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Abstract. We study committee selection with multimodal prefer-
ences: Assuming a set of candidatesA, a set of voters V , and ` layers,
where each voter v ∈ V has ordinal preferences over the alternatives
for each layer separately, the task is to select a committee S ⊆ A of
size k. We discuss applications of our model and study the compu-
tational complexity of several generalizations of known committee
scoring rules (specifically, k-Borda and Chamberlin–Courant) to our
setting, as well as discuss domain restrictions for our model. While
most problems we encounter are computationally intractable in gen-
eral, we nevertheless design efficient algorithms for certain cases.

1 Introduction

We consider the following setting (formal definitions are given be-
low): We have a set A of m candidates (i.e., alternatives), a set
V of n voters, and ` layers (i.e., modals). We consider the ordinal
model, where voters provide linear orders. The crucial ingredient in
our model is that each voter does not correspond to one linear order,
but to ` linear orders, one for each layer. We are also given a com-
mittee size k, and the task is to select a committee of k candidates.

Our model aims to capture situations such as the following: (1)
Uncertain Future: Consider a scenario of selecting a management
committee for a university. In the near future, the university may face
different uncertain situations; e.g., it is not clear that the university
will receive a big grant from the government or from the industry.
Voters (say, faculty) may have different preferences for each of these
uncertain future situations: Indeed, perhaps some candidates for the
management committee are good to deal with the government while
others are good for dealing with industry. Here, we would have one
layer corresponding to government and another to industry; impor-
tantly, each voter might wish to specify not only one “global” linear
order, but two – one for each layer. (2) Candidate Attributes: We
wish to select a committee based on certain attributes (e.g., profi-
ciency in economics, diplomatic skills, etc.). Using our model, and
given that these attributes are set, each voter would provide her pre-
ferred ranking over the candidates for each of these attributes sepa-
rately. Other situations are possible.

Our approach to the problem of selecting committees for our
model is to adapt the framework of committee scoring rules
(CSRs) [13, 19]. This framework has proven to be very rich and
useful in analyzing multiwinner rules. In essence, a CSR selects a
committee which maximizes the total satisfaction – the sum of satis-
faction of the voters – where voter satisfaction is defined differently
for each CSR based on committee scoring functions – which assigns
a value for each position of a committee in the ranking of a vote. We
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adapt CSRs to our model in several ways; these are defined formally
below, but in essence, for a CSR R: Max-R (Min-R, Sum-R) is a
multimodal rule (i.e., a rule where each voter gives ` linear orders,
one for each layer) which selects a committee which maximizes the
multimodal satisfaction of a voter, where the multimodal satisfaction
of a voter is the maximum (respectively, minimum, sum) over the `
layers of her satisfaction from the committee; Pareto-R is the prob-
lem of selecting a Pareto optimal committee, which is a committee
S for which no other committee achieves no less total satisfaction
than S for all layers and strictly better total satisfaction for at least
one layer; and in Vector-R we are given as input also a vector of re-
quired total satisfaction for each layer and shall find a committee that
respects this vector.

Our multimodal model generalizes the standard model of multi-
winner elections: Indeed, for ` = 1, the two models coincide; in
particular, our combinatorial problems (i.e., Max-R, Min-R, Sum-
R, Pareto-R, Vector-R) collapse to finding a winning multiwinner
committee underR. So, as some CSRs are NP-hard, we inherit their
hardness to our models; in particular, we observe this phenomenon
when we consider the NP-hard multiwinner CSR Chamberlin–
Courant (CC). In addition, we also study the polynomial-time CSR
k-Borda and observe that in our more general multimodal model we
sometimes also reach computational intractability. This follows from
the combinatorial complexity of our more general problems. Indeed,
as we discuss throughout the paper, the combinatorial structure of
our problems is quite diverse and non trivial.

Relevant Parameters To overcome this computational intractabil-
ity, we use parameterized complexity and study the effect certain pa-
rameters – the number ` of layers, the number n of voters, the number
m of candidates, and the committee size k – have on the complexity
of our problems.

The parameters under study can indeed be small in real-life sce-
narios. Specifically: (1) in many real life scenarios, we generally re-
quire committee members to have certain set of proficiencies. E.g.,
consider selecting a research paper for a conference; PC members
judge a paper on the basis of significance, novelty, correctness, pre-
sentation, scope, etc. Therefore, the number ` of layers is small in
these scenarios; (2) there are many scenarios in which the number
n of voters can be small; e.g., the size of a jury in a competition or
the size of the board of directors in an organisation, who might be
shortlisting projects for their organisation, is small (see, e.g., [11]);
(3) there are many scenarios in which the number of candidates is
smaller than voters, e.g., in political elections; (4) the committee size
k is naturally not very large in real-life scenarios, such as in short-
listing tasks, parliament selection, selecting movies in the plane, etc.

