
Maximal Correlation: An Alternative Criterion
for Training Generative Networks

Kalliopi Basioti1, George V. Moustakides1,2 and Emmanouil Z. Psarakis3

Abstract. Generative adversarial networks (GANs) require the de-
sign of a generator and a discriminator network which is achieved by
solving min-max optimization problems. Min-max/adversarial opti-
mizations are implemented with the help of two stochastic gradient
algorithms, one for each optimization problems. This data-driven ap-
proach is known to suffer from non-robustness and need for exces-
sive computations and processing time. In this work we propose a
kernel based correlation criterion which we only maximize. Under
ideal conditions this non-adversarial approach is shown to achieve
the same goal as the existing adversarial methods. Under a pure data-
driven scenario we only need a generator network which we train
with a single gradient algorithm. Since the proposed criterion is a
nonlinear combination of three expectations of functions, as opposed
to the standard case of a single expectation of a function, deriving a
gradient algorithm that optimizes it, is not straightforward. The so-
lution we developed for a general optimization problem involving
nonlinear functions of expectations, clearly constitutes an additional
interesting result.

1 BACKGROUND
Since their first appearance [2, 14], GANs have gained considerable
attention and popularity, mainly due to their remarkable capability
to produce, after proper training, synthetic data (usually images) that
are realistically close to the data contained in their training set. The
main challenge in designing GANs comes from the fact that their
training algorithms require heavy computations that are primarily
implementable on computationally powerful platforms. Such high
computational needs arise not only because the size of the problems
is usually large but also because the design of GANs requires the so-
lution of min-max optimization problems. Stochastic gradient type
algorithms employed for such cases very often exhibit non-robust be-
havior and slow rate of convergence, thus raising the computational
needs considerably [10, 22].

In this work we focus, primarily, on the computational aspects of
the training phase. Our intention is to develop a training algorithm
which is simple and requires significantly less computations as com-
pared to the current methods proposed in the literature and employed
in practice. In particular in [3] it is theoretically demonstrated that
certain ideas as batch processing [21] and/or gradient smoothing [19]
that are used for the solution of min-max problems have, in fact, ab-
solutely no effect in the algorithmic performance and, therefore, can

1 Computer Science, Rutgers University, New Brunswick, NJ, USA, email:
kib21@scarletmail.rutgers.edu, gm463@rutgers.edu.

2 Electrical and Computer Engineering, University of Patras, Patras, Greece,
email: moustaki@upatras.gr.

3 Computer Engineering and Informatics, University of Patras, Patras, Gre-
ece, email: psarakis@ceid.upatras.gr.

be ignored. These conclusions will help us shape our algorithmic
scheme and suggest a simple and efficient form.

Z

Generator

G(,)Z µ

Discriminator

D(,)Y #

Discriminator

D(,)X #

u v

Mismatch

J(,)u v

X Y

Figure 1. Representation of GAN architecture.

Figure 1 captures the architecture employed during the training
phase of GANs. There is a random vector X with unknown prob-
ability density function (pdf) f(X), with X playing the role of a
“prototype” random vector. The goal is to design a data-synthesis
mechanism that generates realizations for the random vector X . For
this goal we employ a nonlinear transformation G(Z, θ), known as
the Generator, that transforms a random vector Z of known pdf
(e.g. Gaussian or Uniform) into a random vector Y .

We would like to design the parameters θ of the transformation so
that Y is distributed according to f(Y). Under general assumptions
such a transformation always exists [1, 8] and it can be efficiently ap-
proximated [11] by a sufficiently large neural network, with θ sum-
marizing the network parameters.

Adversarial approaches in order to make the proper selection of
θ employ a second nonlinear transformation D(X,ϑ) that trans-
forms X and Y into suitable scalar statistics u = D(X,ϑ) and
v = D(Y, ϑ) and then compute a “mismatch” measure (not neces-
sarily a distance) J (u, v) between the two random scalar quantities
u, v. The second transformation D(X,ϑ) is also implemented with
the help of a neural network, known as the Discriminator. We are in-
terested in the average mismatch between u, v namely Eu,v[J (u, v)]
which, after substitution, can be written as

J(θ, ϑ) = EX,Y
[
J
(
D(X,ϑ),D(Y, ϑ)

)]
=

EX,Z
[
J
(
D(X,ϑ),D

(
G(Z, θ), ϑ

))]
. (1)

For every selection of the generator parameters θ we would like to
select the discriminator parameters ϑ so that the average mismatch
between u, v is maximized. In other words we design the discrimi-
nator to differentiate between the synthetic random vector Y and the
prototype random vector X , as much as possible. This worst-case
performance we then attempt to minimize by selecting properly the
generator parameters θ. This leads to the following min-max opti-

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

mization problem

inf
θ

sup
ϑ

J(θ, ϑ)

= inf
θ

sup
ϑ

EX,Z
[
J
(
D(X,ϑ),D

(
G(Z, θ), ϑ

))]
. (2)

Typical selections for the mismatch function J (u, v) are:

• J (u, v) = log(u) + log(1− v), u, v ∈ [0, 1], see [14].
• J (u, v) = log(u)− log(v), see [2].
• J (u, v) = u− v, see [2].

