
Non-linear Cluster Enhancement: Forcing Clusters into a
compact shape

Benjamin Schelling1 and Lukas Miklautz1 and Claudia Plant1,2

Abstract. K-means is one of the most widely used clustering algo-
rithms there is and applied for a wide range of settings, but how do
we know that a data set is suited for it? K-means’s assumptions about
the data are relatively strict: clusters should be Gaussian distributed
with uniform variance in all directions. These assumptions are rarely
satisfied in a data set. While clusters that do not deviate from these
assumptions too far, can be cut out with sufficient precision, the far-
ther the data is from these assumptions, the more likely k-means is to
fail. Instead of testing whether the assumptions are met and k-means
can be applied, we make it so. Our goal is to improve the suitability
of data sets for k-means and widen the range of possible data sets it
can be applied to. Our algorithm changes the position of data points
so that the clusters become more compact and, thus, fit better into
the requirements of k-means. Based on cluster-wise PCA and local
Z-transformation we estimate the form of the correct clusters and
move the data points so that the correct clusters become more com-
pact with each iteration and – in the end – have uniform variance, as
well as increase the distance between clusters. We explain the theory
behind our approach and validate it with extensive experiments on
various real world data sets.

1 INTRODUCTION
K-means [18] is one if not the most widely used clustering algo-
rithm there is. It is being studied intensively in scientific circles, with
dozens of articles about every aspect of it. It is used from speech
recognition [5, 17] to autonomous driving [28] and is frequently an
important building block for a more extensive system as k-means
is simple, fast and often gives good results. It is used in combination
with classical Clustering methods, e.g. as an initialisation for EM [7],
as well as for new neural networks-based methods, e.g. DEC [29].

In principle, k-means requires clusters that have a Gaussian bub-
ble shape with equal variance in all directions (we shorten this to
”uniform variance”), but it can handle many forms of clusters as
long as they are mostly convex, non-overlapping and somewhat well
separated. K-means partitions the data into Voronoi cells (see [9]
for a short introduction; an example can be seen in Fig. 1b). The
closer the clusters match the assumptions of Gaussian shape with
uniform variance while being well separated, the better they fit into
this Voronoi cell structure of k-means. Compact clusters are more
suited for these cells, while non-convex clusters might not fit at all.
Thus, data sets are often preprocessed by normalizing them. Normal-
izing in the [0,1]-range or Z-transformation prevents clusters from
being extremely stretched in one direction and very contracted in
another. The clusters are therefore in a more compact shape, which

1 Faculty of Computer Science, University of Vienna, Vienna, Austria
2 ds:Univie, University of Vienna, Vienna, Austria

(a) Our running example and the
ground truth

(b) How k-means clusters it with
a good initialisation.

(c) How we manage to change the data set. Clusters are now al-
most perfectly Gaussian.

Figure 1: The running example, how k-means clusters it and how it
looks after PCE (our method).

makes them easier identifiable as they fit better into the Voronoi cells.
Normalization is often recommended for k-means [21] and other
clustering approaches [14].

The running example shown in Fig. 1a is simple and would be well
suited for k-means, as the clusters follow a Gaussian distribution and
are well-separated. The spread of the clusters, though, makes it dif-
ficult for k-means to partition it well. A typical clustering result of
k-means, if the initialisation goes well, is shown in Fig. 1b. Clus-
ters are cut into multiple parts and incorrectly merged. Even if the
initialization strategy succeeds, i.e. returns one data point from each
cluster as the start initialization for the centers, k-means performs
poorly. The clusters do not fit into the Voronoi cell structure of k-
means. Merely normalizing the data is not enough to make it suited
for k-means. Besides the normalization of data, the most commonly
used approaches that can be considered transformations are PCA [10]
and ICA [6]. However, both are linear and as can be seen in Fig. 1a
the clusters cannot be separated linearly (see Table 1 that they have
almost no effect on the running example). Non-linear transforma-
tions are rare. Most, like DEC and IDEC [12], are based in Neural
Networks. These could in principle separate the clusters, but often

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

proceed rather rough and tear the data set apart (see Section 4), mak-
ing the clusters unlikely to fit into the Voronoi cell structure.

The method that we present takes the (preliminary) clusters found
by k-means (i.e. the Voronoi cells) and shifts the data points depend-
ing on the shape and spread of them. It forces very elongated clusters
into a more compact form with uniform variance while separating the
clusters better from each other. It does so while still keeping the ba-
sic shape and form of the data set intact (see Section 4). A successful
application for the running example is shown in Fig. 1c. The clusters
fit now seamlessly into the Voronoi cell structure of k-means, which
can perfectly cluster the data. Thus, we extend the spectrum of data
sets suited for k-means. We intend to demonstrate that this increase
in suitability is substantial enough, that the combination of our trans-
formation with k-means can now outperform a wide range of vari-
ous clustering algorithms. With this, we intend to forestall the retort
”Why do you not simply use another algorithm besides k-means?”
which also ignores how wide-spread k-means has become in various
fields less familiar with various clustering approaches.

1.1 Contributions
The method presented in this paper, PCE (Principal Cluster
Enhancement) is a non-linear transformation, making the clusters
better suited for k-means.

• The focus is on k-means, as we explicitly try to make the clus-
ters more suited to it, but many methods might benefit from more
compact clusters. We include experiments for different standard
clustering methods and demonstrate that they are also compatible
with our method.

• We demonstrate that PCE keeps the basic shape intact, transforms
the data non-linear while making clusters more compact.

• PCE and the reasons for its decisions are easy to understand. Some
methods, e.g. Neural Network-based ones, are often hard to under-
stand and resemble black boxes in this regard.

