from the distribution π(ti). Although we only consider myopic ap-
proaches here, i.e. steps are taken based on samples from π(ti), other
approaches (including particle filtering and reinforcement learning)
will be explored in future work. Exhaustive search is prohibitive since
it is exponential on the number of evaluation points. Ten samples from
uncertain VFs are shown in figs. 4(b) and 4(c). Scaled VFs (fig. 4(b))
which always initially follow the same trajectory will tend to ‘fan out’
as curvature is encountered whereas directional uncertainty (fig. 4(c))
tends to fan out immediately. The full factor graph of the proposed
approach is shown in fig. 5. NODE units are depicted by the black
squares in this figure.

u(t) v(t)

π(tp) t

ψ(t)

π(t)

f(k)(t)

h(t)

Ψ(t)

SVFM unit

(3) (4)

(5)

(6) (7)

(1)

∇h(t)

Figure 5. Full architecture of the SVFM unit.

The proposed model, SVFM, encapsulates all of the properties
shown in fig. 5. Sequences of samples from SVFMs are likely to
vary significantly even under the same contextual conditions, and this
will cause problems for ODE solvers. Since the classic Runge-Kutta
4 (RK4) method requires four function evaluations in determining the
next direction [11] and the Dormand-Prince (DP) method requires
six [4] their convergence guarantees do not hold since SVFMs are

discontinuous everywhere [18], but with careful scheduling it is pos-
sible for these guarantees to hold at each step. Our approach is to
record the random state at the beginning of the evaluation campaign,
and to reset the random number generator’s state to the recorded state
whenever samples need to be drawn during the campaign, and these
are used with the reparameterisation trick on Gaussian and discrete
distributions [16, 9]. Experimentally, this trick significantly reduces
the number of function evaluations required with DP solvers that are
used in our experiments. The incorporation of uncertainty and mixture
distributions to VFs are the key factors that help solve scaling and
splitting cases and also facilitate behavioural modelling. Figure 6
highlights the relationship between stochastic (S-, blue), mixture (-M,
black) and augmented (A-, red) [5] models. This figure not only shows
that these three modelling choices can be used together, but that any
combination can be selected.

A-SVFMA-VFM

SVFMVFM

A-SVFA-VF

SVFVF

Augmentation
(crossing)

Mixture
(splitting)

Uncertainty
(scaling)

Figure 6. Relationships between discussed models.

Although the most complete model is A-SVFM as it incorporates
all three components, our experimentation will primarily be evalu-
ated with SVFM models because our interest is in forecasting and
augmentation lifts the representation out of the original feature space.

Stochastic VFs have also been studied principally within the
Gaussian Process (GP) [23] framework [24, 21]. Such models are
non-parametric and require specification of covariance (kernel) func-
tions. During inference, the covariance matrix underpinning the model
requires inversion, which is a bottleneck for larger datasets. However,
sparse methods for approximating the covariance with a subset of
induced data [6] can trades computational cost off for approximation
of the solution.

We investigated the properties of SVFM models theoretically. First
we prove that NODE and ANODE models are unable to model split-
ting and scaling problems. We belive this further justifies our work
since these problems are basic and (conceptually) simple components.
Secondly we characterise the nature of VFs that require minimal
NFEs. Although it turns out that the resulting VFs are trivial and
are not useful in general, the analysis provides justification for the
variance and transportation losses mentioned in the previous section.

4 Results and discussion
4.1 Experiments
4.1.1 Synthetic data

Three example datasets are used in this paper: moons, nested circles
and XOR. In all cases 1,000 datapoints are sampled for training,
testing and validation.

4.1.2 Behavioural data collection and processing

The behavioural dataset was collected in an adapted residential house.
The collection mechanism involved a bespoke robotic wearable, ca-
pable of gathering 2-dimensional LiDAR point clouds from a human
participant. The experimental procedure asked the participant to walk
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(a) LR to door (b) LR to kitchen

(c) LR to landing (d) LR to study

Figure 7. Visualisation of SLAM maps mapping a single trajectory from
the living room to four endpoints. We can see that the map derived from each
setting is a faithful representation of the floorplan in fig. 12.

naturally into 4 different sections of the house from the same origin
point, located in the living room. The 4 different targets in the house
included the front door, the study room, the kitchen, and the land-
ing of the stairs. Time of each experiment was assured through NTP
synchronisation between the wearable and university NTP servers.