It is clear that the generator generates realizations of the random vec-
tor Y by transforming the realizations of Z. But how can we be as-
sured that these realizations have the correct pdf namely f(Y)? To see
that this is indeed the case we need to consider the generator and dis-
criminator transformations as being general functions G(Z),D(X)
not limited to the specific classes induced by the two neural net-
works. This immediately implies that by properly selecting G(Z) we
can shape the pdf g(Y) of Y into any pdf we desire [1]. In this ideal-
ized setup, optimizing over θ amounts to optimizing over G(Z) and
therefore over g(Y) and, similarly, optimizing over ϑ amounts to op-
timization over D(X). Consequently, we can redefine the min-max
optimization problem in (2) under the following idealized frame

inf
g

sup
D

J(g,D) =

inf
g

sup
D

∫∫
J
(
D(X),D(Y)

)
f(X)g(Y)dXdY, (3)

where D(X) is any scalar valued nonlinear transformation, and g(Y)
is any pdf. The min-max problems corresponding to the three ex-
amples of J (u, v) we mentioned before accept analytic solutions.
In particular in the first case, for fixed f(X), g(Y) maximization
over D(X) is achieved for D(X) = f(X)

f(X)+g(X)
. The resulting func-

tional is further minimized over g(Y) for g(Y) = f(Y). In the sec-
ond case, assuming that |D(X)| ≤ M , maximization over D(X) is
achieved when D(X) = eMsgn(f(X)−g(X)) and minimization over
g(Y) yields, again, g(Y) = f(Y). Similarly for the third case, max-
imization over D(X) is achieved for D(X) =Msgn(f(X)− g(X))
and minimization over g(Y) when g(Y) = f(Y). As we can see
all three min-max problems result in different optimum discrimina-
tor functions but agree in the final solution for g(Y), namely Y is
shaped to have the same pdf f(X) as the prototype random vectorX .

Since in the original min-max problem (2) we limit the two trans-
formations to be within the two classes induced by the input/output
relationship of the corresponding neural network, it is clear that (2)
constitutes an approximation to the ideal setup captured by (3). This
implies that the output Y of the generator will follow a pdf g(Y)
which will be an approximation to the desired pdf f(Y) of the pro-
totype random vector X . This approximation not only depends on
the richness of the transformation class induced by the generator
structure but, also, on the corresponding richness of the discriminator
structure. As long as one of the two structures does not approximate
sufficiently close the corresponding ideal transformation (when for
example the neural network does not have sufficient number of lay-
ers), the design will fail in the sense that the realizations of Y will not
follow the desired pdf f(X) of the prototype X . The min-max opti-
mization problem becomes challenging because, as we mentioned,
the pdf of X is unknown and, instead, we are given a collection
{X1, . . . , XN} of independent realizations of X (the training set)
drawn from f(X).

Remark 1 Even though the goal is to design a generator network,
with GANs we simultaneously require the design of an additional
neural network, the discriminator. This requirement increases the
number of parameters to be estimated considerably and, conse-
quently, the computational complexity.

Furthermore the algorithmic solution of (2) relies on alternating
stochastic gradient-type algorithms and the presence of two antag-
onistic optimization problems translates into an increased number of
updates in the implementation which are also known to be non-robust
[4, 10, 22].

2 A NON-ADVERSARIAL APPROACH
Let us now see how we can accomplish a similar approximation for
the output pdf of the generator without the need of a discriminator.
Consider the vector space V of all scalar functions φ(U). We are
interested in defining an inner product for V . Assume that K(U, V)
is a positive definite kernel, namely, a scalar function of U, V which
is symmetric K(U, V) = K(V,U) and satisfies

∫∫
K(U, V)φ(U)φ(V) dU dV > 0,

for every function φ(U) ∈ V with φ(U) 6= 0. Using a positive defi-
nite kernel, with the next lemma we present how we can define, in a
straightforward way, an inner product.

Lemma 1 For any two functions φ(U), ψ(U) ∈ V define

≺φ, ψ�=
∫∫

K(U, V)φ(U)ψ(V) dU dV. (4)

Then ≺φ, ψ� is an inner product in V .

Proof We must show that (4) satisfies the required properties
that define an inner product. Since the proof is simple we give no
further details. We only mention that (4) is a direct extension of
the corresponding inner product of finite dimensional vector spaces
where φ(U) is replaced by a classical finite dimensional vector and
K(U, V) by a symmetric and positive definite matrix. �

In a vector space, equipped with an inner product (Hilbert space),
we have validity of the famous Cauchy-Schwarz inequality [9],
namely that

(≺φ, ψ�)2 ≤≺φ, φ�≺ψ,ψ�, (5)

furthermore, we have equality in (5), if and only if

ψ(U) = aφ(U), (6)

where a is a constant. Let us now define a proper optimization prob-
lem which, with the help of this well known result, will be shown
to enjoy a desirable solution. As before, with f(U), g(U) we denote
probability densities. If we fix f(U) then we can consider the follow-
ing cost as a function of g(U)

J (g) =

(∫∫
K(U, V)f(U)g(V) dU dV

)2
∫∫

K(U, V)g(U)g(V) dU dV
. (7)