• The procedure is deterministic, excluding the initialization of k-
means. With a deterministic initialisation for k-means it would be
completely deterministic.

• Our method is light in runtime-requirement. The major part is ex-
ecuting PCA, a technique heavily researched and optimized.

1.2 Related Work
PCE is an algorithm that tries to lessen the assumptions of k-means
and broaden the range of data sets suited for it. In regards to being
a support-method for k-means, it falls into a long line of algorithms,
from which X-means [22], to estimate the number of clusters, or k-
means++ [1], to find a good initialisation, are most likely the best
known. K-means has, over time, become a sort of framework which
is freely adapted to suit the needs of various approaches. Examples
are e.g. FOSSCLU [11] or SubKMeans [20], that look for subspaces
compatible with k-means.

Closely related to us in terms of the pursued goal is DipTrans-
formation [23] that has the explicit goal of changing the structure
of the data set to improve clustering. It also transforms the data,
but it is restricted to linear transformations like PCA and ICA.
A basic version of DipTransformation is DipScaling [24], which
scales the axes according to the information given by the Dip-Test
[15]. It falls into the category of very simple normalization-methods
like Z-transformation (also referred to as Z-normalization) and the
normalization into the [0, 1]-range, which are the two fundamen-
tal transformation-methods which are often used for pre-processing.

Transformation methods per se are rare. Apart from those mentioned,
one of the closer members of the clustering community is SynC [2],
which collapses multiple data points onto a single data points. One
could further include Spectral Clustering-methods, that create a dis-
tance matrix from the data, which is after some steps clustered with
partitioning methods like k-means. These could be considered as a
pre-processing step for k-means. Kernel-based approaches [25] do
not change the data set, but interpret distances differently, which is
a similar concept. Feature Weighting-method like EWKM [16] also
do not change the data points but put a different relevance on each
feature for clustering. Closer are Neural Network-based methods like
DEC, IDEC and DCN [30] that combine k-means and Deep Learn-
ing, which actually change the data set.

Our approach makes use of the Dip-Test [15], a statistical test for
multi-modality, which has lately garnered some attention in the Data
Mining-Community (see [19] for an introduction). The first method
was DipMeans [4], a method from the k-means framework, that esti-
mates the number of clusters in a data set. There is also SkinnyDip,
a method to cluster in the presence of high noise, and the aforemen-
tioned DipTransformation and DipScaling. The Dip-Test has also re-
cently been generalized from one dimension to multiple dimensions
[26] and employed as a test, if clustering makes sense, i.e. if multiple
clusters are present in the data set.

2 THE ALGORITHM

2.1 The principle: PCA and Z-transformation

We aim to change the data set so that clusters become more com-
pact and thus easier to cluster. The basis, which we make heavy
use of, is Z-transformation on one hand and PCA on the other.
Z-transformation is used to obtain clusters with uniform variance.
Z-transformation divides a feature by its standard deviation-value,
which brings this feature to a variance of 1. It can be expressed as

x′ =
x− µ
σ

(1)

with µ as the mean of the feature, x a data point and the variance
σ2, which means the standard deviation is σ.

The data set shown in Fig. 2a has the same variance in the x- and y-
axis. Only applying Z-transformation will not change the shape of the
cluster, i.e. it will not have uniform variance. For this we need PCA.
PCA gives the directions with the highest variance. If we apply the
Z-transformation along these directions we get Fig. 2b. The cluster is
now of uniform variance and would be perfectly suited for k-means.

(a) A simple stretched cluster
and its main components.

(b) The cluster is forced into a
uniformly gaussian shape.

Figure 2: For a simple cluster, the main components of PCA and their
variance is computed (shown with the length of the main compo-
nents). Performing Z-Transformation along these directions leads to
a shape with uniform variance.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

2.2 Multiple clusters caught in a Voronoi cell
More than one cluster complicates the matter, as several clusters can
be caught in a Voronoi cell. Consider the simple data set shown in
Fig. 3a with two stretched clusters very close to each other, similar
to two of the clusters from the running example. To the human eye,
the correct clustering is easy to see, but k-means will converge to
the sub-par clustering shown there with two clusters in a cell. The
application of the same PCA/Z-transformation combination as before
does not change the data set sufficiently to escape this state. We wish
to change the data set so that the clusters are clearly separated and
k-means can easily cluster it. For this, we need to adapt our approach
by adjusting how we use the standard deviation.

The projections of the data points in the Voronoi cell to the main
components of PCA is shown in Fig. 3b. These projections contain
very different levels of cluster-information. We can see that in one
of the projections we actually ”caught” two clusters instead of one.
Shown there is also the ”strength” of the directions, i.e. the standard
deviation/variance, of the main components as the length of the ar-
rows. The cluster has roughly the same σ in both directions and thus
applying the former approach does not change the data set enough for
k-means to escape the local optima shown here. The goal is to push
the clusters so far apart so that k-means will move out of this optima
and distinguish between the clusters correctly. This can be done by
”changing” σ. If σ becomes smaller, if more than one cluster is found
in a direction, it will push the clusters farther away from each other
and k-means can escape the local optima it is in and converge to a
better state. Effectively, we change the probability landscape of k-
means. We make some optima more likely while deterring k-means
from others.

To test whether there is more than one cluster in such a direction,
we use the Dip-test. The Dip-test shows us how likely such a projec-
tion is uni-modal, i.e. if more than one cluster has been caught. The
probability found by the Dip-Test, pd, is used to adapt the standard
deviation σ. The formula we use is given by Eq. (2).

