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Abstract. The Word Mover’s Distance (WMD) proposed by Kus-
ner et al. is a distance between documents that takes advantage of
semantic relations among words that are captured by their embed-
dings. This distance proved to be quite effective, obtaining state-of-art
error rates for classification tasks, but is also impracticable for large
collections/documents due to its computational complexity. For cir-
cumventing this problem, variants of WMD have been proposed.
Among them, Relaxed Word Mover’s Distance (RWMD) is one of the
most successful due to its simplicity, effectiveness, and also because
of its fast implementations.

Relying on assumptions that are supported by empirical properties
of the distances between embeddings, we propose an approach to
speed up both WMD and RWMD. Experiments over 10 datasets
suggest that our approach leads to a significant speed-up in document
classification tasks while maintaining the same error rates.

1 INTRODUCTION
Document comparison is a fundamental step in several applications
such as recommendation, clustering, search, and categorization. In its
simplest version, this task consists of computing the distance between
a single pair of documents.

The document representation is an essential factor in the definition
of a distance. Arguably, the most employed document representations
due to its simplicity and good results are the Bag-of-Words (BOW)
and the Term Frequency - Inverse Document Frequency (TF-IDF).
These representations are based on word counts, and so they may lose
information that is relevant for some applications, such as the ordering
among words in a document, co-occurrence, and semantic relations
between different words. Thus, richer representations that take into
account some of this information have been proposed [24, 8, 4].

Up to a few years ago, semantic relations were barely used because
there was no adequate methodology of how to obtain them. Conse-
quently, researchers eventually decided to use ontologies as a way to
mitigate this issue [12], although this makes applications dependent
on an external knowledge base. This scenario changed with the emer-
gence of Word2Vec [17, 18] and its variants [20], a class of methods
that allow us to efficiently identify the relationship between words
and embed them into vectors, called word embeddings. As a result,
researchers have been searching for ways to use these embeddings
to refine existing models in the literature. The results of these efforts
can already be seen in works such as [15, 14, 7, 16], and indeed,
improvements are obtained.

In particular, Kusner et al. [14] propose the Word Mover’s Distance
(WMD), an application of the classic Earth Mover’s Distance (EMD)
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[23] for the domain of documents that takes advantage of the seman-
tic relations captured by the embeddings associated with their words.
The idea is to compute the minimum cost required to transform one
document representation into another by using the distance between
embeddings as the cost of transforming words. In fact, the distance is
given by the cost of an optimal solution of a transportation problem de-
fined on a complete bipartite graph where the nodes correspond to the
distinct words of the documents, and the edge costs are the distance
between embeddings. In the same paper, they show that this approach
obtained outstanding results on document classification tasks, outper-
forming many competitors. The major drawback of WMD, however,
is its high computational cost since solving the transportation problem
in a complete bipartite graph is costly, requiring super cubic time.

Since the proposal of WMD, there has been a considerable amount
of research focusing on improving its performance while keeping
its effectiveness [14, 3, 25, 2]. The Relaxed Word Mover’s Distance
(RWMD) [14, 3, 2], due to its simplicity and speed, is arguably one
of the most successful outcomes of this research effort. In fact, ex-
periments reported in the literature show that it achieves quality (test
error) competitive with those obtained by WMD with the advantage
of being much faster. However, despite its good performance, further
improvements are relevant because there are applications in which
this kind of distance needs to be calculated very quickly.

Motivated by this scenario, we focus on developing an approach
to derive distances that are as effective as WMD and its variants with
the advantage of allowing a faster computation.

1.1 Our Contributions

To achieve this goal, in contrast to other approaches available, we
explore the properties of the application domain, more specifically
the distribution of distances among word embeddings. Our key obser-
vation is that one can assume, without incurring a significant loss, that
the set of distances between word embeddings is split into two sets:
the set of distances between related words and the set of distances
between non-related words, with the distances in the latter having
the same value. We show that this assumption, which is supported by
empirical data, can be used to: (i) obtain a more compact formulation
for the transportation problem that is used to calculate WMD and its
variants and (ii) dramatically reduce the memory required to cache
the distances between embeddings, which is essential for the fast
computation of RWMD for large vocabularies since the evaluation of
the distance between a pair of words requires hundreds of operations
for typical sizes of embeddings.

