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1 PRELUDE
In AI and ML, several methods rely on stochasticity or random-
ization: mutation and crossover in evolutionary algorithms; dropout
and stochastic gradient descent in deep learning; stochasticity in
stochastic local search (SLS) [5]; and randomization in systematic
search [3]. SLS algorithms, which we study here, are competitive in
solving computationally hard problems such as satisfiability (SAT),
sparse signal recovery, scheduling, and most probable explanations
in Bayesian networks (BNs) [16, 5, 6, 13, 15]. Essentially, SLS algo-
rithms are greedy optimizers that also make random moves in order
to avoid getting trapped in local but non-global optima.

Clearly, SLS is a well-established idea in AI. However, SLS is
sometimes underutilized and there are certain potential difficulties
when applying SLS. This highlight showcases recent developments
that address some of these difficulties—related to ML, formalization
with Markov chains, and setting hyperparameters—and briefly points
to future research directions with potential.

2 PSEUDO-BOOLEAN FUNCTIONS
We consider the space of bit-strings B = {0, 1}m, specifically func-
tions f that map from B to the real numbers R. Our focus is pseudo-
Boolean function (PBF) optimization, where the goal is to optimize
(without loss of generality, maximize) the fitness function f :

b∗ = argmax
b∈B

f (b) . (1)

We keep (1) simple, in order to not complicate notation. However,
one can generalize in order to handle multiple optima b∗1, b∗2, . . . and
multiple fitness (or objective) functions f1, f2, . . ..

While optimization of PBFs and closely related problems is typ-
ically computationally complex, there are also many and important
applications including:

• Computing a BN’s most probable explanation: Find an explana-
tion with maximal posterior probability [10, 13, 12]

• Computing models in propositional logic: Find a satisfying as-
signment (model) [16, 5]

• Feature selection: Maximize accuracy by selecting the right fea-
tures for machine learning [8, 4, 11, 20]

• Sparse signal recovery: Find, from a dense measurement (sound,
image, video), the best sparse components [14, 15]

• Structure search for deep neural networks or Bayesian networks:
Search for network structures that maximizes accuracy on test data
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SLS may be used in all of these applications, as illustrated and dis-
cussed for some of them below.

3 STOCHASTIC LOCAL SEARCH CONCEPTS

What is SLS? Suppose that we start with the goal of PBF optimiza-
tion via deterministic local search (or hill-climbing): start somewhere
in f ’s search space b ∈ B, search for improvement in b’s neighbor-
hood, and iterate until a local optimum is found.

To reduce the problem of finding local but non-global optima, SLS
adds pseudo-randomness or stochasticity. Specifically, SLS employs
search operators that are based on the current state b ∈ B, such as:3

• The greedy operator OG chooses, using f , a highest-fitness neigh-
bor of b: any bit-string b′ ∈ B that differs from b in one bit.

• The noise operator ON flips a bit in b uniformly at random.
• The restart operator OR randomly reinitializes to a new b′ ∈ B.

The results after applying these operators vary [6, 10, 11, 20], but can
be as follows. After ON and OR, SLS searches from b′, while after
OG SLS searches from b′ if f(b′) ≥ f(b).

As a concrete SLS case study, we now consider MarkovSLS [11].
In MarkovSLS, probabilistic hyperparameters pG, pN , and pR con-
trol the application of their respective search operators OG, ON , and
OR. If pN = 1, MarkovSLS performs a random walk using ON only,
and so forth. Since the total probability of pG, pN , and pR adds to
one, it is sufficient to specify two of the hyperparameters and let the
third be implied. Thus, MarkovSLS is parameterized by the hyper-
parameters A = (pR, pN ), where pR is the probability of applying
OR (restart) and pN is the probability of applying ON (noise).

The two MarkovSLS variants, SoftSLS and AdaptiveSLS [11],
provide different ways of setting hyperparameters [9]. In SoftSLS,
the hyperparameters (pR, pN ) are tuned offline, enabling analysis
using standard homogeneous Markov chains. Experimentally, we in-
vestigate the dependency of SoftSLS’s performance on its hyperpa-
rameters. AdaptiveSLS, in contrast, performs online hyperparame-
ter control [9]. Experimentally, on synthetic and feature selection
problems, we compare AdaptiveSLS with other algorithms includ-
ing SoftSLS analytically optimized via hyperparameter tuning [9].
We find that AdaptiveSLS performs very well while not requiring
prior knowledge of the search space. This confirms and builds upon
other results suggesting that SLS hyperparameter settings have great
impact on search success and efficiency [5, 10, 2, 9, 20].

3 There are many other SLS methods, algorithms, and operators, as well
as dramatically different approaches to stochastic optimization. Unfortu-
nately, limited space does not allow them to be covered here.
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4 STOCHASTIC LOCAL SEARCH TOPICS

Many innovations and results have moved SLS forward [6]. We now
briefly discuss recent key topics at the interface of ML and SLS.

Stochastic Local Search and Machine Learning. Feature engi-
neering, including feature selection, is essential in ML applications
[4]. Assuming m features, feature selection easily maps into the PBF
setting as follows: Each feature subset is represented by a bitstring
b = (b1, . . . , bm) ∈ B and has a fitness f(b). If a particular bit
bi = 0, we do not include the i-th feature when learning a model by
means of wrapper feature selection [4]. In contrast, if bi = 1, we do
include the i-th feature. In ML, f(b) is validation accuracy, using the
feature set b, for example for a classifier (kNN, decision tree, naı̈ve
Bayes, . . .) and a particular dataset. SLS finds a feature set b′, and
outputs f(b′) [11, 20]. The goal is: b′ = b∗.

In the area of sparse signal recovery, which is closely related to
ML, our recent stochastic CoSaMP (StoCoSaMP) algorithm [15]
substantially improves the performance of a seminal greedy pursuit
algorithm, CoSaMP [14]. This was done by integrating SLS methods
and CoSaMP. After tuning [9] of pN , using for example pN = 0.5,
StoCoSaMP increases accuracy while reducing computational cost
relative to CoSaMP across a broad range of problem instances [15].

Stochastic Local Search Formalization. SLS algorithms typ-
ically have multiple hyperparameters that determine their perfor-
mance. Unfortunately, the understanding of how these hyperparam-
eters interact in different contexts, such as when problem difficulty,
computing platform, or algorithm use case vary, has in our opinion
been lagging compared to the strong empirical results often obtained
with SLS. Current research seeks to improve the theoretical founda-
tion of SLS [10, 2, 11] while also developing SLS algorithms with
competitive performance on problems of practical interest.

We have therefore formulated and analyzed several parametric
Markov chain models of SLS [10, 11]. In such Markov chains, SLS
hyperparameters show up as parameters that can be varied and even
optimized [10, 2, 11]. Using these parametric Markov chains, we
compute expected hitting times, show that they are rational functions
(ratios of polynomials) for individual problem instances as well as for
their mixtures, and use them to aid in SLS performance optimization.
Interestingly, such expected hitting time curves are analytical coun-
terparts to noise response curves reported in the experimental litera-
ture [10]. Hand in hand with this improved theoretical understanding
of SLS, we have studied the computational problems of MPE in BNs
[10, 12, 13] and feature selection in ML [11, 20].

Stochastic Local Search Optimization. A straightforward way
to optimize SLS is to adopt recent hyperparameter tuning methods
[7, 17, 18]. However, we experienced that while very general and
mathematically elegant, such methods are not always scalable and
can be slow [20]. But, as discussed above, the SLS optimization
problem can be reduced to minimizing a rational function. While
the use of exact rational functions in practical PBF optimization is
unrealistic, we benefit from insights obtained via these results.

Specifically, low-order polynomial approximations can be surpris-
ingly accurate [10]. Thus, we set out to perform polynomial approx-
imations in a computationally efficient way [20], using multi-armed
bandits (MABs) integrated with our SLS algorithm. In particular, we
developed an SLS MAB, in which each MAB arm A corresponds
to a hyperparameter pair A = (pR, pN ) of SLS and SLS provides
rewards to the MAB. To efficiently leverage the polynomial approx-
imation, we propose a parametric setting and update the paramet-
ric model using Thompson sampling [19, 1]. We use a polynomial
function to approximate the reward given A = (pR, pN ), and find

that degree-4 polynomials perform very well while being extremely
computationally efficient [20].

5 POSTLUDE
Reflecting on our experience with CoSaMP [14], we hypothesize that
there are other areas of computing in which greedy algorithms are
very popular, but by introducing SLS methods (ala StoCoSaMP [15])
results can be substantially improved. Is that true? Second, the com-
putational cost of ML can currently be high, and the use of SLS for
ML, for example for feature selection by means of wrapper methods
[4, 11, 20], is no exception. Maybe the Markov chain-based anal-
ysis discussed here can be the basis for SLS methods that better
handle massive and complex datasets while reducing computational
cost dramatically? Third, the theory and formal methods commu-
nities have also studied parametric Markov chains, but interactions
with the AI and ML communities have been limited. Perhaps this
will change, now that trustworthy AI is coming to the forefront?
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