The procedure for collection followed a protocol:

1. Begin in the origin ‘anchor’.
2. Choose one of the four target locations.
3. Proceed to the target. This should take roughly 5-10 seconds.
4. Repeat 10 times.

The subsequent processing of the point cloud was performed using
2-dimensional SLAM. The data was associated using a loop closure
method outlined in [8]. The map and the locations were extracted
using an occupancy grid map [20]. The loop closure in this context
specifies a method of location error minimisation from aggregated sub
maps [8]. The parameters of the algorithm included laser reflectivity,
internal loop closure threshold, resolution of the grid map and down-
sampling of the data.

4.1.3 Models

Several architectural, grid search and optimisation parameters used in
our experiments are enumerated below:

• VF representer

– Number of hidden layers: 1 and 2.

– Number of hidden units: 32 and 64.

– Activation function: rectified units in all cases.

– Output VF activation: linear units.

• Optimisation

– Optimizer: Adam [10].

– Batch size: 50 and 100.

– Learning rate: 10−2, 10−3, 10−4.

• ODE solver

– Tolerance: 10−6.

• SVFM

– Component selection: pick and stick, forward filtering.

– K from {2, 4, 8}

We introduced four loss functions in the main paper: Mixture
Density Loss (MDLoss), Transportation Loss (TLoss), VLoss and
Forecasting Loss (FLoss). Since FLoss penalises deviation from a
path, it is incompatible with TLoss and VLoss. Classification tasks,
however, may mix TLoss and VLoss losses with predictive losses
(e.g. cross-entropy). The balance between the predictive loss and the
path regularisation is established with one parameter λ, and this is
selected on the validation set.

4.2 Illustrative examples.

We provide several animated GIFs that illustrate the transformations
that are described statically here4.

Figure 8 depicts the transforms that are learnt on the ‘moons’
dataset (i.e. two intersecting semi-circles of different classes). On
the left are the transforms that are achieved by the baseline NODE
model, but on the right the transforms achieved by the proposed
SVFM model are shown. The problem is essentially solved in both
cases, but the SVFM model has required minimal datapoint trans-
formation to solve the task. We believe this characteristic illustrates
advantageous traits in our task since in real applications, the domain
knowledge of experts is still relevant in the majority of cases.

Figure 8. Moons predictions from NODE (left) and SVFM (right).

Figure 9 depicts transformation of VF (TR), VF with TVLoss (LL;
herein called VF-TVLoss) and SVFM (LR) models on the nested
circles dataset (i.e. samples from two circles of different radius each
of a different class, see TL). The NODE solution has learnt a complex
trajectory that requires the inner circle to ‘break’ through the outer
circle. We note that particles are transported large distances through
many NFE to break through, and this jeopardises generalisation ac-
curacy. We can reduce NFE by incorporating TVLoss. Their effect is
visibly seen on the top left of the LL figure where several blue points
remain stationary at their original positions and all red trajectories are
close to linear. However, in solving this problem many blue datapoints
have been transported around the outer circle and these nonlinear tra-
jectories require many NFEs. SVFM (LR) can be seen to produce
linear transformations since the trajectory of any two particles are
independent if assigned to different VF components.

The example in fig. 9 (LR) clearly demonstrates that SVFM models
facilitate linear trajectories needing fewer function evaluations. We
noted that for some simple toy datasets SVFM can learn a trivial
solution by assigning π(t0) directly associated to the class label. If

4 Moons with VF; Moons with TVLoss; Nested circles with VF; Nested
circles with TVLoss; and Nested circles with SVFM
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Figure 9. Nested circle predictions.
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Figure 10. Cyclic continuation.

desired, this can be encouraged by penalising low mutual information
between π and the target labels. We do not study this.