By relying on the previous observation, we propose a simple ap-
proach for speeding up WMD and distances with a similar flavour.
More concretely, we show how to derive new distances between docu-
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ments by applying our approach to both WMD and RWMD. The time
and space complexities required to compute these distances depend
on a parameter r that has to do with the number of related words.
This parameter can be set to a small value which leads to complex-
ity improvements over WMD and RWMD. In addition, experiments
executed over 10 datasets, for two distinct tasks, suggest that these dis-
tances yield to test errors as good as those obtained by WMD/RWMD,
with a significant gain in terms of execution time. Indeed, with re-
gards to efficient implementations of RWMD, we obtained an average
speed-up of almost 5 times for one task and 15 times for the other.

1.2 Related Work

Our work is closely related to some approaches that have been
proposed to circumvent the high computational cost of WMD
[14, 3, 25, 2].

Kusner et al. [14] propose the Relaxed Word Mover’s Distance
(RWMD), a distance that is defined over a relaxation of the trans-
portation problem in which some constraints are dropped. Given the
distance matrix between the words embeddings of documents D and
D′, the RWMD can be calculated in O(|D| · |D′|) time, where |D|
and |D′| are the number of distinct words of D and D′, respectively.
Thus, the bottleneck of RWMD is to compute the distance matrix
which costs O(|D| · |D′| · d) time, where d is the dimension of the
word embeddings space. Such cost can be prevented by caching the
O(n2) distances between all the n words of the vocabulary, an ap-
proach that could be prohibitive for large n. Experiments from [14]
shows that RWMD achieves test error competitive with WMD for
document classification tasks while incurring a lower computational
cost, even without using cache.

Atasu et al. [3] show how to compute RWMD for any two doc-
uments D and D′ from a collection C in O(|D| + |D′|) time. To
achieve this running time, they need to pre-compute and store the
distance of word w to the nearest word in document D, for each w
in the vocabulary and each D in the collection. Thus, it consumes
O(n|C|) memory, where |C| is the number of documents in C, which
may be infeasible for large collections. Furthermore, this linear time
complexity does not hold for dynamic collections since the method
requires O(|Dnew| · n · d) preprocessing time before calculating the
RWMD from a new document Dnew to some document D. Further
work from Atasu et al. [2] discusses a limitation of RWMD for docu-
ments that share many words and then proposes a family of variants
of RWMD that better address this scenario.

In a broader scope, our work is also related to some proposals
to speed up EMD [19] and approximate solutions for transportation
problems in general [5, 9, 22].

Pele et al. [19] present an optimized solution of the EMD for in-
stances in which the costs of the edges satisfies certain properties that
are motivated by the way human perceive distances. The optimization
introduced by this approach consists of reducing the number of edges
in the transportation network and, as a consequence, the running time.
This work resembles ours in the sense that both optimize the time
complexity to solve the transportation problem by taking into account
how the costs behave in the domains under consideration.

Cuturi et al. [5] use an entropic regularization term to smooth out
the transportation problem so that it can be solved much faster via
Sinkhorn’s matrix scaling algorithm. This algorithm has O(|D| · |D′|)
empirical time according to [5] and it was used in a supervised version
of WMD [13]. As RWMD, this method needs an O(n2) space cache
in order to prevent the O(|D| · |D′| · d) time required to compute the
distances between the words in D and D′.

1.3 Paper Organization

The paper is organized as follows. In Section 2, we introduce our
notation and discuss some background that is important to the under-
standing of our work. In the next section, we develop our approach.
In Section 4, we present our experimental study comparing the new
distance with WMD and RWMD both in terms of test error and
computational performance. Finally, in Section 5, we present our
conclusion.

2 BACKGROUND

In this section, we introduce some notation and explain some concepts
that are important to understand our work.

2.1 Notation

We assume that we have a vocabulary of n words {1, . . . , n} and
a collection of documents. Throughout the text, we need to refer
to arbitrary documents D and D′ to explain existing distances and
the new ones that we propose. Hence, unless otherwise stated, we
assume that the set of distinct words of D and D′ are, respectively,
{w1, . . . , w|D|} and {w′1, . . . , w′|D′|}. Note that |D| (resp. |D′|) is
the number of distinct words of document D (resp. D′). Moreover, we
use Di to denote the normalized frequency of wi, that is, the number
of occurrences of wi in D over the total number of words in D. We
use D′j to refer to the normalized frequency of w′j analogously. Note
that

∑
i Di =

∑
j D
′
j = 1.

We use x(i) to denote the embedding of a word i in a vector
space of dimension d and we use c(i, j) to denote the Euclidean
distance between the embeddings of words i and j, that is, c(i, j) =
‖x(i)− x(j)‖2.

To make sure that our notation is clearly understood, we present a
simple example involving the following documents:

D: John likes algorithms. Mary likes algorithms too.
D′: John also likes data structures.

