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Abstract. Fuzzy systems are a kind of knowledge based system
where information and knowledge are represented in the form of
fuzzy statements. Modeling the negation of these statements plays an
important role in fuzzy inference. As any other knowledge based sys-
tem, fuzzy systems may be affected by a lack of information. In par-
ticular, in the case of type-2 fuzzy systems, the fuzzy set 1 (1(x) = 1
for all x ∈ [0, 1]) represents a lack of information. Consequently, it is
interesting to consider how this set (representing lack of information)
is transformed through a negation.

The analysis in this paper takes place in the framework defined by
M, the set of all functions from [0, 1] to [0, 1]. These functions con-
stitute the membership functions characterizing type-2 fuzzy sets. In
particular we will concentrate on L, the set of normal and convex
functions in M. In a first step, we will explore strong negations in
L to obtain any possible image of the function 1 through them. The
particular case of strong negations mapping 1 to 1 has been previ-
ously studied. In this work we will generalize the previous results by
considering the main properties of those strong negations in L where
the image of the function 1 is not this same function.

1 INTRODUCTION

Type-2 fuzzy sets (T2FSs) were introduced by L.A. Zadeh in 1975
([27]) as an extension of the fuzzy sets (FS) also introduced by Zadeh
in 1965 ([26]). We can also refer to these original fuzzy sets as type-
1 fuzzy sets (T1FSs). These two types of sets differ in the ranges
of their membership functions. While the membership functions of
T1FSs take values in the interval [0, 1], the values of the membership
function of a T2FS are fuzzy sets in [0, 1]. That is, the degree of mem-
bership of an element a to a T2FSA, could be described by a label of
the linguistic variable ”TRUTH”. In this way, a T2FS is determined
by a membership function µ : X → M, where M = [0, 1][0,1] is the
set of the functions from [0, 1] to [0, 1] (M = Map([0, 1], [0, 1])), see
[16], [17], [23].

In general, FSs are well suited to work with uncertainty, but this
extension of membership degrees from values in [0, 1] to fuzzy sets
in [0, 1] provides T2FSs with an additional capability to model un-
certainty ([4], [14], [16]). In the last decade, many researches have
studied type-2 fuzzy sets, considering the theoretical aspects as well
as its application to different areas ([7], [12], [24], [25], [28]).

It is obvious that Type-1 and Type-2 fuzzy sets are strongly re-
lated. Consequently, once introduced T2FSs, many operators, prop-
erties and results initially defined for T1FSs were adapted to T2FSs
([8], [11], [16], [17], [23]) by means of Zadeh’s Extension Principle

1 Universidad Politécnica de Madrid, Spain, email:
{ctorres,scubillo,lmagdalena}@fi.upm.es, ORCID: {0000-0002-0340-
9931, 0000-0002-6473-6039, 0000-0001-7639-8906}

([27]). This is the case of negation, a widely used operator that is
involved, for example, in obtaining the complement of a set, and the
dual of a t-norm or t-conorm operator. Some definitions of entropy
and implications also involve the use of negations.

Fuzzy systems (either T1FSs or T2FSs) are a kind of knowledge
based system where information and knowledge are represented in
the form of fuzzy statements. Negation is an important tool when
analyzing the potential contradiction, inconsistency or incoherence
among pieces of knowledge in a fuzzy system. As an example, strong
negations on Atanassov’s intuitionistic fuzzy sets (A-IFSs) and on
T2FSs have been applied in order to study the possible contradiction
appearing in a fuzzy system (see [3], [21]). In addition, as any other
knowledge based system, fuzzy systems may be affected by a lack
of information ([15]). In particular, in the case of type-2 fuzzy sys-
tems, any fuzzy set a (a(x) = a for all x ∈ [0, 1]) with a ∈ [0, 1]
represents a lack of information. Consequently, it is interesting to
consider how these sets (representing lack of information) are trans-
formed through a negation.

In summary, the study of strong negations is essential for both
fuzzy sets and their extensions, and particularly for type-2 fuzzy sets.
Trillas in [22] studied and characterized strong negations in [0, 1].
Bustince et al. in [2] introduce intuitionistic generators in order to
build negations in A-IFSs; and Deschrijver et al. in [6] characterized
strong intuitionistic negations based on strong negations in [0, 1].
Further characteristics for strong negations in A-IFSs and interval-
valued fuzzy sets were provided in [2].