We identify several cases in which efficient parameterized algo-
rithms exist. Furthermore, we adapt the concept of domain restric-
tions to our multimodal model and study the complexity of solving
our problems for restricted multimodal elections.
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Related Work In this paper we generalize several (ordinal) OWA-
rules3 [27] – which is a subclass of the more general class of
CSRs [19, 18] – to the setting of multimodal committee elections.
Some social choice papers study closely-related models, usually
considering attributes of alternatives (similarly in spirit to our sec-
ond motivating example): Lang and Skowron [24] discuss propor-
tional representation in the context of attribute-based elections. Other
scholars [7, 9, 1] consider attribute-based multiwinner elections as
well; their goal differs from ours, as they wish to achieve some cer-
tain committee diversity. Kagita et al. [22] consider attribute-based
multiwinner elections and suggest several appealing axioms in the
setting of approval-based elections (we consider ordinal elections).

There is some work on multimodal preferences, e.g., in the con-
text of matching [10] and information retrieval [8]. Our second mo-
tivating example has some relation to uncertainty (see, e.g., [2]). Our
definition of Pareto-R somehow relates to other multiobjective op-
timization views on multiwinner elections; we mention, specifically,
the work of Aziz et al. [4], in which the dimensions of optimization
are the voters, and the work of Kocot et al. [23], in which the dimen-
sions of optimization are different voting rules.

2 Multiwinner Elections
Next we provide a brief introduction to the standard model of multi-
winner elections, multiwinner voting rules, and CSRs. A multiwinner
election E consists of a set A of m candidates, a set V of n voters,
and a committee size k; each voter v ∈ V provides her preference as
a linear order over A (we consider ordinal elections). A multiwinner
voting rule R takes as input a multiwinner election E and returns a
committee S ⊆ A with |S| = k.

Here we adapt two prominent multiwinner voting rules to the mul-
timodal case, namely k-Borda and the rule suggested by Chamberlin
and Courant (CC, in short). Both rules are committee scoring rules,
in that they select a committee which maximizes the total satisfac-
tion, i.e., the sum – over the voters – of the satisfaction of the voters,
where the satisfaction of a voter from a committee depends on the
position of the committee members of the committee at hand in the
preference order of the voter. CSRs differ by their definition of such
satisfaction: Under k-Borda, the satisfaction of a voter from a com-
mittee S is the sum of Borda scores of the committee members in S,
where the Borda score of a candidate c ranked in position i in a vote
ism− i. Under CC, the satisfaction of a voter from a committee S is
the Borda score of the committee member from S which is ranked the
highest among the candidates in S. E.g., for a vote a � b � c � d
and committee {b, c}, under k-Borda the satisfaction is 3, while un-
der CC the satisfaction is 2.

As argued by certain authors (see, e.g., [16] and [17]), k-Borda and
CC represent two extreme multiwinner rules. In essence, k-Borda
fits settings in which it is desired to select a committee containing
committee members which are ranked highly by the society, while
CC fits settings in which it is desired to take into account the diver-
sity of the views apparent in the society. Both rules are thus widely
studied. In particular, while finding winning committees under k-
Borda can be done in polynomial time (one has to select k candi-
dates with the highest individual Borda scores), CC is NP-hard [26]
but FPTfor certain parameters, admit approximation algorithms, and
certain heuristics are known to be effective for it [5, 20, 28, 15].

3 An OWA (ordered weighted average) rule is defined via a scoring vector
s of size m and an OWA vector z of size k, and selects a committee that
maximizes the sum of voter utilities, where the utility of a voter from a
committee she ranks in positions p1, . . . , pk is

∑
i∈[k] zi · s(pi).

3 Multimodal Multiwinner Elections
In this paper we study adaptations of k-Borda and CC to the set-
ting of multimodal multiwinner elections. A multimodal multiwin-
ner electionE consists of `multiwinner electionsE1, . . . , E`, all on
the same set A of m candidates, the same set V of n voters, and the
same committee size k; for z ∈ [`], Ez is denoted as the zth layer.
Note that, in effect, each voter v ∈ V provides ` preference orders,
one for each layer. A multimodal multiwinner voting rule R takes a
multimodal multiwinner election E and returns a committee S ⊆ A
of size k. Next we discuss our different adaptations of CSRs to our
multimodal model.

3.1 Max-R, Min-R, and Sum-R
Definition 1 (Max-R, Min-R, Sum-R) Let R be a CSR defined
via a satisfaction function that returns a value for each vote and com-
mittee. Then, we define the following 3 multimodal rules: Max-R,
Min-R, Sum-R; a winning committee under these rules maximizes
the total multimodal satisfaction, which is the sum – over the voters
– of the multimodal satisfaction of the voters, where the multimodal
satisfaction is defined differently for each rule: Specifically, under
Max-R (Min-R, Sum-R), the multimodal satisfaction of voter v is
the maximum (respectively: minimum, sum) – over the layers – of
her satisfaction underR.

In the decision version of the T -R problem, for
T ∈ {Max,Min, Sum}, we are given a multimodal election
E1, . . . , E`, an integer k, and a committee score R; we shall decide
the existence of a size-k committee whose T -R score is at least R.

Remark 1 Our adaptations of CSRs to the multimodal setting dif-
fer by the way in which we define voter satisfaction w.r.t. the dif-
ferent layers. Intuitively speaking, recalling the “Uncertain Future”
example above, Max-R corresponds to voters which are optimistic;
Min-R corresponds to voters which are pessimistic; and Sum-R cor-
responds to voters which believe in a randomly chosen future.

3.2 Pareto-R and Vector-R
We consider a further kind of an adaptation of CSRs to our model,
based on the concept of Pareto dominance.

