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Abstract. The worth of an entity does not only come from its in-
trinsic value. The other entities in the neighborhood also influence
this quantity. We introduce and study a model where some hetero-
geneous objects have to be placed on a network so that the elements
with high value may exert a positive externality on neighboring el-
ements whose value is lower. We aim at maximizing this positive
influence called graph externality. By exploiting a connection with
the minimum dominating set problem, we prove that the problem is
NP-hard when the maximum degree is 3, but polynomial time solv-
able when the maximum degree is 2. We also present exact and ap-
proximation algorithms for special cases. In particular, if only two
valuations exist, then a natural greedy strategy, which works well for
maximum coverage problems, leads to a constant approximation al-
gorithm. With extensive numerical experiments we finally show that
a greedy algorithm performs very well for general valuations.

1 INTRODUCTION
The worth of an entity depends on its intrinsic value and the value of
the other entities in the neighborhood: commercials during the Super
Bowl, advertising banners on popular websites, hotels and restau-
rants by the sea or close to historic monuments, etc. All these ele-
ments take advantage from their environment. This effect is part of a
general phenomenon usually called externality.

The previous examples describe how the value of an item is en-
hanced by the presence of something desirable in its neighborhood.
More generally, externality is not necessarily local (e.g. the success
of a technology depends on the number of its users [22]), it can be
negative (e.g. when some competitors are nearby as for ads in spon-
sored search auctions [21]), and it can be originated from the com-
bination of multiple factors (e.g. genetic disease). Understanding the
strength of this phenomenon is an important challenge for the A.I.
community involved in resource allocation and its impact on the so-
ciety [4]. The present work follows this direction.

We propose to analyze local and positive externality on a set of
entities. To do so, we introduce a model where a given set of goods
(objects with non-negative values) has to be assigned to a given set of
locations. An object derives positive externality from another object
if these objects are placed on neighboring locations, and the value of
the neighboring object is larger. The externality is just the difference
of their values. In the model, the locations are the vertices of a graph.
The edges of the graph capture the spatial or temporal relations of
the locations (e.g. time slots of a TV channel, regions of a web page,
spots, etc.).
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We study the problem of placing the goods on the locations so as
to maximize the positive graph externality, i.e., externality is non-
negative and only possible along the edges of the graph. In our prob-
lem, called OPT-EXT, we assume that the externality of an object, if
any, is reduced to the influence a single neighboring object whose
value is locally the largest. This assumption makes sense in situa-
tions where having more than one superior neighbors is unhelpful.
For example, a facility (e.g., a post office) provides externality to a
neighboring area with no such facility, while a second nearby facil-
ity does not (unless it is larger than the first one, in which case it is
the one that determines the externality exerted to the area with no
facility—and the first facility plays no role in this case). Of course,
considering a more sophisticated notion of externality that takes into
account the presence of multiple neighbors with larger values is rele-
vant and deserves attention (possible extensions are discussed in the
final section of this article). However, as we shall see, even the simple
case of externality coming from a single neighbor is computationally
challenging and constitutes a first step towards the understanding and
exploitation of positive externality.

Indeed, our first contribution is a hardness proof of OPT-EXT in
the restricted case of two valuations, even if the graph has maxi-
mum degree 3 (Proposition 1). The two valuation case is interesting
on its own, as it is reminiscent (but distinct) of NP-hard covering
problems like DOMINATING SET or MAX COVERAGE. Our positive
results for this two valuation case is a (e−1)/(1+e)-approximation
algorithm for general graphs (Theorem 1) and an exact algorithm
based on previous results for a generalization of DOMINATING SET

(Proposition 3). For general non-negative valuations (i.e. not only
two valuations), we prove that OPT-EXT is polynomial time solvable
in graphs of degree at most 2 (Theorem 2) and graphs forming a col-
lection of stars (Proposition 4). Thus, the maximum degree, whether
it is at most 2 or at least 3, allows us to distinguish between easy and
hard cases of OPT-EXT. We also propose a 0.5-approximation algo-
rithm for caterpillar graphs (Proposition 5), a class of graphs which
is a proper subset of trees. Finally, we propose a greedy algorithm
as well as a nontrivial upper bound for the optimal externality. We
conduct experiments on benchmarks and random graphs in order to
measure the approximation ratio achieved by our algorithm. Our re-
sults show that the proposed algorithm yields an externality which
is usually at least 90% of the upper bound, exhibiting an even better
behavior as the density of the graph increases.

This paper is organized as follows. The next section gives a (non-
exhaustive) list of works related to our model. Section 3 defines the
model, the optimization problem OPT-EXT, and its complexity. The
restriction to two valuations is treated in Section 4, followed by the
general case (Section 5). We conclude with open questions and sug-
gestions for future work.

Due to space constraints, some proofs are omitted or sketched.
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2 RELATED WORK

Externality refers to the situation where the value of a set of objects
does not solely depend on them, but is affected by something outside,
typically the other objects and how they are allocated. Externality
has been studied in economics [29, 22, 31] and computer science.
For the latter domain, externality mainly appears in matchings [5],
ad auctions [15, 24, 12, 17, 25, 21] and the fair allocations of goods
that are either divisible [6, 26] or indivisible [28, 30].