The analysis of negations for T2FSs takes place in the framework
defined by M = [0, 1][0,1], the set of all functions from [0, 1] to [0, 1].
These functions constitute the membership functions characterizing
type-2 fuzzy sets. In some cases, it is interesting to restrict the anal-
ysis to L, the set of normal and convex functions in M. In [11] a
deep study about the negations on T2FSs is presented, including the
axioms for negations and strong negations on a bounded partially
ordered set (bounded poset). On the basis of Zadeh’s Extension Prin-
ciple, families of negations and strong negations on L are defined.
Negations on M are presented for the first time in [20], where some
new negations and strong negations on L are also introduced. A fam-
ily of strong negations on L that leave fixed the constant function 1 is
presented. This family was built through strong negations and order
automorphisms in [0, 1].

As we will concentrate on L, the lack of information represented
by the set a(x) = a previously mentioned, now is limited to the case
of 1 (1(x) = 1 for all x ∈ [0, 1]). The present paper is focused on the
analysis of strong negations in T2FSs, with particular interest in con-
sidering how the fuzzy set 1, that represents a lack of information, is
transformed by those strong negations. In a first step, we will explore
strong negations in L to obtain any possible image of the function 1
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through them. As the particular case of strong negations mapping 1
to 1 has been previously studied, in this work we will generalize the
previous results by considering the main properties of those strong
negations in L where the image of the function 1 is not this same
function.

The paper is organized as follows. In Section 2 we review some
definitions, operations and properties on T2FS and on the negations
in the set of functions from [0, 1] to [0, 1], that will be applied in
the paper. Section 3 is devoted to obtain the images of the constant
function 1 through a strong negation in L. Sections 4 and 5 focus on
analysing the images obtained in previous section. Finally, Section 6
presents some conclusions.

2 PRELIMINARIES
Throughout the paper, X will denote a non-empty set which will
represent the universe of discourse. Additionally, ≤ will denote the
usual order relation in the lattice of real numbers, and ∧ and ∨ the
minimum and the maximum operators, respectively.

2.1 Definitions and Properties of T1FSs and T2FSs
Definition 1 ([26]) A type-1 fuzzy set (T1FS) A in a universe X , is
characterized by a membership function µA,

µA : X → [0, 1],

where µA(x) is the membership degree of an element x ∈ X in the
set A.

Definition 2 ([17],[18]) A type-2 fuzzy set (T2FS) A in a universe
X , is characterized by a membership function µA,

µA : X → M = [0, 1][0,1] = Map([0, 1], [0, 1]),

that is, µA(x) is a type-1 fuzzy set in the interval [0, 1] and also the
membership degree of the element x ∈ X in the set A. Therefore,

µA(x) = fx, where fx : [0, 1]→ [0, 1].

Figure 1 shows an example of a type-2 fuzzy set on the finite uni-
verse of discourse T = {0, 1, 2, 3, 4}.

Figure 1. Example of a T2FS

Walker and Walker justify in [23] that the operations on
Map(X,M) can be defined naturally from the operations on M and
have the same properties. Thus, in the same way as in the case of the

FSs, where the definitions and properties are given on ([0, 1],≤), in
this paper we will work on M, as all the results are easily and directly
extensible to Map(X,M).

Moreover, we restrict to type-2 fuzzy sets in the special case in
which the membership degrees are in L, the set of normal and con-
vex functions of M. There are several reasons to do so. First, mem-
bership degrees represent linguistic labels of the TRUTH variable,
so it is not uncommon to require them to be convex and normal.
Furthermore, it has been pointed out that this set L will contain a
bounded and complete lattice structure, and as consequence t-norms,
t-conorms, aggregation operators and specifically negations can be
properly constructed (see [11], [19]).

Definition 3 ([13]) A function f ∈ M is normal if sup{f(x) : x ∈
[0, 1]} = 1.

It is important to notice that with this definition it is possible to
find a normal function in M such that f(x) < 1 ∀x ∈ [0, 1].

Definition 4 A function f ∈ M is convex if for any x ≤ y ≤ z, it
holds that f(y) ≥ f(x) ∧ f(z).

The following definition and theorem are needed to analyse the
operations in the set M.

Definition 5 ([8], [9], [23]) If f ∈ M, we define fL, fR ∈ M as

fL(x) = sup{f(y) : y ≤ x}, fR(x) = sup{f(y) : y ≥ x}

Note that fL and fR are increasing and decreasing, respectively
(see Figure 2), f ≤ fL, f ≤ fR, for all f ∈ M ([23]), where≤ is the
usual order in the set of functions ( f ≤ g if and only if f(x) ≤ g(x),
for all x).