Definition 2 (Pareto-R) Let E′ be a multimodal election, let S and
S′ be two committees for it, and letR be a CSR. Then, S′ dominates
S if: (1) for each layer z ∈ [`], it holds that the score of S′ is not less
than the score of S in layer z, according to R; and (2) for at least
one layer z ∈ [`] it holds that the score of S′ is strictly more than the
score of S, according to R. A committee S is not Pareto dominated
if there is no committee S′ which dominates it. The Pareto-R multi-
modal rule selects a committee that is not Pareto dominated; i.e., a
Pareto-optimal committee.

We are interested in the computational task of identifying a Pareto-
optimal committee, which is not a decision problem. The related
problem of deciding whether a Pareto-optimal committee exists is
solvable in constant-time, as such a committee always exists.

Observation 1 A Pareto-optimal committee always exists.

Proof. Counterpositively, if such a committee does not exist, then
there is a cycle of committees, where each committee in the cycle
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dominates the next. Consider some committee S in this cycle, and
consider the vector ZS containing ` entries, where the jth entry of
ZS , i.e., ZS [j] is the score, underR, for the jth layer, for committee
S. Furthermore, denote by zS the sum of the values of the vector
ZS (i.e., zS :=

∑
j∈[`] ZS [j]). Observe now that for each pair of

consecutive committees in this cycle S, S′, we have that zS > zS′ .
Contradiction now follows as this is a cycle. �

A related decision problem which we do not consider in this paper
is the following: Given an instance and a committee, decide whether
the given committee is Pareto-optimal. We do, however, consider the
following related problem.

Definition 3 (Vector-R) An instance of Vector-R gets a multimodal
election E and a vector Q of ` numbers. The task is to find a com-
mittee that gets at least Q[j] score (w.r.t. R) for the election Ej , for
each j ∈ [`].

3.3 Illustrating Example

To illustrate our multimodal multiwinner voting rules we provide the
following multimodal election, containing n := 2 voters, m := 4
candidates, and ` := 2 layers:

E1 E2

v1 : a � b � c � d c � b � a � d
v2 : d � a � c � b a � c � d � b

For k := 2, consider the committee S = {b, c}. k-Borda satis-
faction of v1 for S in the first layer is 3 and 5 in the second layer.
So, Max-k-Borda satisfaction of v1 is 5. Similarly, the Max-k-Borda
satisfaction of v2 is 2. Hence, the Max-k-Borda score for S is 7.
Min-k-Borda satisfaction of voter v1 and v2 for the committee S are
3 and 1, respectively; so, Min-k-Borda score for S is 4. Sum-k-Borda
satisfaction of v1 and v2 for S are 8 and 3, respectively; so, Sum-k-
Borda score for S is 11. k-Borda score of S for the first and second
layers are 4 and 7, respectively. Consider a committee S′ = {a, c}:
k-Borda score of S′ for the first and second layers are 7 and 9, respec-
tively; thus, S′ dominates S, and hence S is not a Pareto-k-Borda
optimal committee. S′, however, is a Pareto-k-Borda committee as
the k-Borda score of any other committee of size 2 in the second
layer is less than 9. S is a winning committee for Vector-k-Borda
with the vector Q = [3, 4]. CC satisfaction of v1 for committee S
in the first (second) layer is 2 (respectively, 3). Therefore, Max-CC
satisfaction of voter v1 is 3. Similarly, Max-CC satisfaction for v2
is 2. Hence, the Max-CC score of S is 5. Min-CC satisfaction of v1
and v2 for S are 2 and 1, respectively; thus, Min-CC score of S is
3. Sum-CC satisfaction of v1 and v2 for S are 5 and 3, respectively;
thus, Min-CC score for the committee S is 8. CC score of S for the
first and second layers are 3 and 5, respectively. Consider the com-
mittee S′ = {a, c}: CC score of S′ for the first and second layers
are 4 and 6, respectively; thus, S′ dominates S, and hence S is not
a Pareto-CC committee. Note that S′ is a Pareto-CC committee as
any other committee of size 2 has less CC score in the second layer.
Consider Vector-CC, with the vector Q = [3, 4]: Since CC score of
S for the first and second layers are 3 and 5, respectively, S is a win-
ning committee according to this rule. S is not a Vector-CC winning
committee for, e.g., the vector Q = [4, 4], since CC score of S in the
first layer is less than 4.

4 Multimodal R
In this section, we discuss certain properties which hold for any CSR.
The first observation apparent from our model is that it generalizes
the standard multiwinner model; specifically, for ` = 1. Thus, we
inherit computational hardness; in particular, as CC is NP-hard and
W[2]-hard [26], we have the following.4

Corollary 1 For each T ∈ {Max, Min, Sum, Pareto, Vector}, T -CC
is NP-hard and W[2]-hard w.r.t. the committee size k, even if ` = 1.

As k-Borda is in P [17], we have the following:

Corollary 2 For each T ∈ {Max, Min, Sum, Pareto, Vector}, T -k-
Borda is in P when ` = 1.

Combinatorially speaking, each of Max-R, Min-R, and Sum-R,
due to the definition of total satisfaction, incorporate a summation
operator over the voters. Sum-R incorporates a further summation
operator – this time over the layers – as the multimodal satisfaction
of a voter, for Sum-R, is the summation of her satisfaction over the
layers. The following holds as summation is a linear operator.