Regarding ad auctions, the performance of an item depends on
which other items are selected and displayed at the same time [15].
Externality in that case is often negative as the other ads may attract
the user who only selects a single item. In position auctions [2, 21],
the selected ads are placed in given parts of a web page. Apart from
the fact that some parts are better than others (the higher the bet-
ter), an ad derives most of its negative externality from the other ads
placed alongside.

In the context of resource allocation, one often supposes that an
agent’s utility solely depends on her own share. Externality illustrates
the fact that an agent’s utility can also be influenced by the shares of
the other agents. In [30] Seddighin et al. consider the problem of
fairly allocating some indivisible objects and their goal is to satisfy
an adapted notion of the maximin-share criterion. The connection
with our model is the use of a social graph whose vertices are the
agents and positive externalities are along the arcs.

OPT-EXT bears a resemblance to influence maximization models
in social networks [23]. In influence maximization, we want to max-
imize the adoption of a new product in a social network. The adop-
tion process takes place in rounds. In each round, a node adopts the
product with probability proportional to the fraction of its neighbors
that have already adopted it. We want to compute a set of k initial
adopters that maximizes the expected final number of adopters. In-
fluence maximization problems have important applications to mar-
keting and pricing in social networks and have received significant
attention (see e.g., [19, 1, 13] and the references therein). In contrast
to influence maximization models, OPT-EXT assumes deterministic
externalities that occur within a single round and deals with differ-
ent object valuations. A crucial technical difference is that in influ-
ence maximization models, the expected final number of adopters is
a monotone submodular function of the initial adopters (e.g., [23]),
while in OPT-EXT (even with binary valuations, see Section 4), the
total graph externality is not necessarily monotone or submodular.

OPT-EXT(0,1), the restriction of OPT-EXT to objects valued either
0 or 1, belongs in the family of covering problems. Vertices receiving
an object of value 1 somehow cover their neighbors having an object
of value 0, and one wants to maximize the number of covered objects
of value 0. DOMINATING SET and MAX COVERAGE are two typical
covering problems. DOMINATING SET is a graph problem (see [14]
and [8] for a survey) where, by selecting a vertex v, one dominates v
and its neighbors. DOMINATING SET is to choose a subset of vertices
of minimal cardinality such that the whole graph is dominated. More
generally, for a given integer t ≥ 0, the goal of PARTIAL DOMINAT-
ING SET (PDS for short) is to dominate at least t vertices with the
minimum number of vertices [9, 11]. In the MAX COVERAGE prob-
lem, we are given a universe U , a collection C of subsets of U and
an integer k < |C|. The goal is to cover a maximum number of el-
ements of U with at most k members of C. This NP-hard problem
is approximable within the ratio (1 − (1 − 1/k)k) > 1 − 1/e [20].
More generally, if f(X) denotes the number of elements covered by
X ⊆ C, then f is a monotone submodular function. The problem of
maximizing a monotone submodular function admits a (1 − 1/e)-

approximation algorithm [27].
Finally, our model is related to the problems studied in [3, 7] as

these articles deal with the allocation of goods on the vertices on a
graph. However, their objective and motivation are totally different.

3 MODEL, PROBLEM AND COMPLEXITY
A set of objects (also called goods) O = {o1, . . . , om} and a non-
negative valuation ν(oi) ∈ N for each oi ∈ O are given. There is an
undirected graph G = (V,E) such that V = {v1, v2, . . . , vn} and
n = |V | ≥ |O| = m.

One has to place the objects on the vertices so that every vertex
gets at most one object, and every object is placed on exactly one
vertex. An allocation is a function π : V → O ∪ {⊥} where every
object has exactly one ancestor and π(v) = ⊥ means that v does not
receive any object.

Two vertices i, j are neighbors if {i, j} ∈ E. N (v) and N [v] :=
N (v) ∪ {v} denote the neighborhood and the closed neighborhood
of v, respectively. In the present work we assume that a vertex derives
externality from at most one neighbor. Concretely, a vertexw derives
externality from v if the following conditions are met: (i) π(w) 6= ⊥
and π(v) 6= ⊥ (i.e. they both receive an object), (ii) {w, v} ∈ E,
(iii) ν(π(v)) > ν(π(w)), and (iv) π(v) is the object with largest
valuation inN (w).

For a given allocation π, the graph externality of a vertex w,
denoted by extπ(w), is 0 when π(w) = ⊥. Otherwise extπ(w)
is equal to ν∗ − ν(π(w)) where ν∗ = max{ν(π(v)) : v ∈
N [w] and π(v) 6= ⊥}. Let Extπ(G) :=

∑
v∈V extπ(v) be the

graph externality of G under π.

Example 1 Consider the following instance with 4 objects.

v2

v1

v3

v5

v4

⊥

o4

o2

o3

o1

ν(o1) = 1

ν(o2) = 4

ν(o3) = 5

ν(o4) = 9

Let π = (o4,⊥, o2, o1, o3). We have extπ(v4) = ν(o3) − ν(o1) =
4, extπ(v3) = ν(o4)− ν(o2) = 5, extπ(v5) = ν(o4)− ν(o3) = 4,
extπ(v1) = ν(o4)− ν(o4) = 0, extπ(v2) = 0 and Extπ(G) = 13.

The location of an object o is the vertex π−1(o). We extend the
notions of (closed) neighborhood and externality to the objects when
π is fixed. The same notations N , ext and Ext are used for the sake
of simplicity. We say that there is graph externality along an edge
{v, v′} ∈ E when v derives externality from v′. In this case, the
externality along {v, v′} is equal to extπ(v).