Figure 2. Example of fL and fR

In previous papers two partial orders on M (v and �) were de-
fined. In general, these partial orders are not equivalent ([17], [23]),
and M does not have a lattice structure with either of the two orders.
However, in L these partial orders are equivalent, that is v≡�; and
(L,v) is a bounded and complete lattice (see [9], [10], [18], [23]).
The following characterization of the partial order v on L will be
useful for establishing the results of this work.

Theorem 1 ([9], [10]) Let f, g ∈ L.

f v g if and only if gL ≤ fL and fR ≤ gR

Let us remind now some properties of the functions in the lattice
(L,v). We denote Lc = {f ∈ L : f increasing}, Ld = {f ∈ L :
f decreasing}, and 1 ∈ L the constant function such that 1(x) = 1
for all x ∈ [0, 1].

Proposition 1 ([23]) Let f, g ∈ L.
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Figure 3. Example where f v g

1. (f ∈ Lc)⇔ f = fL ⇔ f(1) = 1, and (f ∈ Ld)⇔ f = fR ⇔
f(0) = 1.

2. If f, g ∈ Lc, it holds that f v g ⇔ g ≤ f .
3. If f, g ∈ Ld, it holds that f v g ⇔ f ≤ g.
4. f = fL ∧ fR, and fL ∨ fR = 1

Note that ∧ and ∨ operations have the usual meaning in the set
of functions, that is, (f ∧ g)(x) = f(x) ∧ g(x), and (f ∨ g)(x) =
f(x) ∨ g(x).

The following lemma describes some properties of the functions
in the lattice (L,v).

Lemma 1 ([5]) Let f, g ∈ L

1. f v g if and only if fL v gL and fR v gR.
2. If f ∈ L, then fR v f v fL.
3. f ∈ Ld ⇔ f v 1.
4. f ∈ Lc ⇔ 1 v f .
5. fL = fR ⇔ f = 1.

Definition 6 ([23]) Let [a, b] ⊆ [0, 1]. The characteristic function of
[a, b] is [a, b] : [0, 1]→ [0, 1], where

[a, b](x) =

{
1, if x ∈ [a, b],

0, if x /∈ [a, b],

and the characteristic function of a number a ∈ [0, 1] (a singleton)
is ā = [a, a].

Note that 0 and 1 are the minimum and maximum, respectively, of
the bounded lattice (L,v).

2.2 Negations on L
This subsection is devoted to review the studies carried out in [11],
[20] and [5] on the negations in the framework of the T2FSs with
membership degrees in L.

Firstly, let us recall the definition of negation in ([0, 1],≤).

Definition 7 A function n : [0, 1] → [0, 1] is a negation if it is
decreasing respect to the order≤ and satisfies n(0) = 1 and n(1) =
0. If, in addition, n(n(x)) = x for all x ∈ [0, 1], then it is said to be
a strong negation.

Definition 7 suggests us an extension to any partially ordered set
(poset) with minimum and maximum elements (bounded). In this
sense, Hernández et al. ([11]) introduced negations in this algebraic
structure and gave some negations in L.

Definition 8 ([11]) Let A be a set and ≤A be a partial order in
A such that (A,≤A) has a minimum element 0≤A and a maxi-
mum element 1≤A . A negation in (A,≤A) is a decreasing function
N : A → A such that N(0≤A) = 1≤A , and N(1≤A) = 0≤A . If,
additionally, N(N(x)) = x holds for all x ∈ A, it is said to be a
strong negation.

Proposition 2 ([1]) Let (A,≤A) be a lattice. Given a strong nega-
tion N : A → A, for any a, b ∈ A it holds that N(inf{a, b}) =
sup{N(a), N(b)} and N(sup{a, b}) = inf{N(a), N(b)}.

In [20] we have obtained a family of negations on (L,v) that
transform singletons into singletons and are closed on the set of char-
acteristic functions of closed intervals.

Theorem 2 ([20]) Let n be a strong negation in ([0, 1],≤), let α be
an order automorphism in ([0, 1],≤), and let Nn,α : L → L be the
operation defined as Nn,α(f) = (α ◦ fR ◦ n) ∧ (α−1 ◦ fL ◦ n).
Then

a) Nn,α is a strong negation in L.
b) Nn,α(a) = n(a) and Nn,α([a, b]) = [n(b), n(a)].
c) Nn,α(p) = p and Nn,α(1) = 1, being p the fixed point of the

strong negation in [0, 1], n, and 1 the constant function with value
1 at any x ∈ [0, 1].

Moreover, in [5] the authors obtained a characterization of the
strong negations on L that leave the constant function 1 fixed.