Proposition 1 If there is an algorithm running in time f(n,m, k)
for some CSR R, then there is an algorithm running in time
f(n`,m, k) for both Sum-R and Pareto-R.

Proof. The algorithm for both works by “flattening” the mul-
timodal election: View the ` elections as one big election; i.e.,
transform the ` preference orders of each voter into ` voters, each
with 1 preference order – one voter for each layer. �

We also have the following related observation.

Observation 2 A committee that maximizes Sum-R (i.e., a winner
under Sum-R) is Pareto-optimal (i.e., a winner under Pareto-R). In-
deed, any algorithm for Sum-R serves as an algorithm for Pareto-R
(but not necessarily vice versa).

For a CSRR, Egalitarian-R, considered by Aziz et al. [3], selects
a committee which maximizes not the total satisfaction (i.e., the sum
of satisfaction over the voters), but the minimum satisfaction over
the voters. Betzler et al. [5] also defined a variant of CC, called as
Minimax CC Multiwinner. This rule is the same as Egalitarian-CC.

Proposition 2 For any CSR R, Egalitarian-R with n voters is
equivalent to Min-R with one voter and n layers.

Proof. Given an instance of Egalitarian-R with n voters, we con-
struct a multimodal election with 1 voter v and ` := n layers, by
taking the ith voter of the Egalitarian-R instance to be the v’s pref-
erence order in the ith layer. Correctness follows by observing that,
in Min-R, we shall have that the score of the winning committee be
high in all layers, while in Egalitarian-R, the score of the winning
committee shall be high for all (nonmodal) voters.

Similarly, given an instance of Min-R with a voter v and n layers,
we can construct an instance of Egalitarian-R by taking n voters
and preference of ith voter is same as the preference of v in the ith
layer. Correctness is similar as discussed above. �

Using similar constructions as in the proof of Proposition 2, we
obtain the following result.

4 As discussed above, Pareto-R is not a decision problem; we abuse notation
and speak of NP-hardness (W-hardness) to mean that no efficient algorithm
exists unless P=NP(resp., FPT= W).
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Proposition 3 For any CSR R, winner determination for R with n
voters is equivalent to Sum-R with one voter and n layers.

We next give a result connecting Egalitarian-R and Vector-R.

Proposition 4 For any CSRR, there is a polynomial time reduction
from Egalitarian-R with n voters to Vector-R with one voter and n
layers.

Proof. Given an instance (E,R, k) of Egalitarian-R, we construct
an instance (E′ = (E1, . . . , En), Q = (r1, . . . , rn), k) of Vector-
R: E′ is a multimodal election with 1 voter v and ` := n layers, by
taking the preference of ith voter of the instance of Egalitarian-R to
be the v’s preference order in the ith layer. For each i ∈ [k], we set
ri = R. In the forward direction, correctness follows as theR-score
of a winning committee for an instance (E,R, k) is at least R for
each voter. In the reverse direction, since the committee score is at
least R in each layer, it is at least R for each voter in V . �

Note that for any CSR R, and for any T ∈ {Max, Min, Sum,
Pareto, Vector}, T -R is FPTw.r.t. m as we can go over all possible
committees of size k; and output the optimal one.

Remark 2 (Single-winner elections) We concentrate on multiwin-
ner rules and not on single-winner rules because the setting is quite
clear for single-winner rules: Specifically, both k-Borda and CC col-
lapse to Borda for k = 1. And there is a polynomial time algorithm
which solves {Max, Min, Sum, Pareto, Vector}-Borda by considering
allm options. (In fact, this holds for any single-winner scoring rule.)

5 Multimodal k-Borda
In this section, we study adaptations of k-Borda to the multimodal
setting.

Max-k-Borda
We study the parameterized complexity of Max-k-Borda w.r.t. k and
prove that the problem is W[1]-hard w.r.t. k even when ` = 2. To-
wards this, we give a reduction from the W[1]-hard problem Inde-
pendent Set (IS) [12], in which given a graph G and an integer t;
we shall decide the existence of a t-sized set X ⊆ V (G) containing
only nonadjacent vertices. Since the reduction can be carried out in
polynomial time, NP-hardness follows. Note that this result is tight
for `, as the problem is polynomial-time solvable when ` = 1, as
it reduces to the nonmodal k-Borda. The core of the reduction is to
create a voter vxy for each edge xy, and create two layers such that
in layer 1 (layer 2), vxy ranks x first and y last (respectively, y first
and x last). Then, we show that selecting candidates corresponding
to adjacent vertices in the graph to be committee members results
in multimodal satisfaction for vxy which is not sufficient. Next, we
prove our result formally.

Theorem 1 Max-k-Borda is NP-hard and W[1]-hard w.r.t. k, even
for ` = 2.