This article is devoted to a problem called OPT-EXT. An instance
consists of a graph G, a set of objects O and their valuations ν. The
objective is to find π that maximizes Extπ(G). As it is obvious that
all available objects must be placed on the graph, the total sum of
intrinsic values is a constant. The objective function solely captures
the positive graph externalities.

As a motivation for OPT-EXT, consider a TV channel whose sched-
ule is an ordered list of TV programs. OPT-EXT where G is a path
models this situation: each object is a TV program and each vertex
of the path is a time slot. An attractive program can increase the au-
dience of the programs that are broadcast right before or right after.
Thus, besides the audience due to the intrinsic quality of the pro-
grams, the head of the TV channel wants to maximize the “external”
audience.
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A second motivation for OPT-EXT is how the contents of a web
page are arranged5. The graph is like a grid whose vertices corre-
spond to different regions of the screen. There is an edge between two
vertices if their regions are contiguous. Some given contents need
to be placed on the regions. Some contents may attract the reader’s
attention and increase the interest for other contents displayed in a
neighboring region.

Our first result states that OPT-EXT is computationally hard. The
proof relies on the DOMINATING SET problem. A dominating set in
a graph G = (V,E) is a set D ⊆ V such that every v ∈ V \D has
a neighbor in D. Given G and k, the DOMINATING SET problem is
to decide if a dominating set of size at most k exists. The problem
is NP-complete, even if G is planar with maximum vertex degree 3
[14], and also in bipartite graphs and split graphs [8].

Proposition 1 Given an instance (G,O, ν) and a number t, decid-
ing if an allocation π such that Extπ(G) ≥ t exists is NP-complete,
even if the valuations are 0 or 1.

Proof: Take an instance of DOMINATING SET (graph G and k) and
create k objects with valuation 1 and |V |−k objects with valuation 0.
We claim that there is an allocation π such that Extπ(G) ≥ |V | − k
iff G admits a dominating set of size k.

If D is a dominating set of size k of G then assign the k objects
of valuation 1 to D; the remaining vertices receive an object of valu-
ation 0. We have extπ(v) = 0 when v ∈ D and extπ(v) = 1 when
v ∈ V \D. Hence, Extπ(G) ≥ |V | − k.

Conversely, if there exists an allocation π such that Extπ(G) ≥
|V | − k, then let D be the vertex set where the objects of valuation 1
are located. Exactly |V | − k vertices hosting a 0-valuation item are
adjacent to D. Thus, D is a dominating set. �

In order to circumvent this hardness result, we will sometimes re-
sort to approximate solutions. Given an instance (G,O, ν) and ρ ∈
(0, 1], an allocation π is ρ-approximate if Extπ(G) ≥ ρExtπ∗(G)
where π∗ is an optimal solution. A ρ-approximation algorithm pro-
duces a ρ-approximate solution in polynomial time.

4 TWO VALUATIONS

This section is devoted to OPT-EXT when there are only two possible
valuations for the objects. We are going to assume w.l.o.g. that the
two possible valuations are either 0 or 1. This case, denoted by OPT-
EXT(0,1), is NP-hard by Proposition 1.

As a motivation, OPT-EXT(0,1) covers the situation where there
are two classes of objects. Concerning the example of placing con-
tents on a web page such as a blog, objects can be ads and posts, re-
spectively. Another application comes from agronomy. Some plants
like actinidias are either male or female. The fruits (kiwis) grow on
female trees provided that a male tree is nearby. Then, OPT-EXT(0,1)
describes the situation where there are fixed locations for planting
the trees, an edge indicates that two locations are close enough for
fertilization, and objects valued 0 and 1 are female and male trees,
respectively.

An instance of OPT-EXT(0,1) is a graph G with n vertices, k ob-
jects valued 1 and z objects valued 0, withm = k+z ≤ n. Actually
we shall see that we can assume k + z = n.

5 This example does not refer to the pages produced by a search engine where
externality, as it is mentioned in the related work section, is mostly negative
because the user selects a single link in an ordered list. Instead, we refer to
a news web site or a blog.

Proposition 2 Regarding the approximation of OPT-EXT(0,1), we
can always suppose that the number of objects is equal to the number
of vertices. If it is not the case then complete the instance with n −
k − z new objects valued 0.

Proof: Take an instance I1 of OPT-EXT(0,1) on a graph G, with k
objects valued 1, z1 objects valued 0, and such that k + z1 < n.
Create another instance I2 from I1 where the graph is identical, the
number of objects valued 1 is k and the number of objects valued 0
is z2 = n− k. I2 contains δ := z2 − z1 > 0 more objects valued 0
than I1.

Let π∗1 and π∗2 be optimal allocations for I1 and I2, respectively.
Let π̂ be a ρ-approximate solution for OPT-EXT(0,1) on I2 for any
ρ ∈ (0, 1]. Thus

Extπ̂(G) ≥ ρExtπ∗2 (G). (1)

A useless zero (resp. useful zero) is an object valued 0 whose ex-
ternality is 0 (resp. 1).

If π̂ contains at most δ useless zeros then we can remove δ objects
valued 0 including the useless zeros in order to get an allocation π̂′

that is feasible and optimal for I1 since all its zeros are useful. In
other words, Extπ̂′(G) = Extπ∗1 (G) ≥ ρExtπ∗1 (G).