Theorem 3 ([5]) N : L → L is a strong negation in (L,v) such
that N(1) = 1 if and only if there exists a strong negation n and an
order automorphism α in ([0, 1],≤), such that N(f) = (α ◦ fR ◦
n) ∧ (α−1 ◦ fL ◦ n).

3 NEGATION OF CONSTANT FUNCTION 1 BY
STRONG NEGATIONS ON L

This section will analyze the negation of the constant function 1 by a
strong negation, to show that the possible results are restricted to:

• the function 1,
• a singleton different from 0 and 1,
• a function taking a constant value a in (0, 1] (a 6= 1) and the value

1 at 0, or
• a function taking a constant value a in [0, 1) (a 6= 1) and the value

1 at 1.

To do so we will consider the following lemma, jointly with Propo-
sitions 1 and 2, and Lemma 1.

Lemma 2 Let f, g, h ∈ L. Then

1. If f v h, g v h, fL = hL and gR = hR, then supv{f, g} = h.
2. If h v f , h v g, hL = fL and hR = gR, then infv{f, g} = h.

Proof Let f v h and g v h, then f v supv{f, g} v h, and
fL v supv{f, g}L v hL. So, hL = supv{f, g}L. Moreover,
g v supv{f, g} v h, and gR v supv{f, g}R v hR. So, hR =
supv{f, g}R.

Therefore,

h = hL ∧ hR = supv{f, g}L ∧ supv{f, g}R = supv{f, g}

The proof of the second property is analogous. �

Definition 9 For any m ∈ (0, 1) and s ∈ (0, 1), we define the func-
tions fm,1 ∈ L and fs,0 ∈ L (Figure 4) as follows:

fm,1(x) =

{
m, if x ∈ [0, 1),

1, if x = 1.

and

fs,0(x) =

{
1, if x = 0,

s, if x ∈ (0, 1].
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Figure 4. Functions fm,1 and fs,0

Theorem 4 If N : L → L is a strong negation in (L,v), then
N(1) = 1 or N(1) = a with a ∈ (0, 1), or N(1) = fm,1 for
some m ∈ (0, 1) or N(1) = fs,0 for some s ∈ (0, 1) .

Proof First, being N a strong negation, it is obvious that N(1) 6= 0
and N(1) 6= 1.

Now we will proceed by reduction to absurdity.
Let us suppose that N(1) 6= 1, N(1) 6= a with a ∈ (0, 1),

N(1) 6= fm,1 for all m ∈ (0, 1) and N(1) 6= fs,0 for all s ∈ (0, 1).

1. If N(1) ∈ Ld and N(1) is continuous in x = 0, then N(1) v
1, N(1) 6= 1, (N(1))(0) = 1 and (N(1))(1) < 1, and
sup{(N(1))(x) : x ∈ (0, 1]} = 1, since N(1) continuous
in x = 0 and (N(1))(0) = 1.

Figure 5. Function h = N(1) 6= 1 decreasing, continuous in x = 0 and
not constant in (0, 1].

Let us take the functions g = 1 and f : [0, 1] → [0, 1] such
that f(0) < 1 and f(x) = (N(1))(x) for all x ∈ (0, 1]. Let
us observe that f ∈ L because sup{f(x) : x ∈ (0, 1]} =
sup{(N(1))(x) : x ∈ (0, 1]} = 1. It is verified that
N(1) 1 = g (so N(g) ∈ Ld and N(g) 6= 1 ), N(1) f
(so N(f) ∈ Ld and N(f) 6= 1 ), gL = 1 = (N(1))L

and fR = 1 = (N(1))R = N(1). Therefore, by Lemma 2,
infv{g, f} = N(1), and so 1 = N(N(1)) = N(infv{g, f}) =
supv{N(g), N(f)} = N(g)∨N(f) 6= 1, sinceN(g) andN(f)
are decreasing and N(g) 6= 1, N(f) 6= 1, and so (N(g))(1) < 1
and (N(f))(1) < 1. (see Figure 5 where h g, h f and
infv{g, f} = h)
Let us observe the function f defined above belongs to L, as
N(1) is decreasing and continuous at x = 0; in other case the
proof does not work. For example, if N(1) = 1

2
, ∀x ∈ (0, 1] and

(N(1))(0) = 1, then f /∈ L, as supf = f(0) < 1.
2. If N(1) ∈ Ld, N(1) is not continuous in x = 0 and N(1)

is not constant in (0, 1], then N(1) 1, (N(1))(0) = 1 and
(N(1))(1) < 1, and there are x1, x2 ∈ (0, 1] such that x1 < x2
and (N(1))(x2) < (N(1))(x1) < 1.