The integration variable t and the interval over which it is integrated
are abstract quantities that directly affect the depth of the network. In
our behavioural application, we interpret t as the Time of Day (ToD)
and instead of parameterising our VF networks with the time variable
t we use a time tuple t = (cos(t/l), sin(t/l)) (l = π

12
if t is given in

hours) since it has smooth and periodic characteristics for increasing
t.

We call the augmentation of t to t cyclic VF continuation and
an example of it is illustrated in fig. 10. Here, the function g(t) =
sin(t) + t/10 (shown in the solid trace) is learnt by a NODE mode
with data from the blue interval (0 ≤ t ≤ 2π). The model is then
tested by querying the endpoint at t∗ = 10π, a point well outside
the training domain. When determining the endpoint, the NODE
model performs several function evaluations shown with the blue and
red dots. We see that the periodic traits of the function have been
extrapolated well beyond the training interval into the red region. Of
particular note is that all intermediate datapoint evaluations are faithful
to the true function which is directly encouraged by the forecasting
loss. In the context of behavioural modelling, this simple example
demonstrates that cyclic VF continuation should allow for periodic
behavioural traits to be representatively modelled over long forecast
horizons. Although the demonstration here is rather straightforward,
richer notions of meaningful periodic dependency will be captured
from real datasets and tasks. Traditional VF parameterisations cannot
learn even this basic extrapolation task.

4.3 Forward evaluation analysis

The effective complexity of NODE models is widely reported with
the NFE metric, but NFE is a somewhat nebulous term since it more
accurately captures the maximal NFE of a batch. We illustrate this
by solving the IVP for every instance of a dataset separately and

producing a histogram on the set of NFEs. Taking the particular
example of the VF model on the moons dataset (i.e. blue histogram in
fig. 11(a)) the NFE metric (in the traditional sense) is 26, but it is clear
that most datapoints require much fewer function evaluations, with
the mean and median ≈ 17. Computational savings can be achieved
by separating the ‘hard’ and ‘easy’ instances from one another since it
is the hardest instance of a batch that subjects the rest to unnecessary
evaluations. Estimation error given by embedded solvers allow for
dynamic evaluation.
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Figure 11. NFE histograms for baseline and proposed models on moons
(fig. 11(a)), circles (fig. 11(c)) and XOR (fig. 11(e)) dataset. The per-instance
NFE heatmap is shown for the XOR dataset in figs. 11(b), 11(d) and 11(f).
Here, red indicates regions high density and the leading diagonal is the line of
equal NFEs. SVFM models consistently require fewer NFEs. The title of these
figures tallies the total NFE savings and proportions of instances in receipt of
these savings.

The remining figures in the left column of fig. 11 present the NFE
histograms on three datasets, and baseline, VF+TVLoss and SVFM
results are shown in blue, orange and green respectively. The basic
NODE models are shown here to require the most function evalua-
tions. Although incorporating TVLoss reduces the number of samples
required, the greatest savings in all cases are obtained with the SVFM
model since it directly facilitates linear solutions.

The NFE distributions from pairs of models are compared in the
right column of fig. 11 on a per-instance basis. Here, the (i, j)-th
component of the matrix counts the number of instances for which the
first model made i evaluations and the second made j. The NFEs for
VF, VF+TVLoss and SVFM models are compared on the Exclusive-
Or (XOR) dataset. This figure shows that NFE savings are gained by
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using the proposed method and TVLoss losses over baselines, with
the biggest savings delivered by SVFM. In particular with figs. 11(d)
and 11(f) we see that the proposed method dominates VFs in all cases.
Per-instance NFE distributions on the other datasets were also inves-
tigated and, in general, show more significant savings are obtained
with the SVFM approach.

