24th European Conference on Artificial Intelligence - ECAI 2020

Santiago de Compostela, Spain

Learning Normative Behaviors through Abstraction

Stevan Tomic and Federico Pecora and Alessandro Saffiotti’

Abstract. Future robots should follow human social norms to be
useful and accepted in human society. In this paper, we show how
prior knowledge about social norms, represented using an exist-
ing normative framework, can be used to (1) guide reinforcement
learning agents towards normative policies, and (2) re-use (transfer)
learned policies in novel domains. The proposed method is not de-
pendent on a particular reinforcement learning algorithm and can be
seen as a means to learn abstract procedural knowledge based on
declarative domain-independent semantic specifications.

1 Introduction

In order to be accepted in human society, robots need to comply
with human social rules. The main goal of our research is to make
robots capable of behaving in a socially-acceptable way, i.e., to ad-
here to social norms. One possible approach to do this would be to
create models from first principles which can be used for synthesiz-
ing socially-acceptable behavior, e.g., appropriate planning domains.
However, describing such models requires a significant amount of ef-
fort: the difference between normative and norm-breaking behavior
may be subtle, and its specification may require a high level of de-
tail. This also limits the applicability of such models across domains.
Another possibility is to endow agents with data-driven approaches
and the ability to learn to act in model-free environments, general-
izing over similar states. This could be achieved, e.g., using Rein-
forcement Learning (RL) methods. In recent years, RL has achieved
notable successes in simulated environments [21] and with physical
robot control [2]. Still, despite impressive results, RL is relegated
to relatively tightly controlled settings. Using RL in real-world set-
tings poses significant challenges, most notably the classical prob-
lems of credit assignment [12], which concerns how an action that
was taken earlier influences the final reward, and the curse of di-
mensionality [4], where the states to be explored increase exponen-
tially when new factors are considered. These challenges are further
complicated if robots have to act in human social spaces. Policies
obtained via RL lead an agent to act in a way that maximizes the re-
ward function, meaning that an agent may learn to achieve its goal in
a way which is not socially acceptable. This somewhat Machiavel-
lian characteristic of RL agents indicates that policies that are to be
used in social environments should be subject to, or at least biased by,
social norms. Also open is the issue of applying learned policies to
novel domains. This is related to the transfer of learning phenomenon
studied in psychology [25], and to the well known open challenge of
transfer learning in Machine Learning [17].

Several approaches for overcoming the difficulties of RL are re-
ported in the literature. ‘Reward shaping’ [13] is a technique where

L All authors are affiliated with Orebro University, Sweden; Contact email:
stevan.tomic @aass.oru.se

agents receive intermediate rewards to direct learning toward achiev-
ing the final goal; usually, this requires significant engineering ef-
fort. A way to address the ‘curse of dimensionality’ problem is to
reduce the size of the state space [11]. Intermediate rewards and
state-space/action reduction are both crucial ideas that are utilized
in our work. Social behavior in the context of RL is usually achieved
through inverse reinforcement learning (IRL) algorithms [14], which
focus on learning a reward distribution from exemplary behaviors
and then use the obtained rewards in ordinary RL settings. RL and
normative monitoring are combined when learning policies involves
balancing between individual goal rewards and penalties for non-
adherent behavior [10]. Another interesting approach in the context
of RL safety uses the concept of ‘restricting bolts’, where learning
can be performed to conform as much as possible to specifications in
extended temporal logic [7].

This paper proposes an approach that combines modeling of be-
havioral rules from first principles (atomic statements) and RL. Hu-
mans learn social behavior guided by prior knowledge from parents
and society, and robots should do the same. Specifically, our aim is to
capture prior social knowledge in norms and to learn norm-adhering
policies in an RL setting. We also aim to re-use these policies in
novel domains. We rely on the concept of institutions [20], often used
in normative multi-agent systems (MAS), to model social structures,
and to enable the transfer of learned knowledge across domains. In-
stitutions encapsulate “the rules of the game in a society” [15], pro-
viding the mechanisms that regulate interactions, and the ‘count-as’
principle [20] as a way to abstract, interpret and assign a social mean-
ing to physical execution. The concept of (electronic) institutions is
well-known in MAS [8]. These usually include norms defined with
deontic operators associated with different types of logic to provide
operational semantics for monitoring or execution [1]. The definition
of an institution, the level of norms abstraction, expressiveness and
monitoring capabilities vary [16].

The main contribution of this paper is the use of norms, repre-
sented in an institution framework [23], to shape the reward function
of learning agents and to provide a formal way to abstract learning
of norm-compliant policies. The proposed method is contrasted to
ad-hoc policies that would be learned for a particular domain set-
ting. This is an important characteristic of our approach that we ex-
amine in our evaluation. The institution framework that we use pro-
vides: (A) a means to represent social knowledge via abstracted, thus
domain-independent norms; and (B) a mechanism based on declar-
ative norm semantics to verify whether a social interpretation of the
execution is adherent to the given norms. As we will see, feature (A)
provides a state-space/feature selection mechanism which reduces
the dimensionality of the problem; it also leads to abstracted norma-
tive policies, thereby addressing the transfer learning problem, so that
we can apply the same norms in novel domains without re-learning.
Feature (B) is used to automatically create a reward system to guide



24th European Conference on Artificial Intelligence - ECAI 2020

Santiago de Compostela, Spain

learning, addressing the credit assignment problem.

2 The Formal Model of Institution

The institutional framework used in this paper is based on our pre-
vious work [23]. We briefly recall the parts of the framework which
are relevant to this paper.