Figure 6. Function h = N(1) decreasing, not continuous in x = 0 and
not constant in (0, 1].

Let us take the functions f, g : [0, 1]→ [0, 1] such that

f(x) =

{
1
2
(1 + (N(1))(x)), if x ∈ [0, x1],

(N(1))(x), if x ∈ (x1, 1],

and

g(x) =

{
(N(1))(x), if x ∈ [0, x1],

(N(1))(x1), if x ∈ [x1, 1],

It is verified that f ∈ Ld and N(1) f 1, N(1) N(f) 1,
N(f) ∈ Ld and (N(f))(1) < 1.
And g ∈ Ld and N(1) g 1, N(1) N(g) 1, N(g) ∈ Ld
and (N(g))(1) < 1.
Moreover, infv{f, g} = f ∧ g = N(1), and so 1 = N(N(1)) =
N(infv{f, g}) = supv{N(f), N(g)} = N(f) ∨ N(g) 6= 1,
since (N(f))(1) < 1 and (N(g))(1) < 1. (See Figure 6 where
h g, h f and infv{g, f} = g ∧ f = h).

3. If N(1) ∈ Lc and N(1) continuous in x = 1, then 1 N(1),
(N(1))(0) < 1 and (N(1))(1) = 1 (since N(1) 6= 1), and
sup{(N(1))(x) : x ∈ [0, 1)} = 1 (since N(1) continuous in
x = 1 and (N(1))(1) = 1).
Let g and f be the functions such that g = 1 and f(x) =
(N(1))(x) for all x ∈ [0, 1) and f(1) < 1. Again f ∈ L because
sup{f(x) : x ∈ [0, 1)} = sup{(N(1))(x) : x ∈ [0, 1)} = 1.
It is verified that g = 1 N(1), N(g) ∈ Lc and N(g) 6= 1,
f N(1) (so N(f) ∈ Lc and N(f) 6= 1), gR = 1 = (N(1))R

and fL = (N(1))L = N(1).
Therefore, supv{f, g} = N(1), and so 1 = N(N(1)) =
N(supv{g, f} = infv{N(g), N(f)} = N(g) ∨ N(f) 6= 1,
since N(g) and N(f) are increasing and N(g) 6= 1, N(f) 6= 1,
and so (N(g))(0) < 1 and (N(g))(0) < 1.

4. In a similar way as in the decreasing case, we can prove thatN(1)
increasing, non-continuous in x = 1 and N(1) not constant in
[0, 1) is not possible.

5. If N(1) /∈ Ld ∪ Lc then (N(1))(0) < 1 and (N(1))(1) < 1,
according to Proposition 1.
Let us first remember that a function f is normal if and only if
there exists x1 ∈ [0, 1] satisfying at least one of the following
three conditions:

i) f(x1) = 1,

ii) lim
x→x+1

f(x) = 1,

iii) lim
x→x−1

f(x) = 1.

Considering now this three cases we have:

i) x1 ∈ (0, 1) such that (N(1))(x1) = 1 (x1 = 0 or x1 = 1 is
not possible as N(1) /∈ Ld ∪ Lc). We have several cases:

a) There is x ∈ (x1, 1] and (N(1))(x) > 0. Let us take the
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functions f, g : [0, 1]→ [0, 1] such that

f(x) =

{
(N(1))(x), if x ∈ [0, x1],
1
2
(N(1))(x), if x ∈ (x1, 1],

and

g(x) =

{
1
2
(1 + (N(1))(x)), if x ∈ [0, x1],

(N(1))(x), if x ∈ [x1, 1],

Figure 7. Function h = N(1) /∈ Lc ∪ Ld, h(x1) = 1 and h(x) > 0 for
some x ∈ (x1, 1].

It is verified that, f N(1), g N(1), fL = N(1)L and
gR = N(1)R. Then supv{f, g} = N(1) by Lemma 2, it
is 1 = N(N(1)) = N(supv{f, g}) = infv{N(f), N(g)}
(See Figure 7 where g h, f h, gR = hR and fL = hL).
However, as f N(1) and g N(1), we have 1 =
N(N(1)) N(f) and 1 N(g). And so, N(f), N(g) ∈
Lc, N(f), N(g) 6= 1, (N(f))(0) < 1 and (N(g))(0) < 1.
Then, infv{N(f), N(g)} = N(f) ∨N(g) 6= 1.

b) There is x ∈ [0, x1) and (N(1))(x) > 0. Let us take the
functions f, g : [0, 1]→ [0, 1] such that

f(x) =

{
(N(1))(x), if x ∈ [0, x1],
1
2
(1 +N(1))(x), if x ∈ (x1, 1],

and

g(x) =

{
1
2
(N(1))(x), if x ∈ [0, x1),

(N(1))(x), if x ∈ [x1, 1],

(See Figure 8 where h g, h f , gR = hR and fL = hL).