Now suppose the number of useless zeros in π̂ is strictly larger
than δ. Remove δ useless zeros in order to get an allocation π̂′ that is
feasible for I1 and such that

Extπ̂′(G) = Extπ̂(G). (2)

Construct a feasible allocation π of I2 as follows: if π∗1(v) 6= ⊥
then π(v) := π∗1(v), otherwise π(v) gets an object valued 0. We get
that

Extπ∗2 (G) ≥ Extπ(G) ≥ Extπ∗1 (G). (3)

By the combination of Inequalities (2), (1) and (3) multiplied by ρ,
we get that Extπ̂′(G) ≥ ρExtπ∗1 (G). To conclude, for every ρ ∈
(0, 1], we can always derive a ρ-approximate solution for I1 from a
ρ-approximate solution for I2. �

Hence, we will suppose in this section that m = n.

4.1 A Constant Approximation
Our first positive result is the following theorem where (e− 1)/(1 +
e) ≈ 0.46.

Theorem 1 There exists a (e−1)/(1+e)-approximation algorithm
for OPT-EXT(0,1).

Let us begin with an auxiliary covering problem on a graph. We
are given an undirected graph G with n vertices, and two integers
b ∈ [n] and r ∈ [n] such that b + r ≤ n. Each vertex receives
exactly one of the following colors: blue, red or white. Moreover, at
most b vertices are blue, at most r vertices are red, and a vertex can
be red only if it has at least one blue neighbor. A vertex is covered if
it is blue or red. The objective is to color every vertex of G in blue,
red, or white, such that the number of covered vertices is maximum.

Take an optimal blue-red-white coloring ofGwhose set of covered
vertices is denoted by S∗. Create a partition of S∗ in b sets as follows.
Take the blue vertex v which has the largest number of red neighbors
(break ties arbitrarily). The red vertices in N (v), together with v,
form S∗1 . Take the next blue vertex having the largest number of red
neighbors (not put in a previous set) and put it with its red neighbors
in a set S∗2 , and so on. We eventually get a collection of b disjoint sets,
each of them having exactly one blue vertex. Let t∗ be the largest
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index such that S∗1 , . . . , S∗t∗ contain at least one red vertex. Either
t∗ = b or S∗t∗+1, . . . , S

∗
b do not contain any red vertex.

An instance of the covering problem can be derived from an in-
stance of OPT-EXT(0,1): G is the same, b = k, and r = z. A solu-
tion to OPT-EXT(0,1) can be derived from a solution to the covering
problem: blue vertices receive objects with valuation 1, while red
and white vertices receive objects with valuation 0. Here we assume
w.l.o.g. that any solution to the covering problem has exactly k blue
vertices (as many as the objects with valuation 1), because the cover-
ing problem is to maximize the number of covered vertices. Indeed,
if strictly less than b vertices are blue, then we can color a red or
white vertex in blue, and the number of covered vertices increases.
Regarding red and white vertices, by Proposition 2, we can assume
w.l.o.g. that k+ z = n. Therefore, it is always possible that each red
and white vertex receives an object with valuation 0. As a red vertex
must have a blue neighbor, its externality is 1. The externality is 0
for any other vertex. Thus, the total graph externality is equal to the
number of red vertices.

We use Algorithm 1 and produce an approximate solution sol(b)
to the covering problem on G with b = k and r = z. In what fol-
lows, π1 and π∗ are the allocations derived from sol(b) and S∗,
respectively. A second allocation π2 is obtained by constructing a
maximum matching M of G. Choose min(k, z, |M |) edges of M
arbitrarily. Each selected edge receives an object of value 1 and an
object of value 0 on its extremities. The rest of the allocation π2 is
arbitrary.

Proof: (of Theorem 1) Our algorithm is to output the best allocation
out of {π1, π2} in terms of externality. We have

Extπ∗(G) = |
t∗⋃
i=1

S∗i | − t∗ (4)

and
Extπ1(G) ≥ |sol(t∗)| − t∗. (5)

The proof of the following inequality is obtained with arguments
similar to those of [20, Lemma 3.14].

|sol(t∗)| ≥ (1− 1/e)|
t∗⋃
i=1

S∗i | (6)

Inequalities (5) and (6) give us

Extπ1(G) ≥ (1− 1/e)| ∪t
∗
i=1 S

∗
i | − t∗. (7)

For any α ∈ (0, 1) we can change Inequality (7) for

Extπ1(G) ≥ (1− 1/e)| ∪t
∗
i=1 S

∗
i | − αt∗ − (1− α)t∗. (8)

Algorithm 1
Input: b, r, G of order n
Output: A feasible solution to the covering problem

1: Every vertex of G is white.
2: sol(0)← ∅
3: for t = 1 to b do
4: Color in blue a vertex v that is not already blue, and if pos-

sible, color in red some white neighbors of v. Do this so as
to maximize the number of newly covered vertices, under the
constraint that the total number of red vertices is at most r.

5: sol(t)← sol(t− 1) ∪ {the newly covered vertices}
6: end for
7: return sol(b)

If t∗ ≤ |
⋃t∗
i=1 S

∗
i |/(3 + δ) for δ := 3−e

e−1
, then Inequality (8)

becomes Extπ1(G) ≥ (1−1/e−α/(3+δ))|∪t
∗
i=1S

∗
i |− (1−α)t∗.