2.1 Institutions, Domains and Grounding
2.1.1 Institutions

Institutions capture the structure of a social situation by defining sets
(categories) of roles (Roles), institutional actions (Acts), and arti-
facts (Arts) and a collection of norms that relates members (ele-
ments) of these sets. Examples of Roles are a ‘customer’ in a store or
a ‘goal-keeper’ in a football game. Similarly, artifacts (Arts) repre-
sent objects with certain institutional meaning, as ‘goods’ or a ‘cash
register’, while Acts are actions meaningful in institutional (social)
context, e.g., ‘pay’ for a carton of milk in a store. Norms are defined
as predications over statements:

Definition 1. A norm is a statement of the form g(trp*), where q is
a qualifier and ¢rp is a triple of the form:

trp € Roles x Acts x (Arts U Roles)

Qualifiers can be unary relations like must or must-not, or n-ary
ones like inside or before. For example, must can be used to repre-
sent the obligation ‘A buyer must pay with cash’:

must ((Buyer, Pays, Cash)) .

A qualifier at can indicate a spatial relation on the loca-
tion of an action, as in ‘Paying should be performed at
a cash register’: at((Buyer, Pays, CashRegister)). Binary
qualifiers can express relations between statements, e.g.,
temporal relations such as before or during, for instance
before ((Buyer, GetGoods, Goods) , (Buyer, Pays, Cash)) indi-
cating that ‘A buyer should get the goods before paying’. Institutions
put all the above elements together.

Definition 2. An institution is a tuple
T = (Arts, Roles, Acts, Norms).

An institution is a (social) abstraction, which can be used to inter-
pret and regulate execution in concrete physical systems that may
be different. For instance, the same ‘store’ institution can be used to
interpret and regulate behaviors of agents in different markets, irre-
spective of these agents being humans, robots, or a combination of
both. Such a concrete system is called a domain.

2.1.2 Domain

A domain is a tuple D = (A, B, O, R), where: A is a set of agents;
this may include humans (e.g., john), robots (e.g., robby), or both; B
is the set of all behaviors that agents can perform, like pick or speak;
O is the set of objects in the domain, like door, cash; and R is a set of
state variables, each defining an attribute (or property) pertaining to
each entity (agent, behavior, or object) in the domain. For instance,
pos(robby) and pos(forky) are state variables that indicate positions
of the agent robby and the agent forky, while active(pick, robby)
indicates the activation of robby’s behavior pick. The set of pos-
sible values of a state variable p € R is denoted vals(p), e.g.,
vals(active(pick, robby)) = {T, L}.

Definition 3. The state space of D is S = [] . vals(p). We call
any element s € S a state. The value of p in state s is denoted p(s).

In a dynamic environment, the values of most properties change over
time. Time points are represented by natural numbers in N, and time
intervals by pairs I = [t1,t2] such that t1,t2 € N and ¢1 < t2. The
set of all such time intervals are denoted by I.

Definition 4. A trajectory is a pair (I, 7), where I € I is a time
interval and 7 : I — S maps time to states.

In simple words, a trajectory represents how the domain evolves over
a given time interval.

2.1.3 Grounding

Grounding establishes the relation between an abstract institution
and a specific domain:

Definition 5. Given an institution Z and a domain D, a grounding of
Zinto Disatuple G = (Ga,Gn,Go), where:

e Ga C Roles x Ais arole grounding,
e Gp C Acts x B is an action grounding,
e Go C Arts x O is an artifact grounding.

Grounding establishes the relation between abstract and concrete and
enables the interpretation of an underlying domain in terms of insti-
tutional entities. As such, it provides the means to reuse the same
abstract institution to regulate different physical systems that can
be interpreted in the same way. For example, using different G’s,
the ‘store’ institution can be grounded in different physical or vir-
tual marketplaces. Another institution, encapsulating the rules of a
football game, may be grounded in a meadow serving as a playing
field, with stones as goalposts, and children being grounded to roles
like goalkeeper, defender, etc. In general, one of the main properties
of grounding is admissibility. It defines what is regarded as proper
grounding. Intuitively, if an institution includes an obligation norm
for some role, then the agents to which that role is grounded should
be capable of executing the actions required by the norm. For in-
stance, the agent grounding the goalkeeper role would have to be ca-
pable of playing in that role for the grounding to be admissible. For
formal definition of admissibility, please refer to [23]. In this paper
we assume that all groundings are admissible and that G,, Gy, and G,
each map institution elements to exactly one domain element, that is,
groundings are functions.

2.2 Norms Semantics and Norms States

By grounding an institution Z into a domain D, we impose that the
norms stated for abstract entities in Z must hold for the corresponding
concrete entities in D. But what does “hold” mean here? In the insti-
tutional framework, norms are given semantics in terms of execution
in a physical domain. The intuitive semantic of must ((ro, act, art))
is that the agent taking role ro must perform at least once the behavior
implementing action act using the object bound to art. Formally, this
semantics is the set of all temporal trajectories in state space where
the above condition is fulfilled.