Figure 8. Function h = N(1) /∈ Lc ∪ Ld, h(x1) = 1 and h(x) > 0 for
some x ∈ [0, x1)

It is verified that, N(1) f , N(1) g, fL = N(1)L and
gR = N(1)R. Then infv{f, g} = N(1) by Lemma 2, and
1 = N(N(1)) = N(infv{f, g}) = supv{N(f), N(g)}.
However, as N(1) f and N(1) g, we have
N(f) N(N(1)) = 1 and N(g) 1. And so,
N(f), N(g) ∈ Ld, N(f), N(g) 6= 1, (N(f))(1) < 1
and (N(g))(1) < 1. Then, supv{N(f), N(g)} = N(f) ∨
N(g) 6= 1.

ii) Let x1 ∈ [0, 1) such that lim
x→x+1

f(x) = 1, and
(N(1))(x1) < 1. Therefore, there is x2 ∈ (x1, 1] such that
(N(1))(x) > 0 for all x ∈ (x1, x2].
Let us take the functions f, g : [0, 1]→ [0, 1] such that

f(x) =

{
(N(1))(x), if x ∈ [0, x2),
1
2
(N(1))(x), if x ∈ [x2, 1].

and

g(x) =

{
1
2
(N(1))(x), if x ∈ [0, x1),

(N(1))(x), if x ∈ (x1, 1],

(see Figure 9 where g h, f h, gR = hR and fL = hL).

Figure 9. Function h = N(1) /∈ Lc ∪ Ld , lim
x→x+1

h(x) = 1 and

h(x2) > 0 with x2 ∈ (x1, 1]

f N(1), g N(1), fL = N(1)L and gR = N(1)R.
Then supv{f, g} = N(1) and so 1 = N(supv{f, g}) =
infv{N(f), N(g)} = N(f)∨N(g), sinceN(f), N(g) ∈ Lc,
butN(f)∨N(g) 6= 1, as (N(f))(0) < 1 and (N(g))(0) < 1,
since N(f) and N(g) are increasing and different from 1.

iii) Let x1 ∈ (0, 1] such that lim
x→x−1

f(x) = 1, and
(N(1))(x1) < 1. Therefore, there is x2 ∈ [0, x1) such that
(N(1))(x) > 0 for all x ∈ [x2, x1).
Let us take the functions f, g : [0, 1]→ [0, 1] such that

f(x) =

{
(N(1))(x), if x ∈ [0, x1),
1
2
(1 +N(1)(x)), if x ∈ [x1, 1].

and

g(x) =

{
1
2
(N(1))(x), if x ∈ [0, x1),

(N(1))(x), if x ∈ [x1, 1],

(see Figure 10 where h g, h f , gR = hR and fL = hL).
N(1) f , N(1) g, fL = N(1)L and gR = N(1)R.
Then infv{f, g} = N(1) and so 1 = N(infv{f, g}) =
supv{N(f), N(g)} = N(f) ∨ N(g), since N(f), N(g) ∈
Ld, but N(f) ∨ N(g) 6= 1, as (N(f))(1) < 1 and
(N(g))(1) < 1, since N(f) and N(g) are decreasing and dif-
ferent from 1.

Therefore, in any case different from those indicated in the Theo-
rem, a contradiction is reached. �
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Figure 10. Function h = N(1) /∈ Lc ∪ Ld , lim
x→x−1

h(x) = 1 and

h(x2) > 0 with x2 ∈ [0, x1)

4 STRONG NEGATIONS WITH N(1) = fm,1 OR
N(1) = fs,0

Now, we will present some properties of strong negations such that
N(1) = fm,1 for some m ∈ (0, 1). In particular, we will find the
images of the singletons, and the functions fk,1 and fk,0.

4.1 Images of the singletons
Lemma 3 If a ∈ (0, 1), there are no f, g ∈ L, with f 6= a 6= g,
such that supv{f, g} = a or infv{f, g} = a.

Proof Let us suppose that supv{f, g} = a with f 6= a 6= g (in
case infv{f, g} = a the proof is similar).

As f v a and g v a, fR ≤ aR, gR ≤ aR and we have f(x) =
g(x) = 0 for all x > a.