σ̄ = σ + pd · σ (2)

This doubles the standard deviation for a uni-modal direction,
while a multi-modal direction is kept the same. The effect is shown in
Fig. 3. In Fig. 3b the standard deviations of the projections are in an
equilibrium. Applying the earlier transformation does not change the
data set. Using σ̄ interprets the need to change the data set very dif-
ferently. The uni-modal direction is contracted much more compared
to before, as σ̄ is twice as large as σ. This leads to Fig. 3c. The clus-
ters are now so far apart, that k-means can distinguish between them
and the clusters are correctly clustered. Using σ̄ allows for clusters
to become better separated from each other in the data. For a single
cluster like the one shown in Fig. 2 nothing much changes, but for
a multi-cluster Voronoi cell like the one in Fig. 3 our transformation
starts pushing clusters away from each other, reducing the difficulty
for k-means to cluster the data correctly.

We use the Dip-test as a measure for the possibility of multiple
clusters, as it is rather precise and has a good runtime ofO(n log(n))
(n the number of data points tested). We increase σ̄ linearly in Eq. (2)
from σ to 2σ with the likelihood of uni-modality, because, following
Occam’s Razor, it is the least complex approach.

2.3 Interaction of Voronoi cell-Transformations
There are two things we need to consider: 1) The preliminary clus-
ters found by k-means are most likely flawed. We have shown how

(a) K-means would cut these
simple clusters in two halves
and merge them wrongly.

(b) One of the clusters and pro-
jections of its data points onto
the main components.

(c) Using the adapted σ
stretches the clusters so far
apart...

(d) ... that k-means can distin-
guish between the two clusters
and separate them correctly.

Figure 3: How the adapted σ helps with distinguishing between clus-
ters.

we intend to deal with this. 2) We cannot analyse a cell by itself.
We focus on this now. Consider two data points very close to each
other but in different Voronoi cells. If we apply the combination of
Z-transformation/PCA only on the data points in a single Voronoi
cell, the two data points might end up far apart from each other. This
would lead to large gaps in the data and might even rip apart a cor-
rect cluster because it is part of two different Voronoi cells. Hence,
we cannot analyse a cell alone and need a way how a transformation
of one Voronoi cell affects another cell.

Applying the transformation of one cell to all data points in all
cells is possible. However, this would lead to clusters no longer being
able to obtain uniform variance, since the direction in which cells
contract/expand can conflict with each other. Thus, we need to lessen
the impact of the transformation with distance to the Voronoi cell.
This way clusters can be re-shaped into uniform variance, but not
deter the transformation of a different cell. If the impact is lessened
continuously, close data points with different cell-assignments would
stay close and transformation would not cause rips in the data.

We now need to cover some basics. The formula for the Z-
transformation is given by Eq. (1). We want to keep the cells roughly
where they are, so we need to move a data point back to where it
came from; thus, we add µ, the mean of the feature, to the data point.

x′ =
x− µ
σ̄

+ µ (3)

This essentially just expands/contracts the data points in a specific
direction, but leaves the center of the data points where it is. In our
setting, µ is equivalent to the projection of the cluster-center as found
by k-means onto the principal component found by PCA, because we
wish to scale the clusters in the specific directions of PCA, but not
to move the position of the clusters. The intention is to force the
clusters into a shape with uniform variance, but not necessarily to
change their position.

Our main interest is the effect of the transformation depending on
the distance to the center of the cluster. Thus, we compute how much
a data point is moved, depending on the distance to the center.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Figure 4: The effect of ∆ and ∆′ depending on the distance to the
center of the cluster. The effect of ∆′ is very similar to ∆ up to a
distance of ≈ 2 σ̄ from µ, but the farther a data point is from the
center of the Voronoi cell, the smaller the effect of the cell becomes.

∆ = x′ − x =
x− µ
σ̄

+ µ− x =

= (x− µ)

(
1

σ̄
− 1

)
= d(x, µ)

(
1

σ̄
− 1

)
(4)

∆ is the difference between the old and the new position of the
data point. d(x, µ) is the distance of x from µ. We see that the change
of the data point is linearly dependent on the distance of the data
point to the center of the transformation. We want to weaken this ef-
fect with distance. Instead of a linear, the effect should increase con-
tinuously and sub-linear, eventually declining to 0 with distance to
the center. Discontinuity would mean rips in the data set. A straight-
forward solution, which worked well in the experiments, is to add a
factor to Eq. (4) that ensures that the effect declines with distance,
i.e. we add an exponential decay factor to it.

∆′ =
d(µ, x)

e
d(µ,x)
(10σ̄)

(
1

σ̄
− 1

)
(5)

With the added decay factor, the influence of the transformation
slows continuously with distance to the center of the Voronoi cell.
The explicit form can be seen in Fig. 4. Close to the center of the cell,
roughly in an area of 2σ̄, which is about 95% in a Gaussian distribu-
tion, the transformation behaves just like a normal Z-transformation.
This effect diminishes with distance to the center and starting from
a distance of 10σ̄ the effect becomes smaller and smaller in contrast
to the effect given by Eq. (4). Clusters with different orientations can
now obtain uniform variance.

We noticed that sometimes if multiple clusters are in a Voronoi
cell the algorithm produces a sort of oscillating effect in the transfor-
mation. This is most likely due to the adapted standard deviation in
Eq. (2). To avoid this we slow the transformation down. We doubled
the speed in Eq. (2), so now we halve it and only apply ∆′

2
.

The factor (1
σ̄
−1), which has not been altered from Eq. (4) to Eq.