Let T be the set of all possible trajectories (I, 7) over the state
variables of domain D. Given a norm ¢(trp*) and G we denote se-
mantics by:

[qttrp)] €T



24th European Conference on Artificial Intelligence - ECAI 2020

Santiago de Compostela, Spain

We distinguish between the following types of norm semantics: ful-
fillment semantics, [¢(trp*)] r, defining the set of trajectories fulfill-
ing the norm; and violation semantics, [g(trp*)]v, defining the set
of trajectories violating the norm. Naturally, a trajectory cannot be an
element of both fulfillment and violation semantics for a given norm,
that is, [¢(trp*)]# N [q(trp*)]v = 0. Accordingly, we define the
function ns indicating the state of a norm given a grounding and a
trajectory:

Foiff (I, 7) € [q(trp9)]
v, iff (I,7) € [q(trp")]v
n, otherwise

ns(q(trp”), (I,7)) =

where f stands for fulfilled, v for violated, and n for neither fulfilled
nor violated.

Example of Semantics. A variety of norm semantics can be ex-
pressed as constraints on trajectories, i.e., as constraints on the pos-
sible values of state variables over time. For example, the fulfillment
semantics of the must norm can be expressed by requiring that the
state variable indicating activation of the relevant behavior is true at
least once. Formally:

[ must ((role, act,art))]r =
{(I,7) | Va € Arote.3(b,t) € Bact X I : active(b,a)(7(t)) = T},

where Ajole is the set of all agents role is grounded to, and By is

the set of all behaviors act is grounded to. Intuitively, these semantics
select all trajectories where any agent taking role activates at least
once a behavior that performs act (in this example, we do not require
that the artifact art is used). Variants of this semantics are possible,
for example, stating that the behavior should be enacted at all times
(not just once in the trajectory). The semantics specifying spatial ‘at’
relation can be defined as follows:

[at ((role,act, art))]|r =
{(17 7-) | v(b7 a, t) S Bact X Arole X ]30 S Oart :
active(b,a)(7(t)) = T = pos(b,a)(7(t)) = pos(o)(7(¢))}.

Examples of temporal semantics are available in [23], while an ex-
ample of violation semantics is available in [24]. In general, the ex-
pressiveness of norms depends on two factors, namely, on the com-
plexity of relations in norm semantics, and on the availability of ap-
propriate state variables R.

Semantics are defined over the states of the same types (at-
tributes), and as such, they are applicable to institutional elements.
For instance concrete values of active(roler, act;) can be obtained
given the grounding G, (role, robby) and Gs(acty, pick) which
will result in the concrete state-variable active(pick, robby), while
Ga(roler, forky) and Gy (acty, pick) will result in active(pick, forky).
Hence, norm semantics retain a degree of abstraction, which is fully
grounded upon selection of a particular grounding. As we show in
Section 4, this feature is key to enabling transfer learning.

2.3 Adherence

We are now in a position to define what it means for a given physical
system to behave in compliance with an institution. Consider an in-
stitution Z, and suppose that Z has been grounded in a given domain
D through some grounding G. Further, suppose that all the norms in
7 are given fulfillment semantics in D through the function [[-] 7.

The following definition tells us whether or not a specific, concrete
execution in D adheres to the abstract institution Z given the above
grounding and semantics.

Definition 6. A trajectory (I, 7) adheres to an institution Z, with
admissible grounding G and semantics function [-] 7, if

(I,7) € [norm]F,V norm € Norms.

Adherence allows us to distinguish between trajectories (executions)
which are norm-adherent and others which are not. Computationally,
we rely on the adherence verification mechanism described in [23],
which is used in this paper to evaluate the state of each norm dur-
ing agent execution, providing us with an implementation of the ns
function.

3 Applying Institution Models to RL agents

Markov Decision Processes (MDPs) [18] are an example of how re-
inforcement learning can be used to direct the actions of agents. A
MDP is defined as a tuple (S, A, P, R,~), where S is a state space,
A is a finite set of actions, P is a model, given as transitions probabil-
ity between states depending on actions, and R is a set of rewards —
a scalar feedback signal which agents get as they change their states.
~ € [0,1] is a discount factor indicating the importance of future re-
wards. The goal of a RL agent (the RL problem) is to find a mapping
between states and actions which maximizes the amount of reward
the agent receives, known as cumulative reward or return. Such a
mapping is represented by a policy m(as | s¢), which gives the prob-
ability of taking action a; € A given the state s; € S. RL algorithms
use the notion of value functions: a value function V™ (s) provides
the expected return of rewards starting from state s acting according
to policy 7; and/or a action-value function (Q-function), Q7 (s, a),
which estimates the value of a state given the action. The learning
process consists of value updates which propagate the rewards until
they converge to (near) optimal values. For example, a standard idea
in RL to learn Q-values is known as temporal difference learning:

Qs,a)  Q(s,a) +alr + max Q') — Q(s, ),

where a is a learning rate, and s” and o’ are the state and action subse-
quent to s and a. For a variety of real-world problems the model P is
unknown and the state space may be too large to store. Value function
approximation methods address these problems. In such approaches
state-space variables are represented as a feature vector, where each
feature is a number, describing some property in the state-space. In
this paper we are interested in learning social behavior in a model-
free environment (P is unknown), driven by prior knowledge of so-
cial norms, and in applying the learned policies in novel domains.

3.1 From Norms to Rewards

The ns function (see Section 2.2) evaluates whether norms are ful-
filled, neutral, or violated. This can be used to feed back signals re-
garding the agents’ adherence to norms. The schematic view of this
approach is shown in Figure 1. The ‘institutional model’ takes only
those states which are used in the norm semantics and evaluates the
norms. Naturally, to evaluate norms which have a temporal dimen-
sion, a history of states has to be stored. Note, however, that the
semantics of temporal relations are expressed using state variables
that describe state activation; similarly, the semantics of spatial re-
lations are expressed via state variables that describe the position.
Hence, an increase in the number of norms usually does not entail
a proportional increase in the number of stored states. Note that the
‘institutional model’ is separated from the concrete RL algorithm and
is used only to provide feedback signal to RL agents.