Ignoring the stopwords, and assuming that D and D′ are the only
doc’s in our collection, we have the following vocabulary

{1 : “John”, 2 : “likes”, 3 : “algorithms”,4 : “Mary”,
5 : “too”, 6 : “also”, 7 : “data”, 8 : “structures”}

Hence, the set of distinct words of D and D′ are, respectively,
{w1 = 1, w2 = 2, w3 = 3, w4 = 4, w5 = 5} and {w′1 = 1, w′2 =
6, w′3 = 2, w′4 = 7, w′5 = 8}. Finally, the normalized Bag-of-Words
representations of D and D′ are, respectively,

D: {D1, D2, D3, D4, D5} = {1/7, 2/7, 2/7, 1/7, 1/7}
D′: {D′1, D′2, D′3, D′4, D′5} = {1/5, 1/5, 1/5, 1/5, 1/5}.

2.2 Word Mover’s Distance

By exploring the behaviour of the Word Embeddings, Kusner et al.
[14] define the distance between two documents as the minimum cost
of converting the words of one document into the words of the other,
where the cost c(wi, w

′
j) of transforming the word wi into word w′j

is given by the distance between the word embeddings of wi and w′j .
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Formally, the WMD between documents D and D′ is defined as the
value of the optimal solution of the following transportation problem:

min
|D|∑
i=1

|D′|∑
j=1

c(wi, w
′
j)Tij (1)

s.t.:
|D′|∑
j=1

Tij = Di ∀i ∈ {1, . . . , |D|} (2)

|D|∑
i=1

Tij = D′j ∀j ∈ {1, . . . , |D′|} (3)

Tij ≥ 0 for all i, j (4)

In the above formulation, T is the flow matrix. The variable Tij

gives the amount of word wi that is transformed into word w′j . The
equation (2), for a fixed i, assures that each unit of word wi is trans-
formed into a unit of a word in D′ while Equation (3), for each j,
assures that the total units of words in D transformed into w′j is D′j .

The WMD, although well founded, suffers from efficiency prob-
lems since solving the transportation problem on a complete bipartite
graph is costly, requiring super cubic time using the best known mini-
mum cost flow algorithms [19].

2.3 Relaxed Word Mover’s Distance

To overcome the high computational cost of solving the transporta-
tion problem, Kusner et al. [14] propose the RWMD, a variation of
WMD whose computation relies on optimally solving relaxations of
the transportation problem. These relaxations are obtained by either
ignoring the set of constraints (2) or the set (3). In fact, the RMWD
between D and D′ can be calculated by evaluating the expression

max


|D|∑
i=1

Di min
1≤j≤|D′|

c(wi, w
′
j),

|D′|∑
j=1

D′j min
1≤i≤|D|

c(wi, w
′
j)


(5)

where the left and the right terms in the maximum are the optimum
values of the relaxations that ignore constraints (3) and (2), respec-
tively.

By examining the above equation we conclude that, given the costs
c(wi, w

′
j)’s, RWMD can be calculated for a pair of documents D and

D′ in O(|D| × |D′|) time, which is a significant improvement over
WMD. Therefore, RWMD’s bottleneck is the computation of the costs
c(wi, w

′
j)’s since it requires O(|D| · |D′| · d) time.

We also note that by performing a simple preprocessing step before
applying equation (5) we can obtain a tighter relaxation of WMD that
corresponds to the OMR distance proposed in [2]. The motivation is
better handling cases in which D and D′ share many words.

The preprocessing consists of first identifying pairs of words
(wi, w

′
j), with wi = w′j . Then, for each of these pairs we do the

following: (i) we replace Di with its excess max{Di −D′j , 0} and,
if Di ≤ D′j , we remove index i from the range where the minimum
iterates in the right term of the max; (ii) similarly, we replace D′j with
its excess max{D′j −Di, 0} and, if D′j ≤ Di, we remove index j
from the range where the minimum iterates in the left term of the max.
The impact of this preprocessing is associating in equation (5) the
excesses of Di and D′j with the second closest word to wi and w′j ,
respectively.

2.3.1 RWMD in linear time

In [3], it is proposed an implementation that computes the RWMD
between two documents D and D′ in O(|D|+ |D′|) time, improving
upon the O(|D| · |D| · d) time required by the original proposal. This
improvement, however, comes at the expense of some potentially
costly preprocessing.

To explain the implementation, denoted here by RWMD(L), let C
be a collection of documents and let Ci(j) be the word, among those
in the i-th document of C, that is closest to some given word j in the
vocabulary. RWMD(L) builds, at the preprocessing phase, a matrix
M with |C| rows and n columns, where the entry Mij stores the
distance between Ci(j) and word j. To fill the row of M associated
with document D we have to pay O(n · |D| · d) time.