4.4 Behavioural forecasting

In behavioural forecasting we are interested in predicting the future
location and trajectory of a person given knowledge of their origi-
nal starting position. SVFMs utility in delivering these forecasts is
demonstrated with a bespoke dataset captured in a residential en-
vironment. A volunteer was recorded with a Light Detection And
Ranging (LiDAR) data collection unit and the resulting pointcloud
was processed with Simultaneous Localisation And Mapping (SLAM)
techniques to produce relative time and location data. For the purposes
of this experiment, data was collected over four consistent paths uni-
formly that start in the living room and end at the front door, kitchen,
landing and dining room. The behavioural data will be released on
publication in raw and processed forms.

(a) Forecasts learnt from uniform endpoints.

(b) Forecast based on time of day.

Figure 12. Visualisation of behavioural forecasting starting from the couch
in the living room (grey circle).

In fig. 12(a) the floor plan of the residential environment and the
approximate location of furniture are shown. An SVFM model is
learnt on the data above with the forecasting loss (eq. (11)), and
200 paths sampled from the learnt model are overlaid on this figure.
Four clear trajectories corresponding to the four endpoints mentioned
above can be seen in the figure and are colour coded according to
endpoint. Although the essential trajectory of the paths is the same,
each particular path is unique. This is due to directional and length
uncertainty. Length uncertainty is particularly notable with the kitchen

trajectories (blue) in which endpoints span a region of approximately
two metres.

The distribution over endpoints was balanced in our data capture,
and hence in fig. 12(a). Although this clearly illustrates the model’s
capability in forecasting behaviour, it does not represent the dynamics
of naturalistic behaviour since people will not enter rooms uniformly
at random in general. In order to demonstrate the model’s ability
to capture naturalistic behaviour, we synthesise a dataset where the
encountered paths are conditioned on the ToD. ‘Day’ and ‘night’
periods are defined, and during the daytime all paths are walked
with uniform probability. During ‘night,’ however, the landing and
kitchen are selected with probability 0.9 and 0.1 respectively. An
SVFM model influenced by the time tuple is learnt on these paths.
We test with the same conditions of fig. 12(a) during the ‘day,’ and
endpoints mimic those in fig. 12(a). However, a counterfactual query
of the following form was made: ‘what would the endpoints be had
the ToD been night instead of day?’ The resulting paths are shown
in fig. 12(b), and the model has delivered on the expectation that
‘landing’ endpoints should be favoured given the temporal context
of the query. This is a more complete demonstration of the cyclic
continuation demonstrated earlier in fig. 10.

Assessment of forecasting models like this are of particular interest
in healthcare domains. A growing pressure for passive assessment
disease state and prognosis is leading to better characterisation of
symptom such as ‘wandering behaviour’ for patients with Alzheimer’s
disease. This symptom is characterised by high-entropy transit within
the home, and this is exactly what is shown in fig. 12(a). These are
easily distinguished from the low-entropy transitions such as those
shown in fig. 12(b). Baseline NODE and ANODE models are unable
to adequately characterise these behavioural problems due to the
natural variation of walked paths in these domains.

5 Conclusion
This paper is concerned with encouraging parsimonious advections
from neural ordinary differential equation models, and we draw two
main conclusions in this work that are fortified by our experiments:
1. loss functions acting on particle trajectories lead to models with
lower effective complexity; and 2. introducing uncertainty to vector
fields directly delivers simpler solutions. To the best of our knowledge,
trajectory-based losses have not previously been explored within the
NODE paradigm, and the three that we introduce are shown here to be
a straightforward and effective means of controlling model complex-
ity. The most successful model in our experiments is the stochastic
vector field mixture that we propose, and it is the vector field mix-
tures in particular that facilitate improved performance and linearly
transported solutions. The utility of these models is demonstrated
on illustrative tasks and in human behavioural modelling where we
demonstrate its ability to capture the rich variation that is characteris-
tic and forecast human movement. These results in particular suggest
that these models may be applied to open behavioural quantification
questions in healthcare settings, particularly with Alzheimer’s disease.
Future work will build on what is presented here, and in particular
will characterise between-resident effects in forecasting and explore
behavioural modelling when location is uncertain or latent.
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