24th European Conference on Artificial Intelligence - ECAI 2020

Santiago de Compostela, Spain

Institution
Model

(ns function)

rewards

Figure 1: RL agents receive feedback signals from the institution.

Given a trajectory and a norm, the ns function evaluates the state
of the norm as fulfilled, violated or neither. The norm reward function
maps two successive evaluations to a feedback signal:

fnorm : {fvvan} X {favyn}'_)R

There are 9 possible transitions of norm evaluations which can be
used to signal positive or negative feedback, namely: (f, f), (f,n),
(f,v), (n, f), (n,n), (n,v), (v, f), (v,n), (v,v). The Fnorm func-
tion can be realized in different ways; while its most effective form
may depend on the underlying RL algorithm, we explore the follow-
ing general ideas.

Feedback from Full Adherence. The adherent reward is the main
reward or the final goal for learning normative behavior. Agents re-
ceive this reward only when their trajectory is adherent to the insti-
tution, i.e., to all institutional norms (see Definition 6). This can be
realized with a procedure F,orm Which is called at each training step
or predefined intervals. For each norm, ns checks its fulfillment. If
all norms are fulfilled, a ‘full adherence’ reward with a value 1 is re-
turned. However, this means that an agent has to fulfill all the norms
before it receives ‘full adherence’ reward and does not provide any
feedback to norms states separately. Thus this reward is sparse and
does not provide helpful intermediate feedback for the credit assign-
ment problem.

Dynamic Feedback from Norms Evaluations. Our verification
mechanism can evaluate each norm separately. This approach pro-
vides feedback to the agents as norms are evaluated. This is used
for reward shaping that is based on the partial achievement of
the final goal. The norm reward function assigns numerical values
to norm evaluation transitions. For example, transitions to fulfilled
state, e.g., (n, f), may be rewarded while transitions to violated state,
e.g., (n,v), may be penalized. In such a case we assign the value
1.0/(number of norms) for transitions to fulfillment, while in the pe-
nalizing case, we assign the same negative value. If the order of exe-
cution, as specified by temporal norms, is violated, we stop all future
rewards until the end of the training episode, since this enables agents
to learn only from temporally consistent (ordered) normative behav-
iors. The feedback from norms can be used to either learn each norm
in a separate policy and then combine them to achieve full adherence
required by the institution, or to learn all norms in one policy.

3.2 Learning Through Abstraction

An interesting distinction that is often made in multi-agent systems is
whether or not agents know about the organization in which they take
part [S]. When learning, agents create ad-hoc policies that depend on
a particular domain while not being ‘aware’ of the underlying in-
stitutional structure. In such a case, changing the grounding for the
same norms (same pattern of behaviors) would require re-learning.

The question is then how RL can be based on abstract re-usable in-
stitutional structures. An abstraction of domain elements implies that
their meaning is defined through abstract categories such as roles, ar-
tifacts, and institutional actions. For example, a carton of milk and
a bag of potatoes mean the same (belongs to the same category)
as ‘goods’ in a Store institution. Our institutional model provides a
method where an agent’s observations and action space can be inter-
preted as such reusable structures. This is achieved by representing
relevant parts of our framework in a matrix form as follows.

Concrete and Abstract State-Space Representation. State vari-
ables in R can be classified into types. For instance, all state variables
describing ‘position’ of agents (or objects) belong to the same class.
Each class represents a particular attribute of agents, objects, behav-
iors or their relation (e.g., active(ag,,b)). If the total number of all
attributes is n, then each domain element and their 2-combinations
are represented as a 1 X n dimensional (row) vector. Vectors of do-
main elements are arranged in a matrix D™*", where m is the sum
of the number of domain elements and their 2-combinations (e.g,
agentibehavory, agentibehavors, etc.). Each entry in D denoted
d;,j assigns the state value of the domain element (or 2-combination)
in row % described by attribute in column j at time ¢. Hence D is a
function of time, i.e., D(t). The trajectory (I, T) maps time to state,
thus it can be also represented in matrix form Dy™*™* 1] , where the
third dimension represents D(¢) at each ¢ € I.

An institution also has its own structure, which captures the
states of institutional elements in roles, actions, and artifacts. Such
a structure is defined by fransfer matrix TF*™, where dimension
k is the sum of the number of institutional elements and their 2-
combinations. Each entry in T, denoted st; ;, represent the value
of the attribute in column j describing the institutional element (or
their combination) in row ¢ at the time ¢. Learning normative behav-
ior from the states of institutional elements would produce (abstract)
procedural knowledge based on declarative domain-independent se-
mantic specifications, applicable to abstract categories (e.g., roles),
and would not depend on a particular domain. Such a policy maps
the values of domain-independent attributes (state-space) and the ac-
tions in Act. We call such a policy an abstract (or transfer) policy,
and we denote it with 7.

At this stage, we have defined the structure of the state spaces of
a domain as D and an institution as T'. Still, it is not clear how the
values in T are obtained. Here the following question arises: How to
map elements in D to a particular place in the reusable structure T'?