Proof. We provide a polynomial time reduction from the W[1]-
hard problem Independent Set (IS) [12]. Given an instance (G, t) of
IS, we construct an instance ((E1, . . . , E`), R, k) of Max-k-Borda
as follows. Let |V (G)| = n and |E(G)| = m. We first construct a
set of candidates, A: For each vertex v ∈ V (G), we add a candidate
cv to the set A; add two sets C1 = {x1, . . . , xnm(k+1)} and C2 =
{y1, . . . , ynm(k+1)} to the set A (we refer to the candidates of sets
C1 and C2 as dummy candidates). We next construct a set of voters,

V : For each edge uv inG, we add a voter euv to the set V . We set the
number of layers to be ` = 2; set the bound on the committee score
as R = m(2nmk(k+1)+ k(k+1)/2); and the size of the committee
to be k = t.

For a voter ezw, let Szw be a set of candidates of the setA\{C1∪
C2∪{z, w}}. For a setZ, the symbol 〈Z〉 denotes that the vertices in
the set Z are listed in some arbitrary strict order. Next, for each voter
in V , we define the preference list for each layer i ∈ [`]: Consider a
voter euv in the voter set V . In the election E1, the preference list of
the voter euv is u � 〈Suv〉 � 〈C2〉 � 〈C1〉 � v. In the election E2,
the preference list of voter euv is v � 〈Suv〉 � 〈C2〉 � 〈C1〉 � u.
Next, for all voters epq in V \ {euv}, we set the preference list in the
election E1 as p � 〈Spq〉 � 〈C1〉 � 〈C2〉 � q and in the election
E2 as q � 〈Spq〉 � 〈C1〉 � 〈C2〉 � p.

The intuition for these preference lists is that, for a voter exy , both
candidates x and y should not belong to the winning committee as,
if so, then the committee will not achieve the required committee
score. The different ordering of vertices in S1 and S2 for the voter
euv are to prevent dummy candidates from entering the committee.
In this manner, we ensure that the set of vertices corresponding to
candidates in the committee will lead to an independent set in G.

For correctness, we show that (G, t) is a yes-instance of IS iff
((E1, E2), R, k) is a yes-instance of Max-k-Borda. In the forward
direction, let X be a solution to (G, t). We claim that S = {cw ∈
A | w ∈ X} is a solution to ((E1, E2), R, k). We first claim that all
candidates in S belong to the first n− 1 candidates in the preference
list of each voter in V in either E1 or E2; dummy candidates do not
belong to the committee. Let w ∈ X . If w is an isolated vertex in G,
then by the construction of E1 and E2, w belongs to the first n − 1
candidates in the preference list of every voter in both the elections.
Suppose that w is not an isolated vertex. Then, for each z ∈ N(w),
w is the first candidate in the preference list of ewz either in the
election E1 or E2, by construction. Also, for all the other voters,
w belongs to first n − 1 candidates in their preference list in both
E1 and E2. Since total number of candidates is n + 2nm(k + 1),
the multimodal satisfaction of any voter for committee S is at least
2nmk(k + 1) + k(k+1)/2. Hence, the total multimodal satisfaction
for election E is at least m(2nmk(k + 1) + k(k+1)/2) = R.

For the backward direction, let S be a solution to ((E1, E2), R, k).
We first note the following properties of S.

Observation 3 There are no dummy candidates in S.

Observation 4 If euv is a voter in the set of voters V , then both u
and v do not belong to S.

Using Observations 3 and 4, we have that, X := {w ∈ V (G) |
cw ∈ S} is an independent set in G. Theorem 1 now follows. �

Considering the number n of voters as a parameter does not break
the computational intractability. The reduction for Theorem 2 is via
Multicolored Independent Set.

Theorem 2 Max-k-Borda is W[1]-hard w.r.t. n+ k.

We do identify tractability w.r.t. n + `, by the following intuitive
idea: Recall that, for Max-R, the multimodal satisfaction of a voter
for a committee is the maximum, over the layers, of her satisfaction.
Therefore, if we guess, for each voter v, the layer tv ∈ [`] that gives v
the maximum satisfaction over the layers, for the solution committee,
then it is enough to find a k-Borda committee for the election E′,
where E′ is a multiwinner election on the set of candidates A and
voters V , where the preference order for voter v is tv .
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k-Borda CC

Max

NP-h (Thm. 1) NP-h (Cor. 1)
W-h w.r.t. k even for ` = 2 (Thm. 1) W-h w.r.t. k even for ` = 1 (Cor. 1)

W-h w.r.t. n+ k (Thm. 2) FPTw.r.t. n (Prop. 7)
FPTw.r.t. n+ ` (Thm. 3)

Poly for constant n (Thm. 4)

Min

NP-h even for n = 1 (Prop. 5) NP-h even for n = 1 (Cor. 4)
W-h w.r.t. k + ` even for n = 1 (Prop. 5) W-h w.r.t. k even for ` = 1 (Cor. 1)

W-h w.r.t. k even for n = 1 (Cor. 4)
Open w.r.t. n+ `

Sum

Poly (Cor. 3) NP-h even for n = 1 (Prop. 8)
W-h w.r.t. k even for n = 1 (Prop. 8)
W-h w.r.t. k even for ` = 1 (Cor. 1)

FPTw.r.t. n+ ` (Prop. 9)

Pareto

Poly (Cor. 3) NP-h (Cor. 1)
W-h w.r.t. k even for ` = 1 (Cor. 1)

FPTw.r.t. n+ ` (Cor. 5)
Poly for constant n (Prop. 10)

Open w.r.t. n

Vector

NP-h even for n = 1 (Prop. 6) NP-h even for n = 1 (Cor. 6)
W-h w.r.t. k + ` even for n = 1 (Prop. 6) W-h w.r.t. k even for ` = 1 (Cor. 1)

W-h w.r.t. k even for n = 1 (Cor. 6)
Open w.r.t. n+ `

Table 1. Summary of our results. NP,W-h stands for NP,W-hardness.