By recalling the definition of the inner product from (4) and using
(5) we see that

J (g) = (≺ f, g�)2

≺g, g� ≤≺ f, f� . (8)

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

This suggests that if we maximize J (g) over g(U) then

max
g
J (g) = max

g

(≺ f, g�)2

≺g, g� ≤≺ f, f�

=
∫∫

K(U, V)f(U)f(V) dU dV. (9)

The upper bound is independent from g(U) consequently, if we can
find a g(U) that attains it then this selection will necessarily be op-
timum. The Cauchy-Schwarz inequality is actually telling us what
form this g(U) must have. Specifically, if we select g(U) = af(U)
then we attain the upper bound. Furthermore, since both f(U), g(U)
are probability densities integrating to 1 this means that a = 1.
Hence, we conclude that the optimum solution of the optimization
problem in (9) has the desired form g(U) = f(U).

Remark 2 The optimum density obtained by solving the single max-
imization problem is exactly the same as the optimum density ob-
tained by the adversarial approaches.

Let us now write our criterion using expectations because this will
guide us in producing a stochastic gradient algorithm. If X is a ran-
dom vector distributed according to f(X) and Y 1, Y 2 are two identi-
cally distributed but statistically independent random vectors follow-
ing g(Y), then we can write for the cost function

J (g) =
EX,Y 1 [K(X,Y 1)] · EX,Y 2 [K(X,Y 2)]

EY 1,Y 2 [K(Y 1, Y 2)]
. (10)

If we also let X1, X2 be two identically distributed independent
random vectors following f(X) then, from the Cauchy-Schwarz in-
equality we have that the ratio

r(g) =
J (g)

EX1,X2 [K(X1, X2)]
=

(≺ f, g�)2

≺g, g� · ≺ f, f� ≤ 1.

The normalized cost r(g) can play the role of a nonlinear correla-
tion factor for the random vectors X,Y . This correlation, when op-
timized over the density g(Y), attains the maximal value 1. As we
argued, this can happen if and only if the two random vectors X,Y
enjoy the same statistical behavior, namely g(X) = f(X). Since
EX1,X2 [K(X1, X2)] does not depend on g(Y), maximizing the cor-
relation factor r(g) is equivalent to maximizing J (g), which is the
method we propose in this work.

We must point out that kernel based, non-adversarial criteria were
also adopted in the past [3, 12, 15]. However, the maximal correlation
idea introduced here is presented for the first time. Given the experi-
ence of our group with these kernel approaches which is reported in
[3], we would like to point out that the generator designs we obtain
with the new criterion, produce higher quality synthetic images than
its counterparts in [3, 12, 15]. And this is achieved with comparable
computational complexity.

3 NEURAL NETWORKS AND TRAINING
The next step consists in abandoning the ideal world expressed by
(10). If Y is the output Y = G(Z, θ) of the generator, this suggests
that the Y 1, Y 2 needed in (10) correspond to inputs Z1, Z2. The two
random input vectors must be statistically independent in order for
the same property to be inherited by the two outputs Y 1, Y 2. From
(10), by substituting Y i = G(Zi, θ), i = 1, 2, we obtain

J (g) ≈ J (θ) =
EX,Z1

[
K
(
X,G(Z1, θ)

)]
· EX,Z2

[
K
(
X,G(Z2, θ)

)]
EZ1,Z2

[
K
(
G(Z1, θ),G(Z2, θ)

)] . (11)

Furthermore, the optimization over g(Y) is replaced by the optimiza-
tion over the network parameters θ, namely

max
g
J (g) ≈ max

θ
J (θ) =

max
θ

EX,Z1

[
K
(
X,G(Z1, θ)

)]
· EX,Z2

[
K
(
X,G(Z2, θ)

)]
EZ1,Z2

[
K
(
G(Z1, θ),G(Z2, θ)

)] , (12)

which constitutes our target optimization problem.

3.1 Stochastic updating algorithms for optimiza-
tion and equation solving

There are two classical problems for which stochastic updating al-
gorithms can be derived in a straightforward manner. We borrow the
corresponding results from [5].

Standard optimization:
For a cost function J(ϑ) which is of the form

J(ϑ) = EX [p(X,ϑ)], (13)

where p(X,ϑ) is a scalar function of a random vector X and a
parameter vector ϑ, we are interested in the optimization problem
maxϑ J(ϑ). If we do not know the probability density of X and in-
stead we have a data sequence {Xt} then we can maximize J(ϑ)
using the stochastic gradient algorithm which updates the parameter
estimates as follows

ϑt = ϑt−1 + µ∇ϑp(Xt, ϑt−1). (14)

Scalar µ > 0 is the learning rate and ∇ϑ denotes gradient with re-
spect to ϑ. If the data sequence is finite then we recycle the data until
we reach convergence. If {ϑt} converges in the mean, then the mean
limit is a (local) maximum of J (ϑ).
System of nonlinear equations:
The second problem involves a vector function J(ϑ) where the length
of J(ϑ) is the same as the length of ϑ (number of equations must be
the same as number of unknowns). If the vector function is of the
form

J(ϑ) = EX [H(X,ϑ)], (15)

where H(X,ϑ) is also a vector function of a random vector X and a
parameter vector ϑ, we are interested in the solution of the equation
J(ϑ) = 0. From [5] we have that, if the stochastic update algorithm
(it is not necessarily a stochastic gradient)

ϑt = ϑt−1 + µH(Xt, ϑt−1), (16)

converges in the mean, then the corresponding mean limit is a solu-
tion of the desired system of equation.