Structural Mapping. An institution is established by (T, [-]),
that is, its structure and its function. Its function (norm semantics) is
already given in abstract terms, through relations of attribute values
describing institutional elements. To interpret (map) domain states as
institutional states, and to isolate attributes used only by semantics,
we introduce two additional matrices, related to grounding and se-
mantics. Let G**™, be an interpretation matrix, which represents
an (admissible) grounding, where its entry g; ; is 1 if the domain
element(s) represented by column j are grounded by the institution
element(s) in row %, 0 otherwise. Similarly, let matrix S™*" be a se-
mantics indicator matrix, where h is the number of attributes used
by the semantics functions (e.g. ‘must’ norm uses only one attribute
active). Its entries s; ; are assigned value 1 if the attribute in row
matches (is the same as) the attribute in column 7, otherwise 0 is as-
signed. While matrix G is a function of grounding, S depends on the



24th European Conference on Artificial Intelligence - ECAI 2020

Santiago de Compostela, Spain

attributes used in the semantics. The relation
GD=T (1)

transforms D into structure T'. It transforms the rows of D to those
of T via grounding G, determining how domain elements ‘count-
as’ abstract institution elements. The columns of the result T are the
(all) attributes describing the relevant institutional elements. This is
illustrated in Figure 2. Similarly to D(t), T(¢) also maps time to in-
stitutional states, and T1™*™* | represents part of the full trajectory
consisting of only state values of institutional elements. Still, evaluat-
ing norms semantics in this partial trajectory can be expensive since
all attributes have to be stored for each time step. Fortunately, to eval-
uate the state of norms we need only attributes used by the semantics
functions. This is achieved with the following relation: TS = Ts.
Thus, the trajectory defined as Ts1™*"*!!! can be used for evalu-
ating norm states ns(g(trp*), Ts™*"*!!). For example, the result
of ns evaluating the trajectory consisting of two subsequent states
Ts(t1) and Ts(t2) may result in ‘n’, where evaluating it again with
T's(t3) may result in  f*. Thus Fnorm can produce the feedback sig-
nal (e.g., from {n, f}) needed for learning.

In general, T reduces the size of the state-space and provides an
invariant functional structure, thus 7 can be re-used in domains
where the appropriate transform of D can be realized. We call re-
grounding of an institution, changing its grounding and therefore
associating the same abstract categories with a novel domain. This
allows both learning abstract policy 7y in different domains but also
executing it in novel domains. Equation 1 can be applied for each
time step G(¢)D(¢) = T(t). For the purpose of this paper, in the
evaluation presented in Section 4 (Experiment 2), we will manu-
ally re-ground the institution at arbitrary time steps to demonstrate
how already learned norms can be applied with different groundings.
The ability to re-ground norms to other domains provides a work-
flow where one can train abstract policies in simulation (adapted
to robotics) and then re-ground them to real robotic systems. The
trained policy from simulation then can be updated by learning subtle
details starting from an already trained (hence ‘safe’ from the norma-
tive point of view) policy. Some cognitive aspects of abstract learning
are discussed in [24].

4 Experiments

The goal of this section is to test and evaluate the methods de-
scribed so far and to demonstrate the benefits of using prior nor-
mative knowledge and institution abstraction in model free environ-
ments. Experiment 1 compares standard policy learning with learn-
ing abstracted policies. Here we hypothesize that learning will be
significantly faster if the state space is reduced via abstraction. In ex-
periment 2, we re-ground the abstract policy learned in experiment 1
on the new ’factory’ domain, demonstrating the transfer of learning.
Experiment 3 focuses on reward shaping and we demonstrate its ap-
plications on both standard learning and abstract learning. In the last
experiment 4, we use an additional agent to demonstrate applicability
of the method to multi-agent systems.

The experiments are based on the ‘shopping’ scenarios from real
robotic competitions 2, where the typical tasks consist of picking an
item from a store, deliver it to a specific place, pay for it, etc. We
show how the learned abstract policies can be applied to novel do-
mains without relearning, which can be used to address other scenar-
ios from same competitions, e.g. waiter robots.

2 sciroc.eu/e07-shopping-pick-pack and www.robocupathome.org

Transfer Matrix T=6D VTs= Ts
[size] [active] [‘pos] [detected]

(M) me 8 o

W
4 T to abstract policy
RS 4

”,

-
Semantics [S]

Grounding [6] Institution

Domain

art,

Roles Acts

(D)

[size][activel[pos][rot][vel][detected] ...
attributes

Domain Matrix

Figure 2: [llustration of equation GD = T. D is Domain state space,
T is Institution state space, and G is interpretation matrix; States
from T are encoded in feature vector while states from T'g are stored
and used for ‘norms state’ evaluation

Videos accompanying this paper and further details to al-
low reproducibility, including norms semantics and all learn-
ing hyper-parameters used in the experiments, can be found at
https://youtu.be/leOihOKs25A.

4.1 Scenario

Robby is a robot that is aware of the ‘Store’ institution providing
social knowledge on how to behave in a buying/selling scenario.
Namely, Robby is aware of the following norms: An agent that wants
to buy something should pick the desired object and not other objects
in the store, and it should pay for the object at a designated place be-
fore leaving. The ‘Store’ institution consists of role Buyer, actions
Pay and GetGoods, and artifacts Goods and PayPlace. Norms are
specified as follows (we increase the complexity of this institution as
we progress through the experiments):

MustUse ((Buyer, GetGoods, Goods))

MustAt ((Buyer, Pay, Payplace))

Before ((Buyer, GetGoods, Goods) ,
(Buyer, Pay, PayPlace))

The example domain includes Robby and the set of behaviors.
Robby knows how to execute 3 complex behaviors: take items, exe-
cute wireless money transfer, and open doors. Robby is also capable
of primitive actions: moving one step forward and backward, and ro-
tating one degree left or right. The domain includes 13 items in the
store, e.g., a battery, a drill, an ax, screwdrivers, as well as a cash
register. The experiments focus only on learning normative policies,
and not on particular behaviors (such as grasping an item), thus all
robot behaviors are atomic (completed in one step).