Furthermore, (supv{f, g})(a) = (a)(a) = 1, and then f(a) = 1
or g(a) = 1.

i) If f(a) = g(a) = 1, there exists m ∈ [0, a) such that f(m) > 0,
so f(x) > 0 ∀x ∈ [m,a). It should be g(x) = 0 ∀x ∈ [m,a),
and, taking into account that g ∈ L, g(x) = 0 ∀x ∈ [0, a).
Finally, g = a, attaining a contradiction.

ii) If, for example, f(a) < 1, there exists m ∈ [0, a) such that
f(m) > f(a), and then f(x) > f(a) ∀x ∈ [m,a). So,
g(x) = 0 ∀x ∈ [m,a), g(x) = 0 ∀x ∈ [0, a), and g = a,
which is also a contradiction. �

Remark 1 Consequently, there are no f, g ∈ L, with f 6=
a 6= g, such that N(supv{f, g}) = N(a), or, such that
infv{N(f), N(g)} = N(a). In other words, there are no h, l ∈ L
with h 6= a 6= l, satisfying infv{h, l} = N(a).

In a similar way, there are no h, l ∈ L with h 6= a 6= l, satisfying
supv{h, l} = N(a).

Theorem 5 If N : L → L is a strong negation with N(1) = fm,1
for some m ∈ (0, 1), the image of a singleton is also a singleton.

Proof Let a ∈ (0, 1). Using the previous Lemma, and with a proof
similar to that of Theorem 4, it could be obtained that
N(a) = 1, or
N(a) = fk,1 for some k ∈ (0, 1), or
N(a) = fs,0 for some s ∈ (0, 1), or
N(a) = b for some b ∈ (0, 1).

1. If N(a) = 1, N(N(a)) = a = N(1) = fm,1. Contradiction.
2. Let us suppose that N(a) = fk,1 for some k ∈ (0, 1). As a is

not comparable with 1, it should be N(a) non comparable with
N(1) = fm,1. This is a contradiction, as fk,1 v fm,1 if k ≥ m,
and fm,1 v fk,1 if k ≤ m.

3. Now, let us suppose that N(a) = fs,0 for some s ∈ (0, 1). As
a is not comparable with 1, it should be N(a) non comparable
with N(1) = fm,1. This is a contradiction, as fs,0 v fm,1 for all
s ∈ (0, 1).

Then, it should be N(a) = b for some b ∈ (0, 1). �

Remark 2 We can note that in this case there exists a unique b ∈
(0, 1), such that N(b) = b.

In fact, let us define the function n : [0, 1] → [0, 1] such that
n(a) = b if and only if N(a) = b. Then, it is easy to prove that n is
a strong negation in [0, 1], and there is a unique b ∈ (0, 1) satisfying
n(b) = b. Then, there is a unique b ∈ (0, 1) such that N(b) = b.
That is, b is a ’fixed point’ of the negation N .

4.2 Images of the functions fk,1 and fk,0

Newly, let us begin with a previous Lemma.

Lemma 4 If k ∈ (0, 1), there are no f, g ∈ L, with f 6= fk,1 6= g,
such that supv{f, g} = fk,1 or infv{f, g} = fk,1.

Then there are no f, g ∈ L, with f 6= fk,1 6= g, such that
supv{f, g} = fk,1, or N(infv{N(f), N(g)}) = N(fk,1). Equiv-
alently, there are no h, l ∈ L, with h 6= N(fk,1) 6= l such that
infv{h, l} = N(fk,1).

Theorem 6 If N : L → L is a strong negation with N(1) = fm,1
for some m ∈ (0, 1), then for all k ∈ (m, 1), there exists a h ∈
(m, 1) such that N(fk,1) = fh,1 (see Figure 11, left).

Figure 11. Images of fk,1 when N(1) = fm,1

Proof Let k ∈ (m, 1). Using the previous Lemma, and with a proof
similar to that of Theorem 4, it could be obtained that
N(fk,1) = 1 or
N(fk,1) = a for some a ∈ (0, 1), or
N(fk,1) = fs,0 for some s ∈ (0, 1), or
N(fk,1) = fh,1 for some h ∈ (0, 1).

1. If N(fk,1) = 1, N(N(fk,1)) = fk,1 = N(1) = fm,1. Contra-
diction, as k > m.

2. Let us suppose that N(fk,1) = a for some a ∈ (0, 1). Then
N(N(fk,1)) = fk,1 = N(a) = b, for some b ∈ (0, 1). Contra-
diction, according to Theorem 5.