The optimization problem we like to solve in (12), clearly, does
not conform with the standard version depicted in (13) consequently,
proposing a stochastic gradient algorithm is not immediate. For this
reason we would like to generalize the method in (14) to cover opti-
mization problems that have a more complicated form.

Non-standard optimization:
Let us now consider an optimization problem which refers to a cost
function that is more general than the classical version in (13). We are
interested in costs involving multiple expectations that are combined
through a nonlinear function.

The following theorem introduces explicitly the problem of in-
terest and provides all the necessary details regarding its stochastic
gradient solution. Basically, we combine the existing results in order
to be able to obtain the intended extension.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

Theorem 1 Let a(Z) be a scalar function of a vectorZ and P(X,ϑ)
be a vector function of a random vector X and a parameter vector
ϑ, that has the same size as Z. Define the cost

J(ϑ) = a
(
EX [P(X,ϑ)]

)
, (17)

where Z is replaced by the expectation of the vector function
P(X,ϑ). Then, the stochastic gradient algorithm for maximizing
J(ϑ) takes the following form

ϑt = ϑt−1 + µ
(
JϑP(Xt, ϑt−1)

)ᵀ(∇Za(Zt−1)
)

Zt = Zt−1 + µ{P(Xt, ϑt−1)−Zt−1},
(18)

where JϑP(X,ϑ) denotes the Jacobian matrix of P(X,ϑ) with re-
spect to ϑ and∇Za(Z) the gradient of a(Z) with respect to Z.

Proof The proof is interesting and surpisingly simple. It relies on
the definition of the following auxiliary parameter vector

Z = EX [P(X,ϑ)]. (19)

We know that the value of ϑ where J(ϑ) is maximized, is a root of
the system of equations∇ϑJ(ϑ) = 0. Using the definition of the cost
function in (17) and the definition of the auxiliary parameter vector
in (19) this equation can be written as

EX [
(
JϑP(X,ϑ)

)ᵀ(∇Za(Z))] = 0

EX [P(X,ϑ)−Z] = 0.
(20)

We note that we have enlarged the system of equations by including,
in the last equation, the definition of the auxiliary parameter vector.
Applying (15) with ϑ replaced by {ϑ,Z}, the extended system can
be solved using the updates in (18). This completes the proof. �

Theorem 1 is very general and can accommodate any nonlinear
function a(Z) of any number of expectations of nonlinear functions
of X and ϑ. The stochastic gradient algorithm in (18) can also be
extended to include batches of size K as follows

ϑt = ϑt−1 + µ
(∑K

j=1 JϑP(Xt+j , ϑt−1)
)ᵀ(∇Za(Zt−1)

)
Zt = Zt−1 + µ

∑K
j=1{P(Xt+j , ϑt−1)−Zt−1},

(21)

where in each iteration t we use K data samples {XKt+1, . . . ,
XK(t+1)} that must be non-overlapping with other data batches
within the same data epoch (as we recycle the data repeatedly un-
til convergence is reached).

Remark 3 We must emphasize that the two versions of the algorithm
in (18) and (21), contrary to the widespread belief [12, 21], have
exactly the same convergence characteristics when the batch size
K is not large (micro-batch) [3].

Even though the batch version in (21) does not exhibit any signifi-
cant analytical or convergence advantage over the simple implemen-
tation in (18), there is still a very serious reason to prefer the former
over the latter. If both algorithms are implemented on some parallel
computing platform then, as we can see, (21) allows for the simul-
taneous computation of multiple gradients of different data points in
the batch. This can result in considerable reduction of the execution
time.

Unfortunately, batches cannot be selected to be overly large, some-
thing that would incur substantial execution time gains, because then
we start experiencing certain negative effects in the corresponding
algorithms. The most notable such problem consists in the algo-
rithm losing its capability to escape from local extrema, a property
which has been observed to be firmly present when micro-batches
are adopted [18]. This means that the algorithm with large batches
tends to have inferior performance compared to the case of using
micro-batches.

3.2 Algorithmic implementation
We can directly apply Theorem 1 to find the solution of (12). To
make the corresponding connection, we note that we need to define
Zᵀ = [z1, z2, z3] and a(Z) = z1·z2

z3
. The role of the random vector

X in the theorem now plays the triplet {X,Z1, Z2} and ϑ must be
replaced by θ. Finally, the vector function P(X,ϑ) is the collection
of the three scalar functions K

(
X,G(Z1, θ)

)
, K
(
X,G(Z2, θ)

)
and

K
(
G(Z1, θ),G(Z2, θ)

)
.

In the algorithm that follows, at each iteration t, we use one of the
available data vectors Xt and we generate two new vectors Z1

t , Z
2
t .