Having the matrix M available, it is possible to compute the
RWMD between documents D and D′ in O(|D|+ |D′|) time. The
reason is that the terms minjc(wi, w

′
j) and minic(wi, w

′
j) of (5)

can be computed in O(1) time. The former is obtained by accessing
the entry Mr′,i, where r′ is the row corresponding to document D′,
while for the latter we need to access the entry Mr,j , where r is the
row corresponding to document D.

In addition to the time required to build matrix M , another potential
problem of RWMD(L) is its space requirement since the matrix M
can be prohibitively large when either the vocabulary or the collection
of documents is huge.

We note that in order to properly use the preprocesssing for equation
(5) described in the previous section, we should store in matrix M the
distance of w to its second closest word among those that belong D,
when w ∈ D.

3 AN APPROACH FOR SPEEDING UP WMD
AND ITS VARIANTS

For large vocabularies the methods discussed in the previous section
may have to cope with an enormous amount of distances between
embeddings, which may be a problem either in terms of memory
requirements or in terms of running time. In fact, for applications
(e.g. document classification via k-NN) that use the distance between
the same pair of embeddings several times caching turns out to be
crucial for achieving computational efficiency. However, when the
vocabulary is large, caching becomes prohibitive.

In this section, we show that we can significantly attenuate this
problem by taking into account the distribution of distances among
word embeddings.

3.1 On the distances between word embeddings

Here we discuss the assumptions in which our approach and the new
distances, derived from it, rely on. For that, we present examples of
distances between word embeddings. These embeddings, used here
and in the next sections, were made available by Google 2. To obtain
them, they trained the vectors with d = 300 using the Word2Vec
template of Word Embeddings [18] on top of a Google News docu-
ment base containing altogether about 100 billion words and 3 million
tokens. We also refer to some datasets that will be detailed in our
experimental section.

From a semantic perspective, it is reasonable to consider that words
are closely related to only a few other words in general. As the word

2 https://code.google.com/archive/p/word2vec/
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embeddings were designed to simulate semantic relations, it is ex-
pected that they present a similar behaviour; that is, each vector should
be close to a few other vectors and far away from the remaining ones.

As an example, if the words are ranked according to their distances
to the embedding corresponding to “cat” one should expect “dog” and
“rabbit” preceding both “moon” and “guitar”. However, it is not clear
whether “moon” or “guitar” comes first in the ranking since neither
of them has an obvious relation with “cat”.

Figure 1 illustrates this behaviour by displaying the distances be-
tween the embedding for “cat” and the embeddings from the words of
the Amazon dataset sorted by increasing order of distance. We note
that there are few words with small distances while the vast majority
has distance concentrated in the range [1.2, 1.4].

Figure 1. Distances from embeddings of all words in the vocabulary of
Amazon dataset to the word “cat”.

For checking whether this behaviour persists for other words, we
computed all the distances between embeddings from the words of
the Reuters dataset. Figure 2 shows the distribution of these distances
clustered in bins for better visualization. Once again, we observe
a high concentration of the distances around the interval [1.2, 1.4],
behaving similarly to a Normal distribution.

Figure 2. Distribution of the distances between all words in the vocabulary
of Reuters dataset.

Based on this discussion, we make the following assumptions:

(i) Given a word w, the remaining words can be split into two groups:
RELATED(w) and UNRELATED(w), with the former (latter) con-
taining the words related (unrelated) with w;

(ii) The distances from every word in UNRELATED(w) to w, for every
w, is the same “large” value cmax.

Although the number of related words may vary according to the
word of reference, in order to make our approach simpler and thus,
more practical, we assume that all words have the same number of
related words and we use r to denote this number. The value of r can
either be set manually or automatically estimated using a training set
as we discuss in the experimental section.

3.2 Algorithms exploiting distance assumptions
Algorithms to compute distances with the flavour of WMD can benefit
from our assumptions because, by using them, they just need to handle
a much smaller set of distances between embeddings, that is, the set
of distances between related words. As a result, caching distances
becomes feasible even for large vocabularies, which prevent these
methods of calculating the distance between the same pair of words
more than once. In addition, the transportation problem in which
WMD and related distances as RWMD rely on can be solved in a
sparse bipartite graph rather than on a complete bipartite graph.

In the next subsections we discuss how WMD and RWMD can
be adapted to make use of our assumptions. These adaptations lead
to new distances between documents, namely Rel-WMD and Rel-
RWMD. We start with the explanation of a preprocessing phase that
is required to calculate these new distances.