24th European Conference on Artificial Intelligence - ECAI 2020

Santiago de Compostela, Spain

Figure 3: Simulated Store Environment

4.2 Experiments Setup

Software. We use a game engine [22] to simulate a simplified
store domain (see Figure 3). Learning is done with PPO [19] with
the help of the Machine Learning toolkit [9] (v0.6). For all reported
experiments, we used a maximum of 2000 steps per episode, and
results are averaged over 10 trials (mean), where for each trial data
is collected over 16 parallel simulations. In addition to the rewards
regarding norm adherence, the agent receives small negative feed-
back (1.0e — 4) for each simulation step to ensure that agents fin-
ish episodes as soon as possible. In all experiments, we used 3-layer
neural network with 256 hidden units and the same hyper-parameters
(see Table 1).

beta ~gamma lambd learning rate  hidden units  time_horizon  batch_size
6e-3 0.99 0.95 3e-4 256 1024 1024

Table 1: Hyper-parameters used for training in the experiments. The
full list of parameters is available at https://youtu.be/IleOihOKs25A

Encoding. In the standard learning approach, the policy is associ-
ated with a particular agent and its observable states (states available
through agent sensors) are encoded from D. The agent observes the
state through 7 rays pointing in different directions, each ray encod-
ing information about which object is detected (or none) and its dis-
tance. Given the 16 objects in the environment, this is encoded as a
feature vector of length (16 + 2) x 7. Additional states indicate if
an object is ‘near’ or if the agent is ‘holding’ an object, activation of
behaviors, and the velocity vector, making the total length of feature
vector 158 elements. Action space consists of all 7 introduced be-
haviors. In the abstract case, a policy is learned for a particular role,
where observable states are encoded based on the states of institu-
tional elements from T. For instance, the lenght of feature vector
from 7 ray is reduced to 24 elements, since now rays detects arti-
facts. The action spaces consist of 2 behaviors grounded to Acts.
Still, in addition to this, we include 4 motion primitive actions. This
limits the policy abstraction to only normative aspects of behaviors
and consequently it limits re-grounding of agents with substantially
different motion primitives. The total size of the feature vector is sig-
nificantly reduced to 39 elements.

Hardware. The simulations are executed on a desktop computer
with the following configuration: Intel Core 17 4790K CPU @ 4GHz
(x64), 16GB DDR3 RAM, Nvidia GTX970 (4GB GDDRY).

4.3 Experiment 1: Proof of Concept

The goal of this experiment is to learn the normative behav-
ior specified by the Store institution. For training, we use feed-
back from full adherence in two different settings: (A) Standard

Figure 4: Factory-yard environment

learning, and (B) Abstract Learning. Groundings are given as fol-
lows: Go = {Buyer, Robby}, G, = {GetGoods, pick}, Gy =
{Pay,transfer} and G, = {Goods, battery}. The hypothesis is
that the learning will be significantly faster in setting (B) since the
state-space is significantly reduced. Results confirm our hypothesis
(see Figure 5a). In setting (A) the agent failed to learn the normative
policy in almost all of the trials, whereas in setting (B) almost all
training trials managed to converge to fully adherent behavior. Note
that the only reason we can compare standard and abstract policy is
that we have used the same grounding for both of them. In the fol-
lowing experiment, we investigate the case when abstract policy is
used with a grounding other than that used for learning.

4.4 Experiment 2: Transfer of Learning

The goal of this experiment is to measure the ability of the ap-
proach to enable transfer of learning. In scenario (A) we test a new
grounding in the same domain: G, = {Goods, drill}. We expect
that the agent will know to buy the drill instead of the battery since
now the drill is abstracted to *Goods’. It is important to stress that
while humans may assign different names to roles, actions or ar-
tifacts over different domains, the pattern of agent behaviors may
still have the same semantics. Scenario (B) demonstrates this con-
cept, where we use a factory-yard domain. A robot named Forky
is required to sort out different items by locating them on a con-
veyor belt, lifting them and bringing them to a container’s hatch
for disposal. We ground the Store institution to the new domain
as follows: G, = {Buyer, Forky}, G = {GetGoods,lift},
Gy, = {Pay,leave} and G, = {Goods,box1}. Forky is twice
as slow than Robby, the size of the environment is increased, and
the spatial layout is somewhat different (see Figure 4). Addition-
ally, items that Forky is required to lift are moving, and sometimes
they are not in the environment at all (they appear on the conveyor
belt), which can additionally confuse the agent. In the trials, we dis-
tinguish between (B1) directly applying the abstract policy learned
in the Store scenario, (B2) where we continue training of the trans-
ferred policy in the new domain for an additional 200k steps; and
(B3) where we train the agent from scratch.

Results show that in the trial (A), Robby successfully locates the
drill (instead of the battery), picks it up and goes to the cash regis-
ter to pay. In scenario (B), with the original store policy (case B1),
Forky manages to search for and navigate to the grounded factory
item (box), lift it, and in most of the episodes manages to reach the
hatch to dispose of the item. Figure 5b shows that continuing to train
the policy (B2) did not improve agent behavior, while learning from
scratch (B3) did not manage to achieve any significant results within
4M steps.