This, according to (18), leads to the following updating formulas

Y 1
t = G(Z1

t , ϑt−1), Y
2
t = G(Z2

t , ϑt−1)

θt = θt−1+

µ
{
γt−1βt−1

(
JθG(Z

1
t , θt−1)

)ᵀ∇Y K(Xt, Y 1
t)+

γt−1αt−1

(
JθG(Z

2
t , θt−1)

)ᵀ∇Y K(Xt, Y 2
t)−

αt−1βt−1

(
JθG(Z

1
t , θt−1)

)ᵀ∇XK(Y 1
t , Y

2
t)+

αt−1βt−1

(
JθG(Z

2
t , θt−1)

)ᵀ∇Y K(Y 1
t , Y

2
t)
}

αt = αt−1 + µ{K(Xt, Y 1
t)− αt−1}

βt = βt−1 + µ
{
K(Xt, Y

2
t)− βt−1

}
γt = γt−1 + µ

{
K(Y 1

t , Y
2
t)− γt−1

}
.

(22)

The auxiliary parameter vectorZ of Theorem 1 takes the formZᵀ =
[α, β, γ] where each of the three parameters captures one of the cor-
responding three expectations. We recall that K(X,Y) is the adopted
kernel and ∇XK(X,Y), ∇Y K(X,Y) express its gradient with re-
spect toX and Y respectively, while JθG(Z, θ) denotes the Jacobian
matrix of G(Z, θ) with respect to θ.

Regarding the updates in (22) we can have a slight simplification
by observing that αt and βt are, on average, equal. This suggests that
we could set βt = αt and compute αt with the following symmetric,
with respect to Y 1

t , Y
2
t , form

αt = αt−1 + µ
{
0.5
[
K(Xt, Y

1
t) + K(Xt, Y

2
t)
]
− αt−1

}
.

Finally, we must mention that an equivalent to (21) batch version is
also straightforward to derive.

Interestingly, because of the Cauchy-Schwarz inequality, it is pos-
sible to monitor whether our algorithm converges properly or not.
We note that αt·βt

γt
expresses the value of the corresponding cost

function in (11). If the algorithm behaves correctly then this value
must reach the expectation δ = EX1,X2 [K(X1, X2)]. The latter can
either be pre-computed from the available data vectors or estimated
in parallel with the network parameters θ. For the parallel compu-
tation we observe that Xt, Xt−1 are independent therefore they can
play the role ofX1, X2. This results in the following possible update

δt = δt−1 + µ
{
K(Xt, Xt−1)− δt−1

}
.

When we reach convergence we expect αt·βt
γt

to be close and ran-
domly oscillate around δt. If this is not the case then this is a strong
indication that the algorithm did not converge properly.

Additional simplification, giving rise to significant execution
speed up, can be enjoyed if in each iteration in (22), instead of gen-
erating two random inputs Z1

t , Z
2
t we generate only one Zt. For

the second input vector we can simply use the one generated dur-
ing the previous iteration. As it is argued in [3], imposing finite de-
lays of computed quantities does not affect the overall performance

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

of the training algorithm. Consequently, we can have Z1
t = Zt

and Z2
t = Zt−1. This particular selection must be accompanied

by similar substitutions wherever Z2
t is involved. For example, for

the output we compute Y 1
t = Yt = G(Zt, θt−1) but instead of

Y 2
t = G(Zt−1, θt−1) we can use Y 2

t = G(Zt−1, θt−2) = Yt−1

which exists from the previous iteration. Also K(Xt, Y
2
t) and its

gradient, can be replaced by K(Xt−1, Yt−1) and its correspond-
ing gradient which are available from the previous iteration. Only
K(Y 1

t , Y
2
t) and its gradient must be computed as K(Yt, Yt−1) while

K(Y 2
t , Y

1
t) and its gradient can be replaced by the already available

K(Yt−1, Yt−2) and its corresponding gradient.
As it is proved in [3], these approximations make sense because

θt changes extremely slowly between iterations and because expres-
sions as K(Xt, Yt) and K(Xt−1, Yt−1) have, on average, the same
value. We recall that, it is the average quantities that enter in the defi-
nition of our criterion in (11) and also, similarly to (20), in the result-
ing system of equations that we obtain when we equate the gradient
of our criterion to 0.

A very important practical issue concerning the optimization of
our criterion is clearly its unconventional form. Existing computa-
tional frameworks as TensorFlow, PyTorch, etc., which automatically
derive the necessary gradient algorithm, can accommodate costs that
are either purely deterministic (not involving any expectation) or un-
der the standard form depicted in (13). Consequently, in our case they
will be unable to produce the proper stochastic gradient algorithm.
This means that if we like to apply the stochastic gradient algorithm
in (22) we need to analytically compute the expressions for the cor-
responding gradients.

If, in any event, one is insisting in using the available frameworks,
it is still possible by replacing expectations with averages over large
batches namely, replace J (θ) with the approximation

Ĵ (θ) =
∑n
j=1 K

(
Xj ,G(Z

1
j , θ)

)
·
∑n
j=1 K

(
Xj ,G(Z

2
j , θ)

)
n
∑n
j=1 K

(
G(Z1

j , θ),G(Z
2
j , θ)

) . (23)

Cost Ĵ (θ) will be treated as deterministic by the computational
frameworks thus allowing for the automatic generation of the gradi-
ents. However, the corresponding algorithm, it is possible that it may
“suffer” from the negative effects we mentioned about large batches.
On the other hand, it is clear that this is a reasonable starting point
to test the method and the quality of the produced synthetic images,
before attempting to make any analytical efforts for the gradients.