3.2.1 Preprocessing Phase

In this phase, we build a structure (cache) C that stores for each word
w, from a vocabulary of n words, the r closest words to w as well as
its distances to w.

Choose a word i in the vocabulary. The procedure computes its
Euclidean distance ‖x(i)−x(j)‖2 to every other word j and add these
distances, as well as the corresponding words, to a list Li. Next, it
selects the r words that are closest to i in Li and adds them, with their
distances, to cache C. This selection can be performed in expected
linear time using QuickSelect [11]. The distances that were not
included in C are then added to a global accumulator A with the goal
of calculating cmax. This procedure is repeated for every word i in the
vocabulary and the value cmax is given by the average of all values
added to A.

The cache C requires O(n · r) space and its construction requires
O(n2 ·d) time, where the term d is due to the time required to compute
the distance between a pair of embeddings.

For large vocabularies the construction of the cache C, as above
described, may be costly due to the O(n2 · d) time complexity. This
construction, however, can be optimized by clustering the embeddings
and then considering only words in the same cluster to find the related
words.

We discuss this approach using the traditional k-means clustering
algorithm [1]. On the one hand, this algorithm allows the user to define
the number of clusters k and it performs O(n · k · d · I) operations
to cluster n points in Rd into k clusters, where I is the maximum
number of iterations allowed. On the other hand, if the n embeddings
are uniformly distributed among k clusters then the construction of
cache C requires O((n/k)2 · d) time per cluster which implies on
O(n2 · d/k) overall time. Hence, let f(k) = n · d · k · I + (n2 · d/k)
be an estimation of the running time required to execute k-means
and then the construction of cache C. By minimizing f(k) we get
k =

√
n/I . Thus, if n is large, in order to speed up the preprocessing
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phase, we run k-means algorithm with k =
√

n/I , before building
the cache C.

3.2.2 Related Word Mover’s Distance

The Related Word Mover’s Distance (Rel-WMD) between D and D′

is defined as the optimum value of the transportation problem given
by equations (1)-(4), where the costs of the edges are as follows:

c(wi, w
′
j) =


0, if wi = w′j

‖x(wi)− x(w′j)‖2, if (wi, w
′
j) ∈ C

cmax, otherwise

(6)

For small values of parameter r many costs are equal to cmax. In
this case, it is possible to replace the formulation given by (1)-(4)
with an equivalent and more compact one. This new formulation is
given by (7)-(10) and its key idea is using variable Ti,t to represent
the number of units of word wi that is transformed into words that are
at a distance cmax from wi. Thus, the single variable Ti,t replaces
all variable Ti,j in the original formulation for which (wi, w

′
j) does

not belong to cache C. Similarly Tt,j represents the number of units
transformed into w′j from words that are at a distance cmax of word
w′j . The underlying graph of this new formulation is much sparser (for
small values of r) so that the transportation problem can be solved
significantly faster.

min
∑

(wi,w
′
j)∈C

c(wi, w
′
j)Ti,j +

|D|∑
i=1

cmaxTi,t (7)

s.t.: Ti,t +
∑

j|(wi,w
′
j)∈C

Ti,j = Di i = 1, . . . , |D|

(8)

Tt,j +
∑

i|(wi,w
′
j)∈C

Ti,j = D′j j = 1, . . . , |D′|

(9)

Ti,j , Ti,t, Tt,j ≥ 0 for all i, j
(10)

We shall note that this formulation has been used before by [19] to
speed up EMD [23] in the context of image retrieval.

3.2.3 Related Relaxed Word Mover’s Distance

The Related Relaxed Word Mover ’s Distance (Rel-RWMD) is a vari-
ation of the Rel-WMD, in which we drop constraints of the original
formulation in order to obtain a relaxation that can be computed more
efficiently. Rel-RWMD is to Rel-WMD as RWMD is to WMD.

The Rel-RWMD can be computed using equation (5) with a cost
structure given by (6). Let R′(wi) (resp. R(w′j) ) be the set of related
words of wi (resp. w′j) that belong to D′ (resp. D). Thus, the Rel-
RWMD between documents D and D′ is given by

max


|D|∑
i=1

Di min
w′

j∈R
′(wi)

c(wi, w
′
j),

|D′|∑
j=1

D′j min
wi∈R(w′

j)
c(wi, w

′
j)


(11)

Although not explicit in the above equation, if R′(wi) (resp. R(w′j))
is empty then Di (resp. D′j) is multiplied by cmax.