Let α = (3+δ)/e(2+δ) to get that Extπ1(G) ≥ (1−(3+δ)/e(2+

δ))
(
| ∪t

∗
i=1 S

∗
i | − t∗

)
= (e− 1)/(1 + e)Extπ∗(G).

It remains to study the case |
⋃t∗
i=1 S

∗
i |/(3 + δ) < t∗. The number

of red vertices in π∗ is at most |
⋃t∗
i=1 S

∗
i |−t∗ < (2+δ)t∗. Therefore

Extπ∗(G) < (2 + δ)t∗ by (4). Allocation π2 is a solution of size at
least t∗ > Extπ∗(G)/(2 + δ) since in π∗ at least one red vertex is
attached to each of the t∗ blue vertices. Therefore π2 is a 1/(2 + δ)-
approximation in this case, with 1/(2 + δ) = (e− 1)/(1 + e). �

Example 2 Consider the following graph with 2 objects of value 1
and 3 objects with value 0.

v1 v2 v3 v4 v5

The approximation algorithm can place the objects of value 1 on
v3 and v5; the resulting externality is 2. The optimal solution, of
externality 3, places the objects of value 1 on vertices v2 and v4.
Thus, the approximation ratio of the algorithm is at most 2/3.

Discussion: There is a gap between our lower and upper bounds, i.e.
(e−1)/(1 + e) ≈ 0.46 and 2/3. This naturally triggers the question
of determining the exact approximability of OPT-EXT(0,1).

There are greedy algorithms for approximating coverage problems
whose objective function is monotone submodular; see for example
[27] for a (1−(1−1/k)k)-approximation algorithm where (1−(1−
1/k)k) ≥ 1− 1/e. A function Φ is submodular over Ω if, for every
X,Y such thatX ⊆ Y ⊆ Ω, and u ∈ Ω\Y , Φ(X∪{u})−Φ(X) ≥
Φ(Y ∪ {u}) − Φ(Y ). Moreover, Φ is monotone if for every X,Y
such that X ⊆ Y ⊆ Ω, Φ(X) ≤ Φ(Y ).

As Theorem 1 is reminiscent of the known results for coverage
problems (i.e. same kind of algorithm and ratio), we need to clarify
why, from our understanding, OPT-EXT(0,1) does not reduce to the
maximization of a monotone submodular function.

Given an instance of OPT-EXT(0,1), define a function f : 2V → N
as follows. For any S ⊆ V such that |S| ≤ k, f(S) is the minimum
between z and the number of vertices in V \S which have a neighbor
in S. In other words, if every vertex of S receives an object of value
1 while the neighbors of S (at most z) receive objects valued 0, then
f(S) is the externality of the current solution. One can see with the
following instance that f is neither submodular nor monotone.

v1 v2 v3
v4

v5

3 objects with value 1

2 objects with value 0

Let X = {v2}, Y = {v2, v3} and u = v1. Then, f({v1, v2}) −
f({v2}) = 1− 2 < 2− 2 = f({v1, v2, v3})− f({v2, v3}).

In addition, we have just seen that Algorithm 1 outputs a 2/3-
approximate solution for the instance of Example 2 where k = 2.
Since (1−(1−1/k)k) = 3/4 when k = 2, (1−(1−1/k)k) cannot
be the correct ratio of Algorithm 1.

Hence, it is important to stress a difference between OPT-EXT(0,1)
and coverage problems. For MAX COVERAGE there is a clear sepa-
ration between elements to be covered and sets that cover them. Fur-
thermore a vertex of a dominating set dominates itself and its neigh-
bors. In contrast, a vertex in OPT-EXT(0,1) can either derive or exert
externality, but not both.
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4.2 OPT-EXT(0,1) and Partial Domination
This section deals with exact algorithms for OPT-EXT(0,1) which
are built upon exact algorithms for PARTIAL DOMINATING SET (PDS

for short). For a given integer t ≥ 0, the goal of PDS is to domi-
nate at least t vertices with the minimum number of vertices. Let Dt
denote an optimal set of vertices that dominates t vertices of G. Fol-
lowing Demaine et al. [9], Dt can be computed in time 31.5twnO(1)

where tw and n are the treewidth and the number of vertices of G,
respectively. Later, Fomin et al. [11] proposed a subexponential algo-
rithm for PDS in apex-minor-free graphs (this class comprises planar
graphs) which runs in 2O(

√
s)nO(1) where s := |Dt|.

Proposition 3 Every algorithm that solves PDS in T (n) time gives
a nT (n) time exact algorithm for OPT-EXT(0,1).

Proof: Let Dt denote a minimum size set of vertices that dominates
at least t vertices of G. Suppose Dt can be computed in T (n) time.
ComputeDt for t = 1 to n. For eachDt, letHt be the set of vertices
of V \Dt that are dominated by at least one element of Dt.

Let t? be the index such that |Ht| is maximized under the con-
straint |Dt| ≤ k. Build a solution π of OPT-EXT(0,1) as follows.
Every vertex of Dt? gets an object valued 1. Place objects valued
0 on the vertices of Ht? , until Ht? is full, or we run out of objects
valued 0. If necessary, complete the solution arbitrarily, i.e. the free
vertices get the remaining objects.