(5), is basically the ”sign” of the transformation. It determines if the
data is stretched (σ̄ < 1), contracted (σ̄ > 1) or is left as is (σ̄ = 1),
i.e. the data is already uniform in this direction. The ultimate goal is
to bring all cluster in all directions to a uniform variance. This can be
described as

∑k
j=1

∑d
l=1 |σ̄lj − c| = 0, with σ̄lj being the adapted

variance in direction l for cell j and c a constant. This formula is the
intrinsic objective function of PCE. It formalizes the intuition that
all clusters should be brought to uniform variance. If the objective
function is 0, PCE would stop, as no more change in the position of
the data points is necessary. The uniform variance does not need to
be 1. Any constant value c would be suitable, as we merely try to
obtain the same variance in all directions, not necessarily σ̄lj = 1.

(a) Voronoi cells and the local
PCAs.

(b) The relevant factors for
moving the grey data point.

(c) The effect of each cluster on
the grey data point.

(d) Executing the change in po-
sition. The first iteration.

Figure 5: Applying the algorithm - the first iteration.

Algorithm 1 PCE

Require: Data D, number of clusters k
1: procedure PCE(D,k)
2: while Cluster assignments change do
3: Execute k-means on D
4: for j = 1,...,k do
5: Compute local PCA for Cluster j
6: Compute variance for main components of PCA
7: end for
8: for i = 1,...,n do
9: for j = 1,...,k do

10: Compute effect of Z-transformation along the di-
rection of principal components of PCA from
Cluster j on data point i with Eq. (5).

11: end for
12: end for
13: for i = 1,...,n do
14: Sum up the effects of Z-transformation/PCA from all

Clusters on data point i as computed in Line 10 and
execute it.

15: end for
16: end while
17: return D
18: end procedure

We illustrate the approach of PCE by going through the pseudo
code with the running example. After executing k-means (Line 3 in
the Pseudo-code in Algorithm 1) it is easy to see that clusters and
Voronoi cells do not match (Fig. 5a). We use random initialisation
(see Section 4). PCA is computed in all Voronoi cells (Line 5) and the
effects of these local PCAs on the data points are computed (Line 10).
We take the grey data point as an example. All relevant information
for it is shown in Fig. 5b. To compute the effects of the clusters on
it, we first project it onto the main components found by PCA and
compute the distance to the centers. These distances give us with Eq.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

5 the effect of the cells on the grey data point. In Fig. 5c we can see
how the cells influence the grey data point, i.e. how they move it.
Adding these changes up results in the overall effect on the grey data
point. Computing these effects for all data points (Line 9-12) and
executing them (Line 13-15) leads to Fig. 5d. The first iteration of
PCE. The clusters are now closer to the Gaussian bubble shape with
uniform variance they ideally have. The algorithm continues as one
iteration might not make the clusters perfectly uniform in variance.
K-means is updated, i.e. executed with the same centers, which have
also been moved. Every iteration brings the clusters closer to uniform
variance, and, eventually, the cluster assignments do not change any
more. Identical cluster assignments in two successive iterations are
interpreted as a stable configuration (Line 2/16), i.e. the clusters have
become of such uniform variance, that another iteration would not
improve the data any more. In the final result (Fig. 1c) the clusters
are perfectly compact and suited for k-means.

2.4 Runtime

Following the pseudo code given in Alg. 1 we can estimate the run-
time of the algorithm to be:
O(i · (n · k · d+ k(O(PCA) + n · log(n) · d) + n · k · d+ n))
with i the number of iterations, d the dimensionality of the data set, k
the number of clusters and n the number of data points. We left PCA
as its own factor as it is by far the largest part in regards of runtime.
PCA is O(d3 + d2 · n), thus summed up the runtime is

O(i · k · d3 · n · log(n))

The cubic runtime in d seems excessive, but it is a surprisingly small
issue as this is caused solely by PCA and the runtime would be linear
without it. PCA is a standard data mining algorithm for which highly
optimized and parallelized implementations exist. High-level APIs
and distributed computing frameworks perform PCA with impres-
sive speed and even a matrix with millions of entries can be decom-
posed in mere seconds [3]. There exist also approximative algorithms
for PCA [13] reducing the runtime to O(d2 log(d)). The implemen-
tation of PCA in the commonly used scikit-learn package uses this
implementation. So, while PCA is definitely the bottleneck for our
algorithm, the cubic estimation is essentially a worst-case scenario,
which is only encountered for the naı̈ve implementation of PCA and,
thus, easily avoided.

3 EXPERIMENTAL EVALUATION

Our goal is to make data sets more suited for k-means by making the
clusters more compact. The direct result of this should be a notable
increase in clustering quality when comparing k-means before and
after PCE. Furthermore, this increase should be large enough for k-
means to beat a wide range of various clustering algorithms. Thus,
we tested our method on various publicly available real world data
sets from the UCI repository [8] and compared with classical cluster-
ing method, like DBSCAN and SingleLink, as well as state-of-the-art
approaches. The results can be seen in Table 1.

We measured clustering quality in Normalized Mutual Informa-
tion (NMI) [27], which is currently widely used to estimate the suc-
cess of a clustering method. NMI scales between 1.0 (perfect clus-
tering result) and 0.0 (purely random cluster assignments).

On average, k-means improves by 0.11 in NMI. This is the no-
table increase we were looking for and it made k-means the best-
performing method on the data sets. It is now outperforming a wide

spectrum of clustering approaches. PCE managed to make the clus-
ters better suited to k-means and to re-shape the clusters so that they
fit into the Voronoi cell structure of k-means. In Fig. 1c we saw how
well the clusters became suited for k-means and in the experiments
we see that the effect of improving k-means is not limited to synthetic
data.

Following the argumentation in [23] that a method that improves
k-means will most likely also improve other methods, we also tested
our approach with other standard clustering methods. In Table 2 we
choose 4 of the data sets used in Table 1 and 4 of the standard clus-
tering approaches, i.e. EM, SingleLink, DBSCAN, Spectral Cluster-
ing as well as k-means++ and tested by how much PCE could im-
prove their clustering results. We also included other transformations
and tested how much they could improve the clustering results. PCE
is used here as a pre-processing step, which explains the choice of
the other methods. We used here k-means++ instead of k-means, but
their results barely differ (see Section 4).