4 EXPERIMENTS
We first apply our algorithm to the MNIST database. MNIST has
70,000 training images (we combined training and testing data) of
size 28×28 which are transformed into vectors of length 784. Pixels
are normalized to take values in [0, 1]. For the generator, which is the
only neural network required by our approach, we use a fully con-
nected two-layer configuration with dimensions 10× 128× 784 (10
inputs, 128 hidden layer size and 784 output size). In both cases the
activation function for the inner layer is the ReLU. For the 10 inputs
we use independent standard Gaussian random variables. For the ker-

nel function we select the Gaussian kernel K(X,Y) = e−
‖X−Y ‖2

h

and for kernel parameter we select h = 20. We also select the same
configuration for the generator in the GAN implementation while for
the corresponding GAN discriminator we adopt again a two-layer
network of dimensions 784× 128× 1.

The stochastic gradient algorithms are implemented for batch size
equal to 600. Every time the data are exhausted we recycle them.

We use a learning rate equal to µ = 10−3 and apply the gradient
normalization scheme proposed in [24] with smoothing factor λ =
0.999, while we initialize our network parameters following [13].
Our simplified algorithm is implemented in Matlab whereas the GAN
version in TensorFlow.

Figure 2 refers to the cost of our algorithm αt·βt
γt

and its upper
bound δt provided by the Cauchy-Schwarz inequality. We can see
how the two quantities evolve with the number of iterations. The total
number of iterations applied is N = 7

6
× 106. We observe that the

cost function of the running network (blue) approximates the upper
bound (red), which indicates that the algorithm behaves correctly and
did not converge to an unwanted local maximum.

We have also generated a series of synthetic images correspond-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Number of Iterations

0.008

0.009

0.01

0.011

0.012

0.013

0.014

C
o

s
t

F
u

n
c
ti
o

n

X
7
6
_10

6

Figure 2. Evolution of proposed cost function (red) and corresponding
upper bound (blue) with number of iterations for the MNIST database.

(a)

(b)

(c)

(d)

Figure 3. Synthetic numerals with proposed method after training with
MNIST with (a) 7

6
103, (b) 7

6
104, (c) 7

6
105 and (d) 7

6
106 number of

iterations.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

ing to different points during the training with our method, in order
to observe the progress of the quality of the synthetic images. In Fig-
ure 3, (a) corresponds to 7

6
103, (b) to 7

6
104, (c) to 7

6
105 and (d) to

7
6
106 iterations. It is remarkable how the network starts with a poor

variety of synthetic designs and gradually, as it learns the numerals,
it becomes more and more capable of producing realistically look-
ing handwritten numbers by simply transforming, with the designed
network, the randomly generated inputs.

Let us now compare our method to the GAN implementation of
[2]. This comparison is, unfortunately, not very straightforward. The
reason is that, in the min-max problem, with every iteration of the
generator we apply five iterations for the discriminator. In each of
these five iterations we need a different batch of training data. In
other words, the GAN implementation consumes the training data
five times faster than our approach. Despite this fact we compare the
evolution of performance indexes for the two algorithms as a func-
tion of the number of iterations used in the minimization problem for
GAN and, in our case, in the maximization problem.

A known performance index, the Inception Score [7, 16], is de-

4.5

5

5.5

6

6.5

7

7.5

In
c
e

p
ti
o

n
S

c
o

re

Number of Iterations

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X
7
6
_10

6

Figure 4. Evolution of inception score with number of iterations: Proposed
(red), GAN (blue) for the MNIST database.

(a)

(b)

(c)

Figure 5. Results after training with the MNIST database. (a) Proposed
after 7

6
106 iterations, (b) GAN after 1

5
7
6
106 iterations and (c) GAN after

7
6
106 iterations.

picted in Figure 4 as it evolves with the number of iterations for our
method (red) and GAN (blue). As we can see, GAN appears to attain
better scores.

Higher inception score must translate into better quality synthetic
images. However as we can observe in Figure 5 this is clearly not
the case. In Figure 5(a) we repeated for convenience Figure 3(d) pro-
duced by our method. Figure 5(b) depicts synthetic numerals pro-
duced by GAN for a number of iterations equal to 1

5
7
6
106, namely

five times less than the iterations of our method, but corresponding
to the same number of consumed data batches. Finally Figure 5(c) is
again synthetic numerals from GAN after 7

6
106 iterations, exactly as

in our method. We observe that our neural network produces better
results compared to both GAN alternatives. In particular, in GAN we
observe the phenomenon of missed numerals which is not present in
our method. It is, therefore, puzzling why this negative performance
is not captured by the inception score and GAN appears to be supe-
rior. This is the reason why we focused on an alternative performance
index which has also attracted attention recently.