If all the objects valued 0 are in Ht? , then π is optimal (Extπ(G)
cannot be larger, since every 0 object has externality 1). Otherwise,
at least one object valued 0 does not get externality. Suppose π is not
optimal and let π̃ be an allocation maximizing Ext. Let Dt̃ be the
set of vertices hosting an object valued 1 in π̃. Let Ht̃ be the set of
vertices hosting an object valued 0 and deriving positive externality
in π̃. We get that |Dt̃| ≤ k and |Ht̃| > |Ht? |, contradiction. �

5 GENERAL VALUATIONS
This section is devoted to OPT-EXT where the objects’ valuations are
general (not restricted to 0 and 1). Proposition 2 does not apply so
we do not assume that |O| = |V |. We start with two useful tools:
a graphical representation of the externality and a reformulation of
Extπ .

Given an allocation π and G = (V,E), we associate a digraph
D with vertex set V and arc set A. There is an arc (vi, vj) ∈ A
if vi derives externality from vj . If two neighbors vi, vj host two
objects having the same valuation then A contains either (vi, vj) or
(vj , vi) (choose one arbitrarily). As a vertex (resp. object) derives
utility from at most one neighbor, each vertex of D has outdegree at
most 1. The digraph associated with the instance of Example 1 has 3
arcs: (v3, v1), (v5, v1), and (v4, v5).

The graph externality can be formulated as a dot product:

Extπ(G) :=
∑

v∈V s.t. π(v)6=⊥

h(v) · ν(π(v)) (9)

where h(v) is defined as the in-degree of v inDminus the out-degree
of v in D. Said differently, h(v) is the number of vertices deriving
externality from v, minus 1 if v derives externality from one of its
neighbors.

5.1 When the Graph has Maximum Degree 2
A graph with maximum degree 2 is a collection of paths and cy-
cles. We are going to see that this case can be solved efficiently. In

contrast, OPT-EXT is NP-hard when the maximum degree is 3 by
Proposition 1.

Theorem 2 OPT-EXT can be solved in polynomial time when G has
degree at most 2.

The allocation is built in two phases. During the first phase, G is
partially covered with a collection P1, . . . , Pz of disjoint paths. Each
path P` has length at most 2 (the length of a path is the number of
its edges, or equivalently, its number of vertices minus 1). In total
the collection of paths covers exactly |O| vertices. The first phase is
done with Algorithm 2. The final allocation π is constructed during
the second phase with the help of Algorithm 3.

Proof: (of Theorem 2) Consider the digraph D∗ associated with G
and π∗ where π∗ is an optimal solution to OPT-EXT. We are go-
ing to describe an operation called Reversal. Suppose D∗ contains
a directed path of length at least 2: ((vi, vi+1), . . . , (vi+k−1, vi+k).
Modify π∗ by reversing the allocation between vi and vi+k−1. That
is, vi+k−1 gets the object of vi, vi+k−2 gets the object of vi+1, and
so on. It is not difficult to see that the total externality does not de-
crease because (ν(i+ k)− ν(i+ k− 1)) + (ν(i+ k− 1)− ν(i+
k − 2)) + . . . + (ν(i + 1) − ν(i)) = ν(i + k) − ν(i) where the
left and right parts are the contributions to the total externality before
and after the reversal, respectively.

Do Reversal on π∗ until it is not possible. The process is fi-
nite because each operation strictly decreases the number of pairs
of consecutive arcs. The value Extπ∗(G) has not decreased, π∗

remains an optimal solution. The digraph D∗ associated with π∗

consists of connected components of at most 3 vertices. Therefore
h(v) ∈ {2, 1, 0,−1} for any vertex v because there are 4 possible
situations: in-degree 2 and out-degree 0, in-degree 1 and out-degree
0, in-degree 0 and out-degree 0, and in-degree 0 and out-degree 1.

Observe that if there are two vertices v and v′ such that ν(π(v)) >
ν(π(v′)) and h(v) < h(v′) then we can swap their objects
and strictly increase Ext(π∗). Since π∗ is optimal, it holds that
ν(π(v)) ≤ ν(π(v′)) when h(v) < h(v′). The objects taken by non
increasing valuation are placed on the vertices with non increasing
h-value in π∗. Thus, Extπ∗(G) is a dot product ~ν · ~x where ~ν (resp.
~y) consists of {ν(o) : o ∈ O} (resp. {h(v) : v ∈ V }) sorted in non
increasing order.

Take the output π of Algorithms 3 and let D be its associated di-
graph D. As for the optimal solution, it consists of connected com-
ponents of at most 3 vertices, and the objects taken by non increas-
ing valuation are placed on the vertices with non increasing h-value.
Thus, Extπ(G) is also a dot product ~ν · ~y where ~ν (resp. ~x) consists
of {ν(o) : o ∈ O} (resp. {h(v) : v ∈ V }) sorted in non increasing
order.