From the 20 comparisons in Table 2 testing data sets and methods,
PCE was the best choice in 18. An overview of these results for all
of the 7 real-world data sets for these methods can be seen in Table
3. This is basically an abridged version of Table 2. The conclusion
is the same: The quality of clustering could be notably improved.
PCE could enhance the shape of the clusters, such that the data sets
became easier to cluster. It is the best pre-processing step here and
highly compatible with all of the 4 classical methods. EM can, to a
degree, counteract stretched cluster, thus PCE is more effective on
some data sets for it and has less influence on others. Interestingly,
k-means performs better than EM and has on average a lead of 0.04
over EM. We wish to point out, that Spectral Clustering and Sin-
gleLink improve by 0.12 and 0.13 respectively (more than k-means).

In consideration of all these experiments, we can state that we suc-
ceeded in making these data sets easier accessible to clustering meth-
ods by moving data points so that clusters become more compact and
easier to find.

3.1 Parameters

Data sets were normalized in the [0,1]-range for all methods. We
tried to be as fair as possible to all comparison methods. Transforma-
tion methods like PCA are all shown in combination with k-means.
Methods like k-means++, which entail random aspects, have been
executed 100 times and the average NMI is given. The correct num-
ber of clusters, which e.g. EM needs, is always given to the algo-
rithm. EM is initialized with k-means as that lead to better results.
DBSCAN is difficult to parametrize and thus, we follow the lead
from [23]. We computed the average distance between data points,
a, and tested every combination of minPts ∈ {1, 2, 3, 5, 10, 50}
and ε ∈ {0.05 · a, 0.1 · a, 0.2 · a, 0.4 · a, 0.6 · a, 0.8 · a, a}. Only the
best NMI is reported. For PCA and ICA we followed the lead in [20].
Thus, for PCA we use the often-applied setting that 90% of the vari-
ance is kept and for ICA the number of dimensions is the number of
clusters. We also tried keeping all dimensions, but this did not change
the message of the reported results (PCE performed still better on all
data sets). These results are not included due to space-restrictions.
For SingleLink we found that CompleteLinkage lead to clear better
results compare to SingleLinkage and is thus used here as the cluster
creation criterion. EWKM has a parameter λwhich should be chosen
in the range [1, 3]. We tried for each run λ ∈ {1, 2, 3} and took the
best result. For kernel k-means we tried Gaussian and Polynomial
kernels, as they are two of the more popular choices. DEC and IDEC
are difficult to parametrize. We pretrained ten autoencoders for each

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Table 1: Comparison between methods measured in NMI. For non-deterministic methods is the average of 100 runs given. The correct number
of clusters is given for every methods that can use it. Parameters and technical details in Section 3.1. Best result shown in bold.

Data set Iris Vertebrae C. Seeds Wifi-local. Breast Cancer Breast Tissue Wine Run. Ex.

PCE 0.84 0.52 0.82 0.91 0.81 0.55 0.88 0.93
k-means 0.71 0.26 0.67 0.82 0.74 0.50 0.84 0.76
DipTransformation 0.84 0.29 0.78 0.65 0.72 0.51 0.71 0.67
DipScaling 0.81 0.27 0.73 0.69 0.73 0.52 0.72 0.61
Z-Transformation 0.64 0.30 0.74 0.80 0.73 0.49 0.86 0.76
PCA 0.74 0.27 0.66 0.83 0.74 0.46 0.85 0.75
ICA 0.57 0.27 0.63 0.61 0.65 0.43 0.76 0.75
k-means++ 0.72 0.26 0.67 0.81 0.74 0.49 0.84 0.77
Spectral 0.59 0.27 0.60 0.77 0.79 0.49 0.87 0.89
STSC 0.58 0.27 0.53 0.84 0.36 0.30 0.86 0.42
IDEC 0.25 0.11 0.29 0.40 0.17 0.30 0.22 0.46
DEC 0.24 0.11 0.28 0.43 0.17 0.30 0.23 0.47
DipMeans 0.58 0.00 0.44 0.84 0.29 0.00 0.00 0.76
SynC 0.58 0.13 0.48 0.80 0.64 0.29 0.59 0.48
DBSCAN 0.61 0.21 0.42 0.49 0.76 0.44 0.42 0.88
SingleLink 0.74 0.17 0.61 0.49 0.48 0.39 0.78 0.67
EM 0.87 0.49 0.64 0.90 0.54 0.48 0.86 0.89
FossClu 0.73 0.07 0.57 0.87 0.43 0.36 0.61 —
SubKMeans 0.66 0.30 0.73 0.80 0.73 0.45 0.87 0.77
kernel k-m. (Gauss.) 0.66 0.27 0.67 0.80 0.40 0.44 0.83 0.78
kernel k-m. (Polyn.) 0.69 0.25 0.63 0.69 0.75 0.49 0.74 0.69
EWKM 0.67 0.25 0.60 0.71 0.14 0.49 0.58 0.73

Table 2: 4 of the real-world data sets from Table 1 and we show how
PCE fares on them in combination with clustering methods besides

k-means in comparison with the most closely related methods.