To efficiently evaluate the first term of the maximum in equation
(11) we need to obtain for each w in D its related words that belong
to D′, that is, the set R′(w). By storing D′ as a hash table we can
find them in O(r) time. For that, it is enough to traverse the list of
words related to w in cache C and for each word w′ in the list we
use the hash table of D′ to verify whether w′ belongs to D′. Since
the second term in the maximum can be calculated analogously we
conclude that the Rel-RWMD between D and D′ can be computed in
O((|D|+ |D′|) · r) time, which is a significant improvement over the
(|D| · |D′|) time required by RWMD when the size of the documents
is considerably larger than r.

Finally, we mention that the linear time implementation of RWMD
presented in Section 2.3.1 can also benefit from our assumptions. The
first advantage is that the matrix M can be computed faster since, in
order to fill the row associated with a document D, we just need to
consider the words in the vocabulary that are related to D because
for the other words the corresponding entries have value cmax. Thus,
the addition of the row associated with document D costs O(|D| · r)
time rather than the O(n · |D| ·d) required by RWMD(L). The second
advantage is the sparsity of matrix M which allows handling larger
collections/vocabularies.

4 EXPERIMENTS

To evaluate our methods, we employ two tasks that involve the compu-
tation of distances between documents. The first one is the document
classification task via k-Nearest Neighbors (k-NN) that was used
to evaluate the WMD algorithm in [14]. The second one is the task
of identifying related pairs of documents, employed to evaluate the
performance of paragraph vector [15, 6].

We compared in terms of test error and computational perfor-
mance our new distance, Rel-RWMD, against WMD, RWMD, Cosine
distance and Word Centroid Distance (WCD) [14]. The WCD be-
tween two documents is given by the Euclidean distance between
their centroids, where the centroid of a document D is defined
as

∑|D|
i=1 Dix(wi). When reporting computational times we use

RWMD(S) and RWMD(L) to distinguish between the Standard im-
plementation of RWMD and the one that requires Linear time. Rel-
RWMD(S) and Rel-RWMD(L) are used analogously. We note that
for all RWMD’s implementations the preprocessing described at the
end of Section 2.3 is applied.

Although we have also implemented/evaluated Rel-WMD, its re-
sults are omitted in the next sections since, in general, it is competitive
with Rel-RWMD in terms of test error while being much slower.

The methods were implemented in C++. The Eigen library [10] was
used for matrix manipulation and Linear Algebra while the OR-Tools
library [21] was used for the resolution of flow problems. All exper-
iments were executed using a single core of an Intel(R) Core(TM)
i7-6700 CPU @ 3.40GHz, with 8 GB of RAM. The code and datasets
are available in a GitHub repository 3.

4.1 Document classification via k-NN

Our experimental setting follows Kusner et al. [14], where different
distances are evaluated according to their performance when they are
employed by the k-NN method to address document classification
tasks.

In order to classify a document D from some testing set, k-NN
computes the distance of D to each document in the corresponding

3 https://github.com/matwerner/fast-wmd
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training set and then it returns the most frequent class among the k
closest documents to D. As stated in [14], motivations for using this
evaluation approach, based on k-NN , include its reproducibility and
simplicity.

We run k-NN using k = 19, and, in case of ties, k is divided by
two until there are no more ties. This setting is slightly different from
[14], where k is selected from the set {1, 3, . . . , 19} based on the
lower error rate obtained.

The parameter r that defines the number of related words was
selected from the set S = {1, 2, 4, . . . , 128} using a 5-fold cross-
validation on top of the training set. Because we are prioritizing com-
putational performance and, the smaller the r the faster the method,
we choose the lowest r whose test error in the cross validation is at
most 1% larger than the minimum one found among all the possibili-
ties in the set S.

4.1.1 Datasets description

We used the following eight preprocessed datasets 4 provided by [14]:

• 20NEWS: Posts on discussion boards for 20 different topics.
• AMAZON: Product reviews from Amazon for 4 product cate-

gories.
• BBCSPORT: BBC Sport sports section articles for 5 sport between

2004 and 2005.
• CLASSIC: Sentences from academic works from 4 different pub-

lishers.
• OHSUMED: Medical summaries categorized by different cardio-

vascular diseases. For computational performance issues, only the
first 10 categories of the database were used.

• RECIPE: Culinary recipes separated by 15 regions of origin.
• REUTERS: News from the Reuters news agency in 1987. The

original database contains 90 classes, however, due to problems of
imbalance between them, a reduced version with only the 8 most
frequent ones was created.

• TWITTER: Collection of tweets labeled by feelings “negative”,
“positive” and “neutral”.

For all datasets 70% is used for training and 30% for testing, re-
specting the partitions provided. Table 1 presents relevant statistics
for each of these datasets.

Table 1. Datasets statistics including training and testing sets.