The Kernel Inspection Distance (KID) [6] uses the kernel based
Maximum Mean Discrepancy (MMD). If we adopt the KID to mea-
sure quality, then its evolution with the number of iterations for the

0.01

0.02

0.03

0.04

0.05

0.06

K
ID

Number of Iterations

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X
7
6
_10

6

Figure 6. Evolution of the Kernel Inspection Distance (KID) with number
of iterations: Proposed (red), GAN (blue) for the MNIST database.

two methods is depicted in Figure 6 where, as before, red corresponds
to our method and blue to GAN. Here, lower distance values signify
better results and, as we can see, KID is consistent with the synthetic
images of Figure 5.

To test the approximate cost function suggested in (23) we imple-
ment it in TensorFlow. We adopt for both networks, ours and GAN,

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

K
ID

Number of Iterations

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X10
6

Figure 7. Evolution of the Kernel Inspection Distance (KID) with number
of iterations: Proposed (red), GAN (blue) for the Fashion-MNIST database.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

(a)

(b)

Figure 8. Results after training with Fashion-MNIST with 106 iterations.
(a) Proposed, (b) GAN.

a four layer configuration of size 10× 20× 40× 784. For GAN we
also use a discriminator of size 784×40×20×1. For (23) we select
n = 2000 and the same batch size for GAN. We train our networks
with the Fashion-MNIST database [25] that contains a total of 70,000
images of 10 different types of clothes, shoes, etc. Each image is in
gray scale and of dimensions 28×28. We use µ = 10−3, λ = 0.999
and Gaussian kernel with h = 25. Figure 7 depicts the KID for the
two cases as a function of the training iterations. For GAN we count
the iterations with respect to the minimization problem. We can see
that our algorithm, even with the approximate cost, performs better
than GAN. In Figure 8 we can verify this fact by observing the syn-
thetic images generated by the two networks after they were trained
for 106 iterations. We can clearly see that the outcomes are consistent
with the KID graph.

The next set of experiments involves the CelebA database [20].
We use only 30,000 RGB images of faces that we cropped to size
32 × 32, transformed into gray level and reshaped into vectors of
length 1024. Each pixel value is normalized to [0,1]. For the gener-
ator we use a fully connected two-layer configuration with dimen-
sions 20×300×1024. As in the previous simulations, for the 20 in-
puts we use independent standard Gaussian random variables. For the
kernel function, again, we select the Gaussian kernel with h = 40.
We also select the same configuration for the generator in the GAN
implementation while for the corresponding GAN discriminator we
adopt a two-layer network of dimensions 1024× 300× 1. Our sim-
plified stochastic gradient algorithm is implemented for batch size
equal to 600 and we use a learning rate µ = 10−4. As before, we ap-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

Number of Iterations

C
o

s
t

F
u

n
c
ti
o

n

X2.010
5

Figure 9. Evolution of proposed cost function (red) and corresponding
upper bound (blue) with number of iterations for the CelebA database.

(a)

(b)

Figure 10. Results after training with CelebA with 2× 105 iterations.
(a) Proposed method, (b) GAN.

ply the gradient normalization scheme of [24] with smoothing factor
λ = 0.999, while we initialize following [13]. Our simplified algo-
rithm is implemented in Matlab. We run the algorithm for 2 × 105

iterations. In Figure 9 we can see the evolution of our cost function
and the corresponding bound from the Cauchy-Schwartz. The aver-
age of the red curve must approach the blue for our algorithm to
converge properly. Indeed this is the case with our simulation and we
can verify it by smoothing out the red curve.

In Figure 10 we have synthetic faces generated by (a) the proposed
method and (b) GAN, after 2× 105 iterations. We can again observe
the better convergence performance of our method as compared to
GAN. We should also not forget that this specific behavior for GAN
comes at a five times faster consumption of the training data and at
five times higher computational complexity.

The last set of experiments is reserved for the CIFAR-10 database,
which consists of 60000 RGB images of size 32x32 of 10 different
categories as birds, cats, dogs, etc. We normalize each pixel color-
component to [0,1] and vectorize each image to a vector of length
3072. For the generator, we adopt a convolutional neural network
(CNN) with four layers. The first layer is linear followed by batch
normalization [17] and a ReLU function, the next two layers are like
the first one but with a deconvolutional operation instead of linear
and the last layer consists of a deconvolution operation followed by
a sigmoid function in order to constrain the output to the range [0, 1].
The generator input is an independent standard Gaussian random
vector of length 128. For our kernel function, we adopt the Lapla-
cian kernel K(X,Y) = exp(− ‖X−Y ‖1

h
) with h = 200. In the GAN

(a)

(b)
Figure 11. Results after training with CIFAR-10 with 2× 105 iterations.

(a) Proposed method, (b) GAN.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

implementation the generator is the same as in our method while the
discriminator has a CNN architecture with four layers as well. Its
first layer is a convolutional operation with a leaky ReLU, the next
two layers have the same units with the first layer but after the con-
volutional operation we impose batch normalization of the outputs.
Finally, the last layer has only a linear operation that provides the out-
put of the discriminator. Training is performed with a learning rate
µ = 10−3 and batch size 2000. After training with 2×105 iterations
our method attains a KID score of 0.0006 while the GAN 0.0016.
The better score is again translated into better synthetic images as
we can verify by comparing Figures 11(a) and (b).