EM Vertebrae. Wifi-local. BreastTissue Wine
PCE 0.53 0.89 0.52 0.88
orig 0.49 0.90 0.48 0.87
PCA 0.27 0.90 0.49 0.88
ICA 0.29 0.82 0.41 0.84
DipTrans. 0.15 0.90 0.48 0.83
Z-trans 0.49 0.92 0.47 0.85
SingleLink
PCE 0.45 0.87 0.50 0.83
orig 0.17 0.49 0.39 0.78
PCA 0.17 0.64 0.41 0.47
ICA 0.03 0.13 0.23 0.02
DipTrans. 0.16 0.71 0.36 0.39
Z-trans 0.02 0.40 0.38 0.61
DBSCAN
PCE 0.33 0.44 0.52 0.55
orig 0.21 0.49 0.44 0.42
PCA 0.18 0.40 0.45 0.50
ICA 0.18 0.36 0.40 0.46
DipTrans. 0.18 0.47 0.46 0.52
Z-trans 0.26 0.46 0.44 0.43
Spectral
PCE 0.49 0.85 0.52 0.88
orig 0.27 0.76 0.50 0.87
PCA 0.26 0.75 0.50 0.75
ICA 0.28 0.63 0.45 0.84
DipTrans. 0.21 0.76 0.49 0.83
Z-trans 0.32 0.74 0.50 0.88
k-means++
PCE 0.50 0.91 0.53 0.87
orig 0.27 0.84 0.50 0.84
PCA 0.27 0.83 0.46 0.84
ICA 0.28 0.59 0.43 0.85
DipTrans. 0.24 0.78 0.51 0.75
Z-trans 0.30 0.80 0.46 0.87

Table 3: Average NMI of standard clustering methods on the 7 real
world data sets from Table 1.

EM SingleL. Spectral DBSCAN k-means++
PCE 0.71 0.65 0.75 0.51 0.75
orig. 0.68 0.52 0.63 0.48 0.66
PCA 0.61 0.50 0.52 0.48 0.65
ICA 0.59 0.12 0.60 0.43 0.59
DipTrans. 0.62 0.50 0.64 0.50 0.65
Z-trans. 0.67 0.45 0.63 0.47 0.65

data set as described in [29] and setting the latent dimension equal
to the number of clusters. DEC and IDEC were each run on the ten
pretrained autoencoders for 200 epochs, which ensured convergence.

4 DISCUSSION AND CONCLUSION
In the following, we discuss point by point some of the aspects of
PCE and its relation to other methods.

Source code: Source code, data sets and labels can be found here:
https://dm.cs.univie.ac.at/research/downloads/

Continuity: The effect of a single direction in a cell on a data point
is given with Eq. 5. Summarizing these effects for all k Voronoi cells
and d directions gives:

PCEi(x) =

k∑
j=1

d∑
l=1

(
x+

1

2
∆′(d(µj , x)l, σ̄lj)

)
where d(µj , x)l is the distance of the projection of x onto the lth
direction of PCA and σ̄lj the adapted variance in this direction. This
is the formula for a single iteration of PCE. It is easy to see from it
that PCE is continuous, i.e. data points that are close before will be
close afterwards.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Figure 6: An unfitting data set with a wrong number of clusters for
PCE. Orig. data on the left, PCE-result on the right.

Figure 7: The running example with DEC and IDEC. Rotated by 90◦.
Plotted with groundtruth-label to help recognition.

Theorem 1 PCE is continuous.

Proof: Let y = x+ ε with x, y, ε ∈ Rd.
|PCEi(y)− PCEi(x)| = |PCEi(x+ ε)− PCEi(x)|∑k
j=1

∑d
l=1

(
ε+ 1

2
∆′(d(µj , x+ ε)l, σ̄lj)− 1

2
∆′(d(µj , x)l, σ̄lj)

)
Since ∆′ is continuous itself, |PCEi(y) − PCEi(x)| −→ 0 for
ε −→ 0 and thus a single iteration is continuous. As the concatenation
of continuous functions is again continuous, PCE is continuous. �

This proof is valid for a wide range of possible ∆′-functions. Our
∆′ is the standard Z-transformation with an adapted variance and
an exponential decay factor. In the proof, we only used that our ∆′

is continuous. Thus, this proof also holds e.g. for a logarithmic or
polynomial decay factor or a completely different definition of ∆′,
as long as it is continuous.

Continuity is a crucial feature for a transformation as it ensures
that the local neighbourhood is kept the same in at least an approx-
imative fashion. Distances between data points change, but if data
points are close, they will still be close after the transformation. As a
practical example, consider the data shown in Fig. 6. It is unsuited to
PCE as its clusters are too far from a convex shape. PCE is not capa-
ble of separating the clusters, but it will not cause any ”damage” (we
used a wrong number of clusters, but similar behaviour could also be
observed if the number of clusters is given as 2, 3, . . .). The conti-
nuity and that PCE merely stretches and contracts data points causes
a very careful transformation, which 1) does not produce rips in the
data, 2) keeps the basic shape intact and 3) is unlikely to transform
the shape if not enough information is available, i.e. if the measured
variance/dip-values are not deviating relevantly from each other. If
this is the case, PCE is unsuited for the data set; resulting in PCE
refraining from doing anything relevant. Fig. 6 depicts such a case.
PCE is unsuited for the data set, but it does not change much and the
data set becomes no more difficult to cluster. PCE is ”careful”, if not
enough information is present for it.

Contrary to PCE, Deep Learning-based methods are far more
extreme in their transformation approach. In Fig. 7 is shown how
DEC/IDEC transform the running example. The running example is a
rather simple data set, but DEC/IDEC restructure it completely. Neu-
ral Networks often seem like a black box, where many decisions are
barely comprehensible. This is such a case. The basic shape is heav-
ily distorted and the structure of the clusters now unrecognisable.
The advantage of PCE over Deep Learning-based methods, which
are almost the only other non-linear transformations there are, is 1)
its approach and decision-making is easy to understand 2) it is far

more conservative and refrains from destroying structure.