3. Now, let us suppose that N(fk,1) = fs,0 for some s ∈ (0, 1). As
fs,0 v 1, N(1) = fm,1 v N(fs,0) = fk,1. But, as k > m, it is
fk,1 fm,1.

4. If N(fk,1) = fh,1 for some h ∈ (0, 1) with h < m, we have
that fm,1 fh,1, and so N(fh,1) = fk,1 N(fm,1) = 1, which
is false as 1 fk,1.

Then, only N(fk,1) = fh,1, with h > m is possible. �
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Theorem 7 If N : L → L is a strong negation with N(1) = fm,1
for some m ∈ (0, 1), then for all k ∈ (0, 1) with k < m, there exists
a s ∈ (0, 1) such that N(fk,1) = fs,0 (see Figure 11, right).

Proof Let k ∈ (0,m). In this case, we can also obtain that
N(fk,1) = 1 or
N(fk,1) = a for some a ∈ (0, 1), or
N(fk,1) = fh,1 for some h ∈ (0, 1), or
N(fk,1) = fs,0 for some s ∈ (0, 1).

1. If N(fk,1) = 1, N(1) = fk,1 = fm,1. Contradiction, as k < m.
2. If N(fk,1) = a for some a ∈ (0, 1), N(a) = b = fk,1, for some
b ∈ (0, 1). Contradiction.

3. Let us suppose that N(fk,1) = fh,1 for some h ∈ (0, 1). As
fm,1 v fk,1, we have that N(fk,1) = fh,1 v N(fm,1) = 1. But
we know that 1 v fh,1. Then we attain a contradiction.

Then it must be N(fk,1) = fs,0 for some s ∈ (0, 1). �

In a similar way, it is easy to obtain the following Theorem.

Theorem 8 If N : L → L is a strong negation with N(1) = fm,1
for somem ∈ (0, 1), then for all s ∈ (0, 1) there exists a h ∈ (0,m)
such that N(fs,0) = fh,1 (see Figure 12).

Figure 12. Images of fs,0 when N(1) = fm,1

A similar study can be displayed for strong negations that trans-
form the function 1 in a function fs,0.

Theorem 9 If N : L → L is a strong negation with N(1) = fs,0
for some s ∈ (0, 1), then (see Figure 13)

1. N transforms singletons into singletons. That is, for any a ∈
(0, 1), there exits a b ∈ (0, 1) such that N(a) = b.

2. For any t ∈ (s, 1) there exists a p ∈ (s, 1) such that N(ft,0) =
fp,0.

3. For any t ∈ (0, s) there exists a m ∈ (0, 1) such that N(ft,0) =
fm,1.

4. For any m ∈ (0, 1) there exists a t ∈ (0, s) such that N(fm,1) =
ft,0.

5 STRONG NEGATIONS WITH N(1) = a

Finally, we will expose, without proof as it is similar to that of the-
orems of previous Sections, a result about the images throughout
strong negations satisfying N(1) = a.

Theorem 10 If N : L → L is a strong negation with N(1) = a for
some a ∈ (0, 1), then (see Figure 14).

Figure 13. Images when N(1) = fs,0

1. For any b ∈ (0, a) there exists a h ∈ (0, 1) such that N(b) =
fh,1.

2. For any b ∈ (a, 1) there exists a s ∈ (0, 1) such thatN(b) = fs,0.
3. For any h ∈ (0, 1) there exists a b ∈ (0, a) such that N(fh,1) =
b.

4. For any s ∈ (0, 1) there exists a b ∈ (a, 1) such thatN(fs,0) = b.

Figure 14. Images when N(1) = a

6 CONCLUSION
The present paper focuses on the study of strong negations in the
set L, the set of normal and convex functions from [0, 1] to [0, 1]. It
considers, in particular, the images of the function 1 (1(x) = 1 for all
x ∈ [0, 1]) through a strong negation. This function has the special
interest of representing the lack of information about an event.

In a first step, the possible images of this function have been con-
sidered, concluding that there are only four options: the function 1
itself, a singleton, a function of the form fm,1 (the function taking
the value m in [0, 1) and the value 1 at x = 1), or a function of the
form fs,0 (the function taking the value 1 at x = 0 and the value m
in (0, 1]).

The strong negations leaving fixed the function 1 had been charac-
terized, this paper concentrates on the study of the remaining options.
In this way, it has been obtained how the images of singletons, func-
tions fm,1 and functions fs,0 are.

This has meant a breakthrough in the attempt to characterize these
strong negations, which will be the purpose of future research.
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