Algorithm 1 Layer-guessing Algorithm
Input: A multimodal multiwinner election (E1, . . . , E`) with com-
mittee size k and bound on the committee score R.
Output: A committee S of size k with score at least R, if exists,
otherwise NO.
. Let Borda-Score(S) denote the k-Borda score of committee S

1: S = ∅, scoreS = 0
2: for each vector (tv1 , . . . , tvn) ∈ [`]n do
3: Let E(tv1 ,...,tvn ) be a multiwinner election on the candidate

set A and the voter set V , where the preference list of voter vi in
the election E(tv1 ,...,tvn ) is the same as the preference list of vi
in the election Etvi

4: find a k-Borda Committee, S′, for E(tv1 ,...,tvn )

5: if Borda-Score(S′) ≥ scoreS then
6: S = S′

7: scoreS = Borda-Score(S′)
8: if scoreS ≥ R then return S
9: else return NO

Theorem 3 Max-k-Borda is FPTw.r.t. n+ `.

Proof. We run Algorithm 1 for all R = 1 to n(mk −
(
k
2

)
)

(maximum possible Max-k-Borda score for n voters and m can-
didates) and return a committee with largest possible R. To prove
the correctness of the algorithm, we prove that it returns a set S if
and only if ((E1, . . . , E`), R, k) is a yes-instance of Max-k-Borda.
In the forward direction, suppose that the algorithm returns a set
S. We first note that |S| = k. Furthermore, there exists a vec-
tor (tv1 , . . . , tvn) ∈ [`]n such that Borda-Score(S) ≥ R for the
election E(tv1 ,...,tvn ) (the election constructed in Step 3 of Algo-
rithm 1). Now, as in Max-k-Borda the multimodal satisfaction of a
voter is the maximum over the layers, it follows that the total mul-

timodal satisfaction for S in the multimodal election (E1, . . . , E`)
cannot be smaller than its k-Borda score in the (nonmodal) election
E(tv1 ,...,tvn ), which is at least R, by Step 8 of Algorithm 1.

In the reverse direction, let S′ be a solution of Max-k-Borda
for the multimodal election ((E1, . . . , E`), R, k). For each voter
vi ∈ V , there exists a layer tvi which contributes to the total
satisfaction which is at least R. As Algorithm 1 considers all vectors
of such tvi ’s, it will consider also one vector resulting at least R
score. The running time of Algorithm 1 is O?(`n)5. �

Due to running time in Theorem 3, we obtain the following result.

Theorem 4 Max-k-Borda is in P for constant n.

Min-k-Borda
We show that Min-k-Borda is intractable even w.r.t. parameter n +
k + `. Aziz et al. [3] proved that Egalitarian-k-Borda is W[1]-hard
w.r.t. the number of voters, n, or the committee size, k [Theorem 2];
while the reduction holds for combined parameter n + k, as in the
reduction, the number of voters is k+2

(
k
2

)
+3 and the committee size

is k+
(
k
2

)
. Moreover, their reduction can be carried out in polynomial

time. Hence, due to Proposition 2, we obtain the following:

Proposition 5 Min-k-Borda is NP-hard and W[1]-hard w.r.t. k + `
even for n = 1.

Sum-k-Borda and Pareto-k-Borda
We obtain tractability in polynomial time; due to Proposition 1 and
the fact that k-Borda can be solved in polynomial time [17], we have
the following result.

5 O? notation suppresses the polynomial factor. That is, O(f(k)nO(1)) =
O?(f(k)).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



Corollary 3 Sum-k-Borda and Pareto-k-Borda are in P.

Vector-k-Borda
As argued for Min-k-Borda, due to Proposition 4, we have:

Proposition 6 Vector-k-Borda is NP-hard and W[1]-hard w.r.t. k+`
even for n = 1.

6 Multimodal CC
In this section, we study adaptations of CC to the multimodal setting.

Max-CC
Corollary 1 shows intractability of Max-CC for parameter k+ `. The
number of voters, n, helps, though.

Proposition 7 Max-CC is FPTw.r.t. n.

Proof. We adapt the corresponding algorithm for CC [5]: We guess
a clustering of the voters (i.e., a partition of the voter set V into at
most k parts, Vz , z ∈ [k]); and then, find a maximum matching in
a complete bipartite graph where the partition of voters are to the
left and all candidates are to the right, and the weight on an edge
between a voter part Vz (on the left) and an candidate c (on the right)
equals the sum of multimodal satisfaction given to the voters of Vz

by the candidate c. We construct a committee by including all the
candidates which are saturated by matching. If the size of maximum
matching is less than k, say k′, then we include k − k′ candidates
arbitrarily in the committee. The algorithm outputs a committee that
has the largest Max-CC score over all the committees constructed in
this algorithm.