Non-convex clusters: We have seen in Fig. 6 that PCE cannot
handle all types of data sets. If the clusters are too far from a con-
vex shape or are massively overlapping, PCE will have problems.
Though, it will most likely refrain from acting in such a case, which
does not deterriorate things. It might be possible to adapt PCE to-
wards these cases by employing other ways of estimating the local
shape of data points instead of PCA. We intend to analyze this in
future works.

The effect of Initialisation: PCE, as well as k-means or EM, is
deterministic after the initialisation has been decided. This raises the
question of the effect the initialisation has. The two main initialisa-
tion methods for k-means are random initialisation (RI), where the
centers are assigned a random data point, which is used in this paper,
and k-means++. K-means++ is often the gold-standard and improves
over RI, but this is not the case here. The average difference between
RI to k-means++ on these data sets is for k-means merely 0.005 in
NMI, with k-means++ being slightly worse. The same effect can be
seen with EM (0.006 in NMI) and PCE (0.006 in NMI). That is not
to say that initialisation is not a relevant factor. Taking the best of
10 runs of k-means (according to the objective function of k-means)
leads to an average improvement of 0.011 in NMI on the real world
data sets for k-means evenly distributed on all data sets. The same
strategy improves EM by about 0.005 and PCE even by 0.019 in
NMI.

On the tested data sets, PCE could notably improve the results.
This means, that it is rather likely that there are stretched clusters in
the data, comparable to the running example. K-means++ chooses
new centers based on distances, which means that it might choose
two data points from such a stretched cluster, or give two close clus-
ters like the yellow/red one in the running example only one starting
center. RI does not take distances into account, which means that the
stretch of the clusters makes no difference, whether a cluster gets a
starting center. Thus, on these types of data sets k-means++ is not per
se the best choice of initialisation strategy.

Regarding EM and objective functions: One variation of the re-
tort mentioned in the introduction is ”Why not use EM instead?” EM
can, to a degree, take care of stretched clusters and thus, overcome
the Voronoi cell structure of k-means. This ignores, that EM is a clus-
tering method, while PCE is a transformation approach, that can be
used as a pre-processing step for clustering methods. It gives EMs
ability to handle stretched clusters to methods like k-means or Sin-
gleLink. Also, PCE improves k-means so far, that it is on average
better by 0.10 in NMI compared to EM.

Furthermore, PCE can also improve EM. PCE changes the po-
sition of data points, which changes the optima towards which an
algorithm can converge to. Thus, the loss landscape of the objective
function itself is changed. This opens stable configurations which the
algorithm could not reach before. The Seeds-data set, for example,
improves for EM from 0.64 to 0.78 in NMI. We intend to analyse
this change in local optima more thoroughly in future works.

Table 4: The NMI-values for the running example for k-means
before and after PCE for wrong values of k. Better result bold.

k=2 k=3 k=4 k=6 k=7 k=8 k=9 k=10
k-m. 0.35 0.62 0.71 0.76 0.73 0.70 0.68 0.66
PCE 0.36 0.63 0.81 0.89 0.84 0.79 0.75 0.71

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Wrong k: What happens if k is wrong? We tested the running ex-
ample for wrong values of k and could still observe an improvement
(Table 4). The same holds for the real-world data sets. We set k ±1
its real value. In both cases, we still got an increase in average NMI.

PCE optima: Different optima of k-means can lead to different
final transformations, and similar k-means optima can lead PCE to
similar final transformations. Sometimes, though, also different op-
tima will lead with PCE to similar final transformations. Our work-
ing hypothesis is that PCE has – similar to k-means – various stable
states to which it can converge to, satisfying the objective function,
i.e. having uniform variance in all directions. This is a question which
we will analyze in more detail in the future.

Conclusion: The usual approach in Data Mining is to find a clus-
tering method for a data set and, if none fits, to create a new approach.
PCE is the other way around; if the data set does not fit, we make it fit
into the assumptions of the clustering method. We devised a method
that iteratively re-shapes the clusters, moves them further apart from
each other and makes them more compact by forcing them into a
shape with uniform variance. We tested PCE with extensive experi-
ments and showed that it also holds up under real-world conditions,
where clusters are usually messier than in synthetic examples. It im-
proved not only k-means but also the standard clustering methods.
Since they approach clustering in very different ways, we assume
that a wide range of algorithms could benefit from PCE.

REFERENCES
[1] David Arthur and Sergei Vassilvitskii, ‘K-means++: The advantages

of careful seeding’, in Proceedings of the Eighteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’07, pp. 1027–1035,
Philadelphia, PA, USA, (2007). Society for Industrial and Applied
Mathematics.

[2] Christian Böhm, Claudia Plant, Junming Shao, and Qinli Yang, ‘Clus-
tering by synchronization’, in Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD ’10, pp. 583–592, New York, NY, USA, (2010). ACM.

[3] Reza Bosagh Zadeh, Xiangrui Meng, Alexander Ulanov, Burak Yavuz,
Li Pu, Shivaram Venkataraman, Evan Sparks, Aaron Staple, and Matei
Zaharia, ‘Matrix computations and optimization in apache spark’, in
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 31–38. ACM, (2016).

[4] Theofilos Chamalis and Aristidis Likas, ‘The projected dip-means clus-
tering algorithm’, in Proceedings of the 10th Hellenic Conference on
Artificial Intelligence, SETN ’18, pp. 14:1–14:7, New York, NY, USA,
(2018). ACM.

[5] Yu-An Chung, Wei-Hung Weng, Schrasing Tong, and James Glass,
‘Unsupervised cross-modal alignment of speech and text embedding
spaces’, in Advances in Neural Information Processing Systems 31,
eds., S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, pp. 7354–7364. Curran Associates, Inc.,
(2018).