NAME #DOCS #TOKENS
AVG. TOKENS

PER DOC
CLASSES

20NEWS 18,820 22,439 69.3 20
AMAZON 8,000 30,249 44.5 4
BBCSPORT 737 10,103 116.5 5
CLASSIC 7,093 18,080 38.6 4
OHSUMED 9,152 19,954 60.2 10
RECIPE 4,370 5,225 48.3 15
REUTERS 7,674 15,115 36.0 8
TWITTER 3,108 4,489 9.9 3

4.1.2 Results

Table 2 presents the test errors obtained by the distances under consid-
eration over the eight datasets. We averaged the results for the datasets

4 https://github.com/mkusner/wmd

AMAZON, BBCSPORT, CLASSIC, RECIPE, and TWITTER follow-
ing the 5 predefined train/test splits. The remaining datasets have only
one split, and so the average is not necessary.

Some observations are in order: clearly, WCD and Cosine pre-
sented the worst results. Among WMD, RWMD, and Rel-RWMD,
there is a balance. The behaviour of WCD and Cosine, as well as
the balance between WMD and RWMD, are compatible with the
findings/conclusions reached in [14] while the results of Rel-RWMD
suggest that our simplifying assumptions work very well. The val-
ues selected for r ranged from 2 (20NEWS and RECIPE) to 128
(AMAZON) with a median equal 19.5.

Table 2. Test error (in %) for different distances and datasets. The datasets
with more than one partition had their error rates averaged. The best results

are bold faced.

DATASET COSINE WCD WMD RWMD REL-RWMD

20NEWS 30.45 36.2 24.09 24.79 25.22
AMAZON 12.90 9.04 7.21 6.87 6.98
BBCSPORT 4.82 11.9 5.36 5.09 4.82
CLASSIC 6.34 8.93 3.04 2.91 3.15
OHSUMED 45.74 47.00 42.85 43.49 41.26
RECIPE 45.71 49.20 46.56 43.63 43.20
REUTERS 8.95 4.98 3.84 3.97 4.39
TWITTER 31.97 29.4 29.14 28.95 28.95
AVERAGE 23.36 24.59 20.26 19.94 19.75

Table 3 presents the running times in minutes for all distances and
datasets examined. First, as expected, WCD and Cosine are the fastest
distances since they run in linear time and their preprocessing phases
are very cheap while WMD is the slowest distance since it has to
solve a transportation problem optimally. We note that the times of
Cosine were omitted due to the lack of space.

It is interesting to examine how the distances/implementations
related to RWMD perform. RWMD(S), the original implementation
of [14], is the slowest of them while Rel-RWMD(L) is the fastest one,
being on average 4.7 times faster than RWMD(L), which is the second
fastest. The main advantage of Rel-RWMD(L) over RWMD(L) is due
to the time required to build the matrix M since Rel-RWMD(L) is, on
average, 10 times faster. With regards to the time required to evaluate
two doc’s we can also observe a small advantage of Rel-RWMD(L)
which is probably related to the sparsity of M .

Table 3. Computational runtime (in minutes) for different distances and
datasets. The datasets with more than one partition have their computational

times averaged.

DATASET WCD WMD RWMD(S) RWMD(L) REL-RWMD(L)

20NEWS 1.87 6,244 842 68.0 13.4
AMAZON 0.30 351 71.7 22.1 4.47
BBCSPORT 0.01 21 3.72 1.38 0.27
CLASSIC 0.24 213 45.6 10.8 2.26
OHSUMED 0.47 1,002 158 25.1 5.20
RECIPE 0.09 106 27.6 2.13 0.55
REUTERS 0.27 181 47.7 10.9 1.67
TWITTER 0.04 3.32 1.23 0.43 0.18

It is important to mention that the values in Table 3 do not include
the time required to estimate the value of r. In fact, the execution
of a 5-fold cross validation on the training set for each potential r
incurs a high cost. However, in practice one can estimate the value
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of r using a much smaller set or, even better, set r to a small value,
without estimating it, as suggested by the results of Table 4. This table
presents the test errors for r = 1, 2, 16, 128 and also for the value
estimated via cross validation. We observe that the test errors remain
at the same level, in particular for r ≥ 16. The running times, though
not presented, change very little as expected since the value of r has a
small effect in the time complexity of the linear implementation of
Rel-RWMD.

Table 4. Test Error (in %) for Rel-RWMD, with r = 1, 2, 16, 128 and
values estimated via cross-validation, for the different datasets.