24th European Conference on Artificial Intelligence - ECAI 2020

Santiago de Compostela, Spain

Abstract Learning (Mean)

0.200

Standard Learning (Mean)

0.000 500.0k 1.000M 1.500M  2.000M  2.500M 3.000M 3.500M 4.000M
(a) Experiment 1: Proof of Concept

180 abstract B

1.40

abstract A
standard A

standard B

0.000 500.0k 1.000M 1.500M 2.000M 2.500M 3.000M 3.500M 4.000M

(c) Experiment 3: Normative Feedback

e Using the abstract policy

sl from the store environment

0400] T

0.300 B2: Learning
0200 from transfer

B3: Learning
from scratch

0.000 500.0k 1.000M 1.500M 2.000M 2.500M 3.000M 3.500M 4.000M

(b) Experiment 2: Transfer of Learning

Buyer (Mean)

Seller (Mean)

0.000 500.0k 1.000M 1.500M 2.000M 2.500M 3.000M 3.500M 4.000M

(d) Experiment 4: Multiple Agents

Figure 5: Summary of Results; ‘Cumulative Reward’ is shown on the vertical axis and the ‘Number of Steps’ on the horizontal axis and shaded
area is 95% confidence interval. Results are averaged over 10 trials (mean), where for each trial data is collected over 16 parallel simulations

4.5 Experiment 3: Normative Feedback

Figure 5a shows that standard learning was unable to synthesize sat-
isfactory policies in most cases. The goal of this experiment is to
test learning based on feedback from evaluation of individual norms
and to assess whether it can more effectively guide an agent towards
a normative policy. The temporal norms are hardest to learn since
they directly introduce the (temporal) credit assignment problem. We
make the problem more challenging (compared to experiment 1) by
adding an additional temporal norm stating that the buyer, after pay-
ing, is expected to exit the store through the door. The hypothesis is
that Robby should learn the policy in a more complex environment
even without institution abstraction, while the abstraction will lead
to even faster learning. We test two approaches: (A) if any norm is
violated, all future rewards are stopped, and (B) if any norm is vio-
lated the episode is restarted, and an amount of negative feedback is
assigned to the learning agent.

The approaches (A) and (B) are applied to standard (full-state
space) learning and abstracted learning (see Figure 5c). Even with
additional temporal requirements, the results are significantly im-
proved compared to experiment 1. Sill, in standard learning, 4M steps
were not sufficient for all trials to reach fully adherent policies.

4.6 Experiment 4: Multiple Agents

While it is possible to learn one abstract policy to guide all the agents
in an institution, in this experiment each agent learns its own abstract
policy. A known problem in MAS is how to determine the right ’re-
ward structure’ [6] so that agents are rewarded appropriately to their
contribution to achieving a shared task. Our approach allows us to
address this problem by breaking social space into norms. Then the
rewards are distributed in the following way. The acting of all agents

together creates a single trajectory which can be either adherent to
an institution or not, thus the final reward is given to each agent that
is grounded by the institutional roles. Norms of a particular agent
depend on its role, thus each agent gets feedback depending on the
norm it is related to. Some norms include more than one role: in such
cases, agents have to cooperate, so that if a norm is satisfied, they
both get the same reward, and no reward otherwise.

In this experiment, we use an additional robotic agent named
‘Kobby’, which is capable only of navigating, receiving, and ac-
cepting/declining payments from nearby agents. The institution now
includes the additional role of Seller, and action ReceivePayment,
with additional norms indicating that the seller has to receive pay-
ment at the place of payment and a temporal norm ‘equals’ en-
suring that agents synchronize their behaviors. This means that the
agents grounded to the roles of Seller and Buyer have to cooperate
to achieve adherence, i.e., ‘Paying’ by one agent should be done at
the same time as ‘ReceivingPayment’ by another agent. The ‘Buyer’
has to fulfill more norms than the ‘Seller’, which results in the differ-
ence in cumulative reward. Learning trials for both agents converge
to fully adherent policies (see Figure 5d).

4.7 Summary of Results

Experiment 1 reveals that learning normative behavior using only ad-
herent feedback is possible, but does not scale to complex settings.
Much better results are achieved with learning abstract policies. Ex-
periment 2 demonstrates that abstraction enables us to apply policies
to novel domains, even when the policy in a novel domain is very
hard to learn from scratch. Experiment 3 demonstrates automatic nor-
mative reward feedback, where the best results are achieved when
combining normative feedback and abstraction. Finally, in Experi-
ment 4, we show that it is possible to learn policies for coordinating



24th European Conference on Artificial Intelligence - ECAI 2020

Santiago de Compostela, Spain

multiple agents.

5 Conclusions and Future Work

In this paper we showed how (1) behavior rules can be learned from
automatic shaping of rewards from prior normative knowledge, ad-
dressing the credit assignment problem and how (2) given an ad-
missible grounding, we can automatically and significantly reduce
the size of the state-space and action space, addressing the curse of
dimensionality problem. (3) Learned schematic behavior in abstract
policies can be applied (via re-grounding) to novel domains, thus
achieving a transfer of learning.

As an additional contribution (4), we provided Equation 1 which
operationalizes (defines) relations between concrete domains and ab-
stract reusable functional structures. The iterative nature of this equa-
tion: G2(t)[G1(¢)D(t)] suggests that behaviors can be learned hier-
archically, from primitive functionalities to social behaviors or used
for explaining complex behaviors through primitive ones. The ab-
stract policies are the state-transition function, hence they can be
formalized as operators (or simulators [3]) in the context of task
planning and then re-used for deliberate reasoning hierarchically, by
learning or reason about grounding. This is left for future work. In ad-
dition, abstract learning should be further explored through the lens
of cognitive science: “considerable empirical evidence suggests that
structural representation pervade human knowledge” [3].