For correctness, let S be a solution to Max-CC. Let P1, . . . , Pz ,
where z ≤ k, be the induced partition of the voter set V corre-
sponding to S: Each voter in Pi, for i ∈ [z], is assigned to the same
candidate of S. Let S′ be the committee returned by the algorithm
when we consider the specific partition P1, . . . , Pz (we consider this
partition as we consider all possible partitions of V of size at most
k). Now, we claim that the total multimodal satisfaction for S′ is the
same as for S. First, it cannot be larger as S is an optimal solution.
Furthermore, let M be a matching obtained by choosing an edge
between Pi, i ∈ [z], and the candidate of S that is assigned to the
vertices of Pi. Now, if the committee score for S′ is less than S, then
the weight of the matching M ′, which is returned by the algorithm,
is less than the weight of the matching M ; thus, a contradiction
to M ′ being a maximum matching. Since the algorithm outputs a
committee that has the largest Max-CC score over all the committees
constructed in this algorithm, the Max-CC score of the committee
returned by the algorithm is the same as the Max-CC score of S, as
it cannot be larger. The running time is O?(nn) as the number of
parts in a partition cannot be larger than n. �

Min-CC
Corollary 1 shows intractability of Min-CC for parameter k+ `. Due
to Proposition 2, and NP-hardness and W[2]-hardness of Egalitarian-
CC with respect to the committee size k [5], we obtain:

Corollary 4 Min-CC is NP-hard and W[2]-hard w.r.t. k even for
n = 1.

Sum-CC
Corollary 1 shows intractability of Sum-CC for parameter k + `.

Due to Proposition 3 and the fact that CC is NP-hard and W[2]-hard
w.r.t. k [5], we obtain the following result.

Proposition 8 Sum-CC is NP-hard and W[2]-hard w.r.t. k even for
n = 1.

Here, the combined parameter n + ` does help. Due to Proposi-
tion 1 and the fact CC is FPTw.r.t. n [5], we obtain the following
result.

Proposition 9 Sum-CC is FPTw.r.t. n+ `.

Pareto-CC
Here, we identify some tractable cases. For the number of voters, n,
we have the following.

Proposition 10 For constant n, Pareto-CC is in P.

Proof. Given a multimodal election E = ((E1, . . . , E`), k), we
proceed greedily as follows: Initially, set k′ := k and S = ∅. In each
iteration we will add candidates to S and decrease k′ accordingly.
In iteration i, we consider layer i, i ∈ [`] and perform as follows: If
k′ ≥ n, then we add all candidates that are ranked first by at least
one voter in layer i, but are not yet in S, and we decrease k′ by the
number of such candidates. Otherwise, if k′ < n, then we consider
all possibilities of adding k′ candidates to S, adding to S such a set
which results in no other such set dominating it. Such a set must
exist, due to arguments similar to those given for Observation 1. The
running time is O(` + mO(1)) as the last iteration can be carried
out in polynomial time as k′ is constant in the last iteration (since
k′ < n); and all the previous iterations can be performed in O(`)
time.

For correctness, assume that the algorithm halts in iteration i, let
S be the resulting committee, and let Si be the set of k′ candidates
added by the algorithm in the ith iteration (so that S \ Si contains
those candidates added in all iterations except the last). Then, any
other committee S′ 6= S for which S \ Si ⊆ S′ cannot dominate S,
as Si was selected to be not dominated. Furthermore, for any other
committee S′ 6= S for which S \ Si 6⊆ S′, there exists at least one
layer j ∈ [i− 1] for which the CC score of S′ for election Ej is less
than the CC score of S for Ej . �

Due to Observation 2 and Proposition 9, we have the following:

Corollary 5 Pareto-CC is FPTw.r.t. n+ `.

Vector-CC
Due to Proposition 4 and the fact that Egalitarian-CC is NP-hard and
W[2]-hard w.r.t. the committee size k [5], we have following result.

Corollary 6 Vector-CC is NP-hard and W[2]-hard w.r.t. k even for
n = 1.

7 Domain Restrictions
Besides parameterized complexity, here we consider domain restric-
tions, as another way of coping with the computational intractability
of our problems. A domain restriction D is a subset of all possible
preference profiles.

A particularly popular domain restriction is the single-peaked do-
main, originally proposed by Black [6]. For an ordering π over the
candidates in a profile, a voter v is single-peaked w.r.t. π if, for each
pair of candidates a, b it holds that, if either a π b π top(v) or
top(v) π b π a holds, where top(v) is the candidate ranked first by v,
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then v ranks b above a; a (nonmodal) ordinal election E = (V,A) –
V is a set of linear orders over A – is single-peaked if there is an or-
dering π such that all voters v ∈ V are single-peaked w.r.t. π. We re-
fer to the survey of Elkind et al. [14] for a more elaborate exposition
on domain restrictions. In particular, a polynomial time algorithm,
computing winning committees under CC for single-peaked profiles
is known [5].

Next we describe a general way of adapting a domain restrictionD
(such as, e.g., single-peakedness) to our multimodal model.

Definition 4 (Local-D) Let D be a (nonmodal) domain restriction.
Then, a multimodal profile satisfies Local-D if each layer Ez , z ∈
[`], satisfies D.

While the above definition is general for any nonmodal domain
restriction D, here we are interested in D being the single-peaked
domain; in particular, Definition 4 implies that a multimodal profile
is Local-single-peaked (Local-SP, in short) if each layer is single-
peaked – possibly, each w.r.t. a different ordering π. For the single-
peaked domain we offer the following, stronger multimodal domain
restriction.

Definition 5 (Global-single-peaked) A multimodal profile is
Global-single-peaked (Global-SP, in short) if there is an ordering
π over the candidates such that, for each voter v ∈ V and each
layer z ∈ [`], it holds that v’s preference order in the zth layer is
single-peaked w.r.t. π.

Global-single-peaked is indeed stronger than Local-single-peaked
(the set of Global-single-peaked multimodal profiles is contained in
the set of Local-single-peaked multimodal profiles).

Observation 5 A multimodal election E which is Global-SP is also
Local-SP.

Some intractability results proved in the previous sections carry
over also to the Local-SP multimodal domain. Specifically, note that,
if a multimodal multiwinner voting rule R is NP-hard (W-hard) for
n = 1, then R is NP-hard (respectively, W-hard) even when he
multimodal profile is Local-SP, as a nonmodal election containing
only a single voter is always single-peaked (e.g., by setting π to be
the preference order of the voter). Thus, we have the following:

Corollary 7 Min-k-Borda and Vector-k-Borda are NP-hard and
W[1]-hard w.r.t. k + ` even for Local-SP, and n = 1.

Corollary 8 Min-CC, Sum-CC, and Vector-CC are NP-hard and
W[2]-hard w.r.t. k even for Local-SP, and n = 1

We next study the computational complexity of Max-CC for
Global-SP profiles, and obtain intractability. Due to Observation 5,
this also implies intractability of Max-CC for Local-SP profiles.

Theorem 5 Max-CC is NP-hard even for Global-SP.

Proof. We describe a polynomial time reduction from the NP-hard
problem Vertex Cover [21], in which given a graphG, and an integer
k; we shall decide the existence of k-sized subset of vertices, say S,
such that for every edge in G at least one of its end-point is in S.
Given an instance (G, k) of vertex cover, we construct an instance
(E1, . . . , E`, R, k

′) of Max-CC as follows: For every vertex xi in
the graph G, we add a candidate cxi ; and for every edge e in G, we
add a voter ve in the election. We set ` = 2 and k′ = k.

Next we describe the preference list of the voters for both elec-
tions. Let V (G) = {x1, . . . , xp}. We first fix an ordering of the
candidates, say (cx1 , . . . , cxp). Let e = xixj , where i, j ∈ [p] is an
edge inG. For the voter ve, we have xi as the first preferred candidate
in election E1 and xj as the first preferred candidate in election E2.
We rank the other candidates in both elections such that the prefer-
ence list is single-peaked w.r.t. the axis (cx1 , . . . , cxp); for example,
xi � xi−1 � . . . � x1 � xi+1 � . . . � xn. Let the number of
edges in G be q. We set R = (p− 1)q.

For correctness, in the forward direction, let S be a solution to
(G, k). Let S′ be the set of candidates corresponding to vertices
in S. Since for every voter, its first preferred candidate either in
election E1 or E2 is in S′, Max-CC score of S′ is R. Moreover,
since |S| = k, S′ is a solution to (E1, . . . , E`, R, k

′). The reverse
direction follows from the fact that every winning committee for
(E1, . . . , E`, R, k

′) contains first preferred candidate of every voter
in either election E1 or E2, otherwise the score of the committee is
less than R. �

The complexity of Max-k-Borda, and Pareto-CC for Local-SP
profiles remains open.

While Corollaries 7, and 8 show that Local-SP does not break the
intractability in certain cases, Global-SP indeed is sometimes more
helpful: In particular, we obtain that Sum-CC and Pareto-CC can
be solved in polynomial time for Global-SP multimodal profiles by
“flattening” the instance of Sum-CC (Pareto-CC), as such a flatten-
ing reduces the instance to a CC instance with a nonmodal SP profile
(for which polynomial time algorithm exists [Theorem 8, [5]]). The
correctness follows similarly as argued in the proof of Proposition 1.

Proposition 11 Sum-CC and Pareto-CC are in P for Global-SP.

Remark 3 It is worth mentioning that the technique, proposed by
Peters [25], of formulating winner determination for single-peaked
profiles to an integer linear program (ILP) with totally unimodular
constraints matrix, does not seem to be useful for our setting: In par-
ticular, we could not formulate totally unimodular ILPs for any of
ours cases. It will be interesting to either formulate such ILP or show
that no such ILP exists. Moreover, we tried to adapt the dynamic pro-
gramming algorithm for CC under SP profile proposed by Betzler et
al. [5] for Max-CC and Min-CC under Global-SP; unfortunately,
this route also does not seem to carry over.

8 Outlook
We have defined a model of multimodal elections, capturing various
scenarios in which voters may wish to provide not just one preference
order over the set of candidates, but several. We have studied the
computational complexity of several adaptations of k-Borda and CC
to our model, observing a rich complexity landscape and identifying
tractable cases for certain parameters and domain restrictions.

Some future research directions are (1) studying adaptations of
further CSRs, such as SNTV, Bloc, and PAV; (2) defining and study-
ing adaptations of non-CSRs, such as STV; and (3) considering other
ways of breaking intractability, such as with approximation algo-
rithms.
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