DATASET CROSS VAL. R=1 R=2 R=16 R=128

20NEWS 25.22 25.27 25.22 24.90 25.22
AMAZON 6.98 9.66 9.21 7.94 7.02
BBCSPORT 4.82 4.00 3.64 4.91 5.55
CLASSIC 3.15 3.62 3.56 3.20 3.18
OHSUMED 41.26 42.44 42.83 41.26 41.55
RECIPE 43.20 43.57 43.20 43.20 43.52
REUTERS 4.39 4.93 4.52 4.02 4.20
TWITTER 28.95 31.52 30.60 28.91 29.16

AVERAGE 19.75 20.63 20.35 19.79 19.92

4.2 Identifying related documents
For the second task our experimental setting is inspired on Dai et
al. [6], where representations/distances are evaluated according to
their capacity of recognizing whether a document D1 is more related
to a document D2 or to a document D3. For achieving this goal,
testing sets are used which contain many triples of documents, namely
triplets. In each triplet, only two documents are related and a given
distance succeeds if its smallest value is achieved for the related pair.

4.2.1 Datasets description

For our experiments, we first downloaded the documents in the two
testing sets of triplets5 provided in [6]. The first set uses papers from
Arxiv while the second one uses articles from Wikipedia. Then, we
preprocessed them to remove all non-alphanumeric characters and
words contained in a list of stopwords due to its little semantic value.
Finally, to represent the documents we just consider the words that
have embeddings in the set that Google made available. It is important
to note that we are not using the embeddings of [6] since they were not
provided. Table 5 presents relevant statistics for each of the datasets.

Table 5. Datasets statistics.

NAME #DOCS #TRIPLETS #TOKENS
AVG. TOKENS

PER DOC

ARXIV 47,080 19,998 260,640 1,043.9
WIKIPEDIA 58,015 19,336 415,967 429.8

4.2.2 Results

In this experiment, in contrast to the previous one, each document has
its distance evaluated a few times on average, indeed less than twice.

5 http://cs.stanford.edu/ quocle/triplets-data.tar.gz

Thus, building the cache M required for the linear time implementa-
tions of RWMD does not pay off. In addition, its size would be huge,
around 1010 entries for Wikipedia as an example. Therefore, we only
executed RWMD(S) and Rel-RWMD(S).

By comparing the statistics of the datasets in Tables 1 and 5, we
observe that the number of tokens (word embeddings) of the latter
is one order of magnitude higher than the former and, as a conse-
quence, the preprocessing phase of Rel-RWMD becomes expensive,
harming the performance gain achieved while computing the dis-
tances. Thus, following our approach, we cluster the embeddings
before building the cache C. We run k-means using a limit of I = 5
iterations and setting k = 289 ≈

√
415, 967/5 for Wikipedia and

k = 229 ≈
√

260, 640/5 for Arxiv. Moreover, motivated by the
discussion/results of the previous section we used r = 16 for Rel-
RWMD.

Table 6 presents the test errors achieved by the different methods.
We can observe a behaviour similar to the previous task. Once again,
both Cosine and WCD achieve the largest test errors while the others
display competitive results.

Table 6. Test Error (in %) for different distances and datasets. The best
results are bold faced.

DATASET COSINE WCD WMD RWMD REL-RWMD

ARXIV 28.83 29.99 22.77 23.43 23.16
WIKIPEDIA 27.83 29.23 26.74 27.01 26.90

The computational times (in minutes) are displayed in Table 7.
Again WCD and Cosine are the fastest. The former is slower because
it has to compute the centroids of the documents in its preprocessing
phase while the latter does not. Among the others, Rel-RWMD(S) and
RWMD(S), as expected, are much faster than WMD. For Wikipedia
Rel-RWMD(S) is 3 times faster than RWMD(S) while for Arxiv
Rel-RWMD(S) it is 27 times faster.

By taking a more in-depth examination of the running times we
can also observe that the time consumption of REL-RWMD(S) is
highly concentrated on its preprocessing phase when the cache C is
built. Having this structure available, it computes the distances, on
average, 25 and 60 times faster than RWMD(S) for Wikipedia and
Arxiv, respectively.

Table 7. Computational runtime (in minutes) for different distances and
datasets.

DATASET COSINE WCD WMD RWMD(S) REL-RWMD(S)

ARXIV 0.01 0.18 1,996 74.8 2.72
WIKIPEDIA 0.01 0.09 302 11.0 3.36

5 CONCLUSION

In this paper, we presented an approach to speed up the computation
of WMD and its variants that relies on the properties of the distances
between embeddings. The improvements in time and space complexi-
ties together with our experimental evaluation provide strong evidence
that this approach should be employed if one is aiming to compute
these distances efficiently.
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