The possible difference between ~x and ~y comes from the h-values.
By definition, the sum of the coordinates of both ~x and ~y is 0. Since
~y is, by construction, lexicographically larger than ~x, it follows that
Extπ(G) = ~ν · ~y ≥ ~ν · ~x = Extπ∗(G). Algorithms 2 and 3 solve
OPT-EXT optimally. �

5.2 When the Graph is a Special Tree

Many NP-hard problems on graphs can be solved in polynomial time
on trees (e.g. DOMINATING SET). Trees for OPT-EXT are meaningful
as they represent a hierarchy. Though we leave the computational
complexity of OPT-EXT open for trees, this section contains positive
results for special cases.
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Algorithm 2
Input: |O| and G which has maximum degree 2
Output: A set of disjoint sub-paths of G, each of length at most 2,
which spans exactly |O| vertices of G

1: Remove an arbitrary edge of each cycle of G so that G becomes
a collection of paths

2: spn← 0 {spn is the number of vertices spanned so far}
3: z ← 0 {z is the number of sub-paths built so far}
4: while spn < |O| do
5: z ← z + 1
6: Let s be the minimum between 3, 1+the length of the longest

path of G, and |O| − spn
7: Choose a sub-path of G on s vertices and call it Pz (Pz must

contain a vertex whose degree in G is 1)
8: G← G \ Pz
9: spn← spn− s

10: end while
11: return P1, . . . , Pz

Algorithm 3
Input:G,O and a collection P1, . . . , Pz of paths of length at most 2
Output: An allocation π

1: In the collection, each path P` of length 2 consists of 3 con-
tiguous vertices whose center is denoted by c`. Each path P` of
length 1 consists of 2 contiguous vertices; choose one of them
arbitrarily to be the center c`. Each path of length 0 consists of a
single vertex which is the center

2: π is initially empty
3: for ` = 1 to z do
4: Let o∗ be the object with largest valuation in O
5: π(c`)← o∗

6: O ← O \ {o∗}
7: end for
8: Complete π by placing arbitrarily the remaining objects on the

free vertices (i.e. the non-centers) of P1, . . . , P`
9: return π

Proposition 4 OPT-EXT can be solved in polynomial time when G
is a collection of stars.

Sketch of Proof: If |O| = |V | then run an algorithm which takes the
objects by non increasing order of valuation and assign them to the
vertices sorted by non increasing order of their degree.

If |O| < |V |, order the vertices of G such that the center of every
star comes before its leaves, and for every pair of stars S and S′

such that |S| > |S′|, the elements of S get smaller indices than the
elements of S′. Apply the previous algorithm on the sub-graph of G
consisting of the |O| first vertices. �

A caterpillar consists of a path of β vertices v1, . . . vβ , also
called the backbone, and n − β pendant edges [18]. Each vertex
vβ+1, . . . , vn has exactly one neighbor in the backbone. We are go-
ing to propose a 0.5-approximation algorithm for the case of a cater-
pillar which relies on solving OPT-EXT on a sub-graph of G which is
a path, and when the number of available objects exceeds the number
of vertices (Theorem 2 does not apply here). The result relies on the
following Lemma (omitted proof based on the proof of Theorem 2).

Lemma 1 OPT-EXT can be solved in polynomial time on a path hav-
ing strictly less than |O| vertices.

Proposition 5 A 0.5-approximation algorithm exists for OPT-EXT

when G is a caterpillar.

Proof: For an optimal allocation π∗, the externality along the back-
bone edges and the pendant edges, which are disjoint, are de-
noted by E∗b and E∗p , respectively. An optimal allocation π1 for
the backbone edges (resp. π2 for the pendant edges) can be found
in polynomial time, see Lemma 1 (resp. Proposition 4). Since
Extπ1(G[{v1 . . . , vβ}]) ≥ E∗b and Extπ2(G[{vβ+1 . . . , vn}]) ≥
E∗p , the best solution out of {π1, π2} is 0.5-approximate. �

5.3 Experimental Results
In this section, we propose a greedy algorithm for the general val-
uation case and evaluate it experimentally by comparing its solu-
tions against an efficiently computable nontrivial upper bound on the
optimal externality. We will next describe how to obtain this upper
bound.

Algorithm 4
Input: G, O
Output: An allocation π

1: Color every vertex of G white
2: Mark all objects in O as available
3: while there exist available objects in O do
4: Let o be the object of largest valuation among available ob-

jects inO, and v be the vertex ofG that has the largest number
of white vertices in its closed neighborhood and is either red
with a valuation ν(π(v)) < ν(o), or white

5: if v is red then
6: Mark object π(v) as available
7: end if
8: π(v)← o; Color v blue
9: Mark object o as unavailable (allocated)

10: while there exists a white neighbor w of v do
11: Let o′ be the object of smallest valuation among available

objects in O
12: π(w)← o′; Color w red and mark o′ as unavailable
13: end while
14: end while
15: return π

Let us first define a trivial upper bound T (G) on the optimal exter-
nality. Given G(V,E) and O, consider a star ST of degree |O| − 1,
with the object of maximum valuation on its center and all other
objects on its leaves. Let objects be sorted in non-increasing or-
der of valuation, i.e., ν(o1) ≥ ν(o2) ≥ . . . ≥ ν(om). A leaf of
ST that is assigned an object oi derives externality from the center
equal to ν(o1)− ν(oi). Let T (G) be the total externality of ST , i.e.,
T (G) = ν(o1) · |O| −

∑m
i=1 ν(oi) .

In order to define the nontrivial upper bound U(G), let
{d1, d2, ..., dn} be the degrees of V in non-increasing order, and let
{v1, v2, ..., vn} be the corresponding vertices. Consider k to be the
smallest integer satisfying

k +

k∑
i=1

di ≥ |O|. (10)

Consider also a collection of stars SU with centers {v1, v2, ..., vk},
each center having the same neighbors as in G (note that some ver-
tices ofGmay appear multiple times in SU ). Assign the objects with
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the largest k valuations to the centers of SU , i.e. the object of valua-
tion ν(oi) is assigned to vi, 1 ≤ i ≤ k. Objects of smallest valuation
are assigned to neighbors of v1, v2, . . ., in non-decreasing order of
their valuation. Note that some neighbors of vk may not get any ob-
ject. Let U(G) be the total externality that leaves of SU derive under
this allocation. Clearly, the above allocation may not be feasible for
the original instance as it may assign multiple objects to the same
vertex. However it provides an upper bound on the optimal external-
ity which is usually better than the trivial one.