Acknowledgments. This work has been partly supported by the
European Union’s Horizon 2020 research and innovation programme
under grant agreement No 825619 "AI4EU”.

REFERENCES

[1] T. Agotnes, W. van der Hoek, J. A. Rodriguez-Aguilar,
C. Sierra, and M. J. Wooldridge, ‘On the logic of normative
systems’, in Procs of the Int Joint Conf on Artificial Intelligence
(IJCAI), pp. 1175-1180, (2007).

[2] M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz,
B. McGrew, J. Pachocki, A. Petron, M. Plappert, G. Powell,
A. Ray, et al., ‘Learning dexterous in-hand manipulation’, The
Int Journal of Robotics Research, 39(1), 1177-1187, (2020).

[3] L. W. Barsalou, ‘Abstraction in perceptual symbol systems’,
Philos. Trans. of the Royal Society of London. Series B, Bio-
logical Sciences, 358(1435), 1177-1187, (2003).

[4] R. E. Bellman, Adaptive control processes: a guided tour,
Princeton university press, 2015.

[5] O. Boissier, J. F. Hiibner, and J. S. Sichman, ‘Organization ori-
ented programming: From closed to open organizations’, in En-
gineering Societies in the Agents World VII, eds., G. O’Hare,
A. Ricci, M. O’Grady, and O. Dikenelli, pp. 86—-105, (2007).

[6] G. Chalkiadakis and C. Boutilier, ‘Coordination in multiagent
reinforcement learning: A bayesian approach’, in Procs of the
Int Joint Conf on Autonomos Agents and Multi-Agent Systems
(AAMAS), pp. 709-716, (2003).

[7]1 G. De Giacomo, L. Iocchi, M. Favorito, and F. Patrizi, ‘Foun-
dations for restraining bolts: Reinforcement learning with
LTLt/LDL( restraining specifications’, in Procs of the Int Conf
on Automated Planning and Scheduling (ICAPS), pp. 128-136,
(2019).

[8] A. Garcia-Camino, J-A Rodriguez-Aguilar, C. Sierra, and
W. Vasconcelos, ‘Norm-oriented programming of electronic in-

(9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

(21]

[22]
(23]

[24]

[25]

stitutions’, in Procs of the Int Joint Conf on Autonomos Agents
and Multi-Agent Systems (AAMAS), pp. 670-672, (2006).

A. Juliani, V. Berges, E. Vckay, Y. Gao, H. Henry, M. Mat-
tar, and D. Lange, ‘Unity: A general platform for in-
telligent agents’, arXiv preprint arXiv:1809.02627, (2018).
https://github.com/Unity-Technologies/ml-agents.

J. Li, F. Meneguzzi, M. Fagundes, and B. Logan, ‘Reinforce-
ment learning of normative monitoring intensities’, in Interna-
tional Workshop on Coordination, Organizations, Institutions,
and Norms in Agent Systems, pp. 209-223, (2015).

M. J. Matari¢, ‘Learning in behavior-based multi-robot sys-
tems: Policies, models, and other agents’, Cognitive Systems
Research, 2(1), 81-93, (2001).

M. L. Minsky, E. A. Feigenbaum, and J. Feldman, Computers
and Thought, McGraw-Hill, 1963.

A. Y Ng, D. Harada, and S. Russell, ‘Policy invariance under
reward transformations: Theory and application to reward shap-
ing’, in Procs of the Int Conf on Machine Learning (ICML), pp.
278-287, (1999).

A. Y. Ng and S. Russell, ‘Algorithms for inverse reinforce-
ment learning’, in Procs of the Int Conf on Machine Learning
(ICML), p. 2, (2000).

D. C. North, Institutions, institutional change and economic
performance, Cambridge university press, 1990.

E. Ostrom, Understanding institutional diversity, Princeton
university press, 2009.

L.Y. Pratt, ‘Discriminability-based transfer between neural net-
works’, in Procs of Advances on Neural Information Process-
ing Systems (NIPS), pp. 204-211, (1993).

M. L. Puterman, Markov Decision Processes.: Discrete
Stochastic Dynamic Programming, John Wiley & Sons, 2014.
J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, ‘Proximal policy optimization algorithms’, arXiv
preprint arXiv:1707.06347, (2017).

J. R. Searle, ‘What is an institution’, Journal of institutional
economics, 1(1), 1-22, (2005).

D. Silver, J. Schrittwieser, K. Simonyan, 1. Antonoglou,
A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton,
et al., ‘Mastering the game of ‘go’ without human knowledge’,
Nature, 550(7676), 354, (2017).

Unity Technologies. https://unity.com/, Accessed June 2019.
S. Tomic, F. Pecora, and A. Saffiotti, ‘Norms, institutions, and
robots’, arXiv preprint arXiv:1807.11456, (2018).

S. Tomic, F. Pecora, and A. Saffiotti, ‘Robby is not a robber
(anymore): On the use of institutions for learning normative
behavior’, arXiv preprint arXiv:1908.02138, (2019).

R. S. Woodworth and E. L. Thorndike, ‘The influence of im-
provement in one mental function upon the efficiency of other
functions’, Psychological review, 8(3), 247, (1901).