[6] Pierre Comon, ‘Independent component analysis, a new concept?’, Sig-
nal Processing, 36(3), 287 – 314, (1994). Higher Order Statistics.

[7] A. P. Dempster, N. M. Laird, and D. B. Rubin, ‘Maximum likelihood
from incomplete data via the em algorithm’, Journal of the Royal Sta-
tistical Socoety, Series B, 39(1), 1–38, (1977).

[8] Dheeru Dua and Casey Graff. UCI machine learning repository, 2019.
[9] Jerome Friedman, Trevor Hastie, and Robert Tibshirani, The elements

of statistical learning, Springer series in statistics New York, 2001.
[10] Karl Pearson F.R.S., ‘Liii. on lines and planes of closest fit to systems

of points in space’, The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 2(11), 559–572, (1901).

[11] Sebastian Goebl, Xiao He, Claudia Plant, and Christian Böhm, ‘Finding
the optimal subspace for clustering’, in Proceedings of the 2014 IEEE
International Conference on Data Mining, ICDM ’14, pp. 130–139,
Washington, DC, USA, (2014). IEEE Computer Society.

[12] Xifeng Guo, Long Gao, Xinwang Liu, and Jianping Yin, ‘Improved
deep embedded clustering with local structure preservation’, in IJCAI,
pp. 1753–1759, (2017).

[13] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp, ‘Finding
structure with randomness: Probabilistic algorithms for constructing
approximate matrix decompositions’, SIAM review, 53(2), 217–288,
(2011).

[14] Jiawei Han, Jian Pei, and Micheline Kamber, Data mining: concepts
and techniques, Elsevier, 2011.

[15] J. A. Hartigan and P. M. Hartigan, ‘The dip test of unimodality’, Ann.
Statist., 13(1), 70–84, (03 1985).

[16] L. Jing, M. K. Ng, and J. Z. Huang, ‘An entropy weighting k-means al-
gorithm for subspace clustering of high-dimensional sparse data’, IEEE
Transactions on Knowledge and Data Engineering, 19(8), 1026–1041,
(Aug 2007).

[17] Duc Le, Zakaria Aldeneh, and Emily Mower Provost, ‘Discretized con-
tinuous speech emotion recognition with multi-task deep recurrent neu-
ral network.’, in INTERSPEECH, pp. 1108–1112, (2017).

[18] J. B. MacQueen, ‘Some methods for classification and analysis of
multivariate observations’, in Proc. of the fifth Berkeley Symposium
on Mathematical Statistics and Probability, eds., L. M. Le Cam and
J. Neyman, volume 1, pp. 281–297. University of California Press,
(1967).

[19] Samuel Maurus and Claudia Plant, ‘Skinny-dip: Clustering in a sea
of noise’, in Proceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’16, pp.
1055–1064, New York, NY, USA, (2016). ACM.

[20] Dominik Mautz, Wei Ye, Claudia Plant, and Christian Böhm, ‘Towards
an optimal subspace for k-means’, in Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’17, pp. 365–373, New York, NY, USA, (2017). ACM.

[21] Ismail Bin Mohamad and Dauda Usman, ‘Standardization and its ef-
fects on k-means clustering algorithm’, Research Journal of Applied
Sciences, Engineering and Technology, 6(17), 3299–3303, (2013).

[22] Dau Pelleg and Andrew Moore, ‘X-means: Extending k-means with
efficient estimation of the number of clusters’, in In Proceedings of the
17th International Conf. on Machine Learning, pp. 727–734. Morgan
Kaufmann, (2000).

[23] Benjamin Schelling and Claudia Plant, ‘Diptransformation: Enhancing
the structure of a dataset and thereby improving clustering’, in 2018
IEEE International Conference on Data Mining (ICDM), pp. 407–416,
(Nov 2018).

[24] Benjamin Schelling and Claudia Plant, ‘Dataset-transformation: im-
proving clustering by enhancing the structure with dipscaling and dip-
transformation’, Knowledge and Information Systems, (Aug 2019).

[25] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller,
‘Nonlinear component analysis as a kernel eigenvalue problem’, Neural
computation, 10(5), 1299–1319, (1998).

[26] Alban Siffer, Pierre-Alain Fouque, Alexandre Termier, and Christine
Largouët, ‘Are your data gathered?’, in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’18, pp. 2210–2218, New York, NY, USA, (2018). ACM.

[27] Nguyen Xuan Vinh, Julien Epps, and James Bailey, ‘Information the-
oretic measures for clusterings comparison: Variants, properties, nor-
malization and correction for chance’, J. Mach. Learn. Res., 11, 2837–
2854, (December 2010).

[28] F. Wang, N. Zheng, D. Cao, C. M. Martinez, L. Li, and T. Liu, ‘Parallel
driving in cpss: a unified approach for transport automation and vehicle
intelligence’, IEEE/CAA Journal of Automatica Sinica, 4(4), 577–587,
(2017).

[29] Junyuan Xie, Ross Girshick, and Ali Farhadi, ‘Unsupervised deep em-
bedding for clustering analysis’, in Proceedings of The 33rd Inter-
national Conference on Machine Learning, eds., Maria Florina Bal-
can and Kilian Q. Weinberger, volume 48 of Proceedings of Machine
Learning Research, pp. 478–487, New York, New York, USA, (20–22
Jun 2016). PMLR.

[30] Bo Yang, Xiao Fu, Nicholas D. Sidiropoulos, and Mingyi Hong, ‘To-
wards k-means-friendly spaces: Simultaneous deep learning and clus-
tering’, in Proceedings of the 34th International Conference on Ma-
chine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, pp. 3861–3870, (2017).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