Proposition 6 For any instance (G,O) of OPT-EXT and any alloca-
tion π, Extπ(G) ≤ U(G) ≤ T (G).

Sketch of Proof: Let us first note that T (G) is clearly an upper
bound on the externality of any allocation of objects from O since
all objects but the ‘heaviest’ one derive the maximum possible exter-
nality; the heaviest object cannot derive externality under any alloca-
tion.

Given the partition into stars induced by an allocation π, we can
convert it to SU (the collection of stars giving the bound U(G)) as
follows. Let us first ‘isolate’ the k (as given by Eq. 10) stars centered
on vertices with the largest valuation objects o1, . . . , ok in π, then
move any leftover objects to the leaves of these k stars (that include
all the neighbors of the centers in G). Then, we obtain U(G) by re-
allocating the objects of centers (in case the k centers are not exactly
the same as in U(G)) and then the objects of leaves in a greedy man-
ner; such reallocations can only increase the total externality since
we may move objects that are on centers to other centers of at least
the same degree and objects that are on leaves to stars with center of
at least the same valuation. �

We run Algorithm 4 on 10 DIMACS datasets from the 10th DI-
MACS Implementation Challenge [10]. We chose both sparse and
dense datasets. The chosen valuations follow the uniform distribu-
tion, with values ranging from 0 to 4|V |. The benchmarks we used
are shown in Table 1, sorted in non-decreasing order of density
|E|/|V |.

Benchmark Characteristics
ID Name # Vertices # Edges
b1 karate 34 78
b2 dolphins 62 159
b3 lesmis 77 254
b4 adjnoun 112 425
b5 polbooks2 105 441
b6 chesapeake 39 170
b7 celegans metabolic 453 2025
b8 football 115 613
b9 celegansneural 297 2148
b10 jazz 198 2742

Table 1. List of used benchmarks

Figure 1 shows how Algorithm 4 performs compared to the up-
per bound U(G). Although U(G) is clearly an overestimation, We
observe that the difference does not exceed 5% in any of the tested
benchmarks. We also observe a correlation between the density of
the graph and the achieved ratio of the externality obtained to U(G).
This can be explained by the fact that the denser the graphs, the lower
the number of stars in SU (the collection of stars yielding U(G)) will
be, and Algorithm 4 is more likely to produce a similar star partition.
Certain singularities, most strikingly the Karate dataset, can also be

Figure 1. Percentage of U(G) achieved by Algorithm 4

explained: the Karate dataset is famous as an archetypical example in
community detection papers [16]; it contains 2 ‘leaders’, with whom
almost all other vertices are connected; this is a case for which the
greedy approach works quite well.

We also run Algorithm 4 on several randomly generated graphs.
Instances of 50, 100, 150, 200 and 300 vertices were tested. For each
number of vertices |V |, connected graphs of |V | − 1 up to 20|V |
edges were created, by generating a tree from a random Prüfer se-
quence and then filling the remaining number of edges following the
G(n, p) random graph model. Figure 2 shows how the ratio of the
solution of Algorithm 4 to U(G) increases almost logarithmically as
the density of the graph increases. We also note that for the same den-
sity, our algorithm achieves better results on graphs of smaller size;
this is due to the fact that the smaller the size, the closer we get to a
clique graph, for which the greedy approach would give the optimal
solution (for a clique ExtOPT (G) = U(G) = T (G)). Therefore, it
seems that the higher the ratio density/size, the better the quality of
the solution becomes.

Figure 2. Density of random graphs and Greedy/U(G)

6 CONCLUSION
This paper investigated the impact of externality with a new model
which focuses on two aspects: locality and positiveness. We took the
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viewpoint of a single agent who wants to place a given set of goods
on some locations so as to maximize the total externality.

OPT-EXT is connected to coverage problems. However the fact that
a vertex cannot host a good which exerts and derives externality at
the same time makes the problem special. Our findings trigger stim-
ulating open questions. Chief among them is to design an algorithm
with a performance guarantee for OPT-EXT with general valuations.
Our experiments indicate that the greedy strategy is a good candidate.
For special graphs such as trees, where coverage problems are often
solvable in polynomial time, it would be interesting to determine the
complexity of OPT-EXT with general valuations.

Regarding the two valuation case, the exact approximation ratio
of the greedy algorithm remains open since our upper bound of 2/3
does not match with our lower bound of (e−1)/(1 + e) ≈ 0.46. We
believe that both bounds can be improved.

Finally, there are avenues of possible extensions of the model.
Here we assumed that externality is due to a single neighboring ob-
ject whose value is the largest. However, an object may derive exter-
nality from multiple sources instead of a single one. In this case sev-
eral meaningful ways to aggregate the externalities can be proposed
(a weighted sum for example). Externality can be either positive or
negative depending on whether the objects are (possibly competing)
goods or bads. Finally, the model can incorporate non deterministic
externalities in the future.
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