5 CONCLUSION
We presented a non-adversarial method for designing generative net-
works. Introducing a kernel-based correlation criterion between the
generator output and the training samples we showed that if we max-
imize this criterion over the neural network parameters then the re-
sulting generator output mimics the statistical behavior of the train-
ing data. The corresponding optimization involved only a standard
maximization and not an adversarial min-max problem as the known
approaches in the literature.

Main challenge in the analytical part of our work constituted the
cost function which was nonlinear with its corresponding optimiza-
tion not being under the usual form that allows for the direct cre-
ation of a stochastic gradient algorithm. Important contribution of
this work was the extension of this classical approach to provide a
simple methodology for deriving stochastic gradient algorithms for
non-standard optimization problems.

Finally we also discussed a simplified version of our algorithm that
induces significant speed up of the execution of the stochastic gradi-
ent algorithm without sacrificing convergence performance. This is
achieved by using delayed versions of quantities required by the al-
gorithm, that were already computed during previous iterations. The
resulting scheme was tested with well known databases and observed
to design generators with synthesis capabilities that were comparable
to GANs but requiring a significantly lower number of computations
accompanied by a far more stable convergence behavior.

ACKNOWLEDGEMENT
This work was supported by the US National Science Foundation
under Grant CIF 1513373, through Rutgers University.

REFERENCES
[1] D. F. Andrews, R. Gnanadesikan, and J. L. Warner. Transformations of

multivariate data. Biometrics, 27(4):825–840, 1971.
[2] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative ad-

versarial networks. In ICML, volume 70 of Proceedings of Machine
Learning Research, pages 214–223. PMLR, 2017.

[3] K. Basioti, G.V. Moustakides, E.Z. Psarakis. Kernel-based training of

generative networks. arXiv: 1811.09568, 2018.
[4] Y. Bengio. Practical recommendations for gradient-based training of

deep architectures. arXiv: 1206.5533, 2012.
[5] A. Benveniste and M. Metivier. Adaptive Algorithms and Stochastic

Approximations. Applications of Mathematics. Springer, 1990.
[6] M. Bińkowski, D. J. Sutherland, M. Arbel and A. Gretton. Demys-

tifying MMD GANs. In Proceedings of International Conference on
Learning Representations, ICLR-2018. Also arXiv: 1801.01401, 2018.

[7] A. Borji. Pros and cons of GAN evaluation measures. arXiv:
1802.03446, 2018.

[8] G. E. P. Box and D. R. Cox. An analysis of transformations. Journal of
the Royal Statistical Society. Series B, 26(2):211–252, 1964.

[9] A.-L. Cauchy. Sur les formules qui résultent de l’emploie du signe
et sur > ou <, et sur les moyennes entre plusieurs quantités. Cours
d’Analyse, 1er Partie: Analyse Algébrique, Œuvres Serie 2 III, pp. 373-
377, 1821.

[10] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and
A. A. Bharath. Generative adversarial networks: An overview. IEEE
Signal Processing Magazine, 35(1):53–65, January 2018.

[11] G. Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, 2(4):303–314, 1989.

[12] G. K. Dziugaite, D. M. Roy, and Z. Ghahramani. Training gener-
ative neural networks via maximum mean discrepancy optimization.
arXiv: 1505.03906, 2015.

[13] X. Glorot and Y. Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings International Conference
on Artificial Intelligence and Statistics, 2010.

[14] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets.
arXiv: 1406.2661, 2014.

[15] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola.
A kernel two-sample test. J. Mach. Learn. Res., 13(1):723–773, Mar.
2012.

[16] G. Huang, Y. Yuan, Q. Xu, C. Guo, Y. Sun, F. Wu, and K. Weinberger.
An empirical study on evaluation metrics of generative adversarial net-
works. arXiv: 1806.07755, 2018.

[17] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. J. Mach. Learn. Res.,
37: 448–456, 2015.

[18] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, P. T. P. Tang.
On large-batch training for deep learning: Generalization gap and sharp
minima. In Proceedings International Conference on Learning Repre-
sentation, ICLR-2017. Also arXiv: 1609.04836, 2016.

[19] D. P. Kingma and J. L. Ba. ADAM: A method for stochastic optimiza-
tion. In Proceedings of International Conference on Learning Repre-
sentations, ICLR-2015.

[20] Z. Liu, P. Luo,X. Wang and X. Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision,
ICCV-2015.

[21] D. Masters and C. Luschi. Revisiting small batch training for deep
neural networks. arXiv: 1804.07612, 2018.

[22] L. M. Mescheder, S. Nowozin, and A. Geiger. The numerics of GANs.
In Proceedings Advances Neural Information Processing Systems Con-
ference, 2017.

[23] A. Radford, L. Metz, and S. Chintala. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks.
arXiv: 1511.06434, 2015.

[24] T. Tieleman and G. Hinton. Lecture 6.5 - rmsprop. COURSERA: Neural
Networks for Machine Learning, 2012.

[25] H. Xiao, K. Rasul and R¿ Vollgraf. Fashion-MNIST: A novel im-
age dataset for benchmarking machine learning algorithms. arXiv:
1708.07747, 2017.

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain

