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Abstract. One of the main obstacles for developing flexible Al
systems is the split between data-based learners and model-based
solvers. Solvers such as classical planners are very flexible and can
deal with a variety of problem instances and goals but require first-
order symbolic models. Data-based learners, on the other hand, are
robust but do not produce such representations. In this work we ad-
dress this split by showing how the first-order symbolic represen-
tations that are used by planners can be learned from non-symbolic
inputs that encode the structure of the state space. The representation
learning problem is formulated as the problem of inferring planning
instances over a common but unknown first-order domain that ac-
count for the structure of the observed state space. This means to in-
fer a complete first-order representation (i.e. general action schemas,
relational symbols, and objects) that explains the observed state
space structures. The inference problem is cast as a two-level com-
binatorial search where the outer level searches for values of a small
set of hyperparameters and the inner level, solved via SAT, searches
for a first-order symbolic model. The framework is shown to produce
general and correct first-order representations for standard problems
like Gripper, Blocksworld, and Hanoi from input graphs that encode
the flat state-space structure of a single instance.

1 INTRODUCTION

Two of the main research threads in Al revolve around the develop-
ment of data-based learners capable of inferring behavior and func-
tions from experience and data, and model-based solvers capable of
tackling well-defined but intractable models like SAT, classical plan-
ning, and Bayesian networks. Learners, and in particular deep learn-
ers, have achieved considerable success but result in black boxes
that do not have the flexibility, transparency, and generality of their
model-based counterparts [26, 27, 32, 12, 17]. Solvers, on the other
hand, require models which are hard to build by hand. This work
is aimed at bridging this gap by addressing the problem of learn-
ing first-order models from data without using any prior symbolic
knowledge.

Almost all existing approaches for learning representations for act-
ing and planning fall into two camps to be discussed below. On the
one hand, methods that output symbolic representations but which
require symbolic representations in the input; on the other, methods
that do not require symbolic inputs but which do not produce them
either. First-order representations structured in terms of objects and
relations like PDDL [29, 21, 18], however, have a number of bene-
fits; in particular, they are easier to understand, and they can be easily
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reused for defining a variety of new instances and goals. Represen-
tations like PDDL, however, are written by hand; the challenge is to
learn them from data.

In the proposed formulation, general first-order planning repre-
sentations are learned from graphs that encode the structure of the
state space of one or more problem instances. For this, the repre-
sentation learning problem is formulated as the problem of inferring
planning instances P; over a common, fully unknown, first-order do-
main D (action schemas and predicate symbols) such that the graphs
G(P;) associated with the instances P; and the observed graphs G;
are structurally equivalent. Since the space of possible domains can
be bounded by a number of hyperparameters with small values, such
as the number of action schemas, predicates, and arguments, the in-
ference problem is cast as a two-level combinatorial search where
the outer level looks for the right value of the hyperparameters and
the inner level, formulated and solved via SAT, looks for a first-order
representation that fits the hyperparameters and explains the input
graphs. Correct and general first-order models for domains like Grip-
per, Blocksworld, and Hanoi are shown to be learned from graphs
that encode the flat state-space structure of a single small instance.

2 RELATED RESEARCH

Object-oriented MDPs [13] and similar work in classical planning
[37, 2, 1], build first-order model representations but starting with a
first-order symbolic language, or with information about the actions
and their arguments [11]. Inductive logic programming methods [31]
have been used for learning general policies but from symbolic en-
codings too [23, 28, 14]. More recently, general policies have been
learned using deep learning methods but also starting with PDDL
models [36, 9, 22, 6]. The same holds for methods for learning ab-
stract planning representations [7]. Other recent methods produce
PDDL models from given macro-actions (options) but these models
are propositional and hence do not generalize [24].

Deep reinforcement learning (DRL) methods [30], on the other
hand, generate policies over high-dimensional perceptual spaces like
images, without using any prior symbolic knowledge [19, 10, 15].
Yet by not constructing first-order representations, DRL methods
lose the benefits of transparency, reusability, and compositionality
[27, 25]. Recent work in deep symbolic relational reinforcement
learning [16] attempts to account for objects and relations through
the use of attention mechanisms and loss functions but the semantic
and conceptual gap between the low-level techniques and the high-
level representations that are required remains just too large. Some-
thing similar occurs with work aimed at learning low-dimensional
representations that disentangle the factors of variations in the data
[35]. The first-order representations used in planning are low dimen-
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sional but highly structured, and it is not clear that they can be learned
in this way. An alternative approach produces first-order representa-
tions using a class of variational autoencoders that provide a low-
dimensional encoding of the images representing the states [4, 3].

3 FORMULATION

The proposed formulation for learning planning representations from
data departs from existing approaches in two fundamental ways.
First, unlike deep learning approaches, the representations are not
learned from images associated with states but from the structure
of the state space. Second, unlike other methods that deliver first-
order symbolic planning representations, the proposed method does
not assume knowledge of the action schemas, predicate symbols, or
objects; these are all learned from the input. All the data required
to learn planning representations in the four domains considered in
the experiments, Blocksworld, Towers of Hanoi, Gripper, and Grid,
is shown in Fig. 1. In each case, the sole input is a labeled directed
graph that encodes the structure of the state-space associated with
a small problem instance, and the output is a PDDL-like representa-
tion made up of a general first-order domain with action schemas and
predicate symbols, some of which are possibly static, and instance
information describing objects and an initial situation. No goal infor-
mation, however, is assumed in the input, and no goal information is
produced in the output. Further details about the inputs and outputs
of the representation learning approach are described below.

3.1 Inputs: Labeled Graphs

The inputs are one or more labeled directed graphs that encode the
structure of the state space of one or several problem instances. The
nodes of these graphs represent the states and no information about
the contents or inner structure of them is provided or needed. Labels
in the edges represent action types; e.g., action types in the Grip-
per domain distinguish three types of actions: moves, pick ups, and
drops. In the absence of labels, all edges are assumed to have the
same label. No other information is provided as input or in the input
graphs; in particular, no node is marked as an initial or goal state (see
Fig. 1). Initial states for each input graph are inferred indirectly, but
nothing is inferred about goals.

In standard, tabular (model-free) reinforcement learning (RL)
schemes [34], the inputs are traces made up of states, actions, and re-
wards, and the task is to learn a policy for maximizing (discounted)
expected reward, not to learn factored symbolic representations of
the actions and states. The same inputs are used in model-based re-
inforcement learning methods where the policy is derived from a flat
model that is learned incrementally but which does not transfer to
other problems [8].

One way to understand the labeled input graphs used by our
method is as collections of RL traces organized as graphs but with-
out information about rewards and with the actions replaced by less
specific action types or labels. Indeed, for a given node in an input
graph, there may be zero, one, or many outgoing edges labeled with
the same action type. We assume however that input graphs are com-
plete in the sense that if they do not have an edge (s, [, s’) between
two nodes s and s” with action label [, it is because there is no trace
that contains such a transition. Since the graphs required for building
the target representations are not large, a sufficient number of sam-
pled traces can be used to produce such graphs. In the experiments,
however, we built the input graphs by systematically expanding the
whole state space of a number of small problem instances (in our

case just one) from some initial state. Formally, the input graphs are
tuples G = (V, E, L), where the nodes n in V' correspond to the dif-
ferent states, and the edges (n,n’) in E with label [ € L, denoted
(n,l,n"), correspond to state transitions produced by an action with
label [. For the sake of the presentation, it is assumed that all nodes
in an input graph can be reached from one or more nodes. The for-
mulation, however, does not require this assumption.

3.2 Outputs: First-Order Representations

Given labeled graphs G1, . .., Gy, in the input, the learning method
produces a corresponding set of planning instances P4, ..., Py, in
the output over a common planning domain D (also learned). A
(classical) planning instance is a pair P = (D, I) where D is a first-
order planning domain and [ is the instance information. The
planning domain D contains a set of predicate symbols and a set
of action schemas with preconditions and effects given by atoms
p(x1,...,xx) or their negations, where p is a domain predicate and
each x; is a variable representing one of the arguments of the ac-
tion schema. The instance information is a tuple I = (O, Init, Goal)
where O is a (finite) set of object names c;, and Init and Goal are
sets of ground atoms p(ci, ..., ck) or their negations, where p is a
predicate symbol in D of arity k. This is the structure of planning
problems expressed in PDDL [29, 21] that corresponds to STRIPS
schemas with negation. The actual name of the constants in O is ir-
relevant and can be replaced by numbers in the interval [1, N] where
N = |0] is the number of objects in O. Similarly, goals are included
in [ to keep the notation consistent with planning practice, but they
play no role in the formulation.

A problem P = (D, I defines a labeled graph G(P) = (V, E, L)
where the nodes n in V' correspond to the states s(n) over P, and
there is an edge (n,n’) in E with label a, (n, a, n’), if the state tran-
sitions (s(n), s(n')) is enabled by a ground instance of the schema
a in P. It is thus assumed that the ground instances of the same ac-
tion schema share the same label, and hence that edges with different
labels in the input graphs involve ground instances from different
action schemas.

3.3 Inputs to Outputs: Representation Discovery

Representation learning in our setting is about finding the (simplest)
domain D and instances P; over D that define graphs G(P;) that
are structurally equivalent (isomorphic) to the input graphs G;. We
formalize the relation between the labeled graphs G(P;) associated
with the instances P; and the input labeled graphs G; as follows:

Definition 1. An instance P accounts for a labeled graph G if
(n,a,n’) is a labeled edge in G(P) iff (h(n),g(a), h(n’)) is a la-
beled edge in G, for some function g between the labels in G(P) and
those in G, and a 1-to-1 function h between the nodes in G(P) and
those in G.

The representation learning problem is then:

Definition 2. The representation discovery problem is finding a do-
main D and instances P; = (D, I;) that account for the input labeled
graphs G, i =1,...,m.

For solving the problem, we take advantage that the space of pos-
sible domain representations D is bounded by the values of a small
number of domain parameters like the number of action schemas,
predicates, and arguments (arities). Likewise, the number of possible
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(a) Towers of Hanoi (1 label)

(b) Gripper (3 labels)

)/ R

(c) Blocksworld (3 labels)

(d) 4% 3 Grid (4 labels)

Figure 1. Input data for learning the planning representations in the four domains considered. The proposed formulation accepts one or mode labeled directed
graphs encoding the structure of the state space of one or more problem instances as the sole input. It then produces symbolic PDDL-like planning
representations that account for the input graphs in the form of a general first-order domain with action schemas and predicate symbols, and instance
information describing objects and an initial situation. Labels are used to distinguish action types. In each of the four domains, a single input graph
corresponding to a single instance (as shown) sufficed to learn the general first-order domain representations. (The graphs can be zoomed in to reveal the labels.)

instances I; is bounded by the size of the input graphs. As a result,
representation discovery becomes a combinatorial problem. The do-
main parameters define also how complex a domain representation
is, with simpler representations involving parameters with smaller
values. Simpler domain representations are preferred although we
do not introduce or deal with functions to rank domains. Instead, we
simply bound the value of such parameters.

4 SAT ENCODING

The problem of computing the instances P; = (D, I;) that account
for the observed labeled graphs G;, ¢=1,...,n, is mapped into
the problem of checking the satisfiability of a propositional the-
ory To(G1.n) Where « is a vector of hyperparameters. The theory
Ta(G1:n) is the union of formulas or layers

To(Gin) =To U | J{Th:i=1,2,...,n} (1

where the formula T2 is aimed at capturing the domain D, and takes
as input the vector o of hyperparameters only, while formula T}, is
aimed at capturing the instance information I;, and takes as input the
graph G as well. The domain layer T involves its own variables,
while each instance layer T, involves its own variables and those of
the domain layer. The encoding of the domain D and the instances
P; can be read (decoded) from the truth assignments that satisty the
theory T (G1:) over the variables in the corresponding layer.

The vector of hyperparameters o represents the number of ac-
tion schemas and the arity of each one of them, the number of predi-
cate symbols and the arity of each one of them, the number of differ-
ent atoms in the schemas, the total number of unary and binary static
predicates, and the number of objects in each layer ¢. We provide a
max value on each of these parameters, and then consider the theories
Te (Glm) for each of the o vectors that comply with such bounds.
Action schemas a, predicate symbols p, atom names m, arguments
v, unary and binary predicates u and b, and objects o, are all integers
that range from 1 to their corresponding number in «.. A predicate
p is static if all p-atoms are static, meaning that they do not appear
in the effects of any action. Static atoms are used as preconditions to
control the grounding of action schemas, and in the SAT encoding,
they are treated differently than the other (fluent) atoms.

Next we fully define the theory T (G1.r): first the domain layer
T2 and then each of the instance layers T2, i = 1, ..., n. The encod-
ing is not trivial and it is one of the main contributions of this work,

along with the formulation of the representation learning problem
and the results. For lack of space, we only provide brief explanations
for the formulas in the encoding.

4.1 SAT Encoding: Domain Layer 7?

The domain layer T2 makes use of the following boolean variables,
some of which can be regarded as decision variables, and the others,
as the variables whose values are determined by them. It defines the
space of possible domains D given the value of the hyperparameters
« and it does not use the input graphs.

Decision propositions:

pO(a, m)/pl(a, m): m is negative/positive precondition of a,
e0(a,m)/el(a, m): m is negative/positive effect of a,

label(a, !): label of action schema a is [,

arity(p, 7): arity of predicate symbol p,

at(m, p): m is a p-atom,

at(m, i, v): i-th argument of m is (action) argument v,

un(u, a, v): action a uses static unary predicate v on argument v,
bin(b, a, v, v"): a uses static binary pred. b on arguments v and v/

Implied propositions:

e use(a,m): action @ uses atom m,

e use(m): some action a uses atom m,

e arg(a,v): action a uses argument v,

e argval(a,v, m,i) < use(a,m) A at(m, i,v),
o —staticO(a, m, p) = at(m, p) A e0(a, m),

o —staticl(a, m,p) = at(m,p) A el(a, m).

4.1.1 Formulas

Atoms in preconditions and effects, and unique action labels:
use(a, m)<p0(a, m)Vpl(a, m)Vveld(a, m)Vel(a, m) ()

use(m) < \/, use(a, m) 3)

~p0(a,m) V —pl(a, m) @)

-e0(a, m) V —el(a, m) )

At-Most-1 {label(a,l) : 1} (6)
Effects are non-redundant, and unique predicate arities:

e0(a, m) = —p0(a, m) @)

el(a,m) = —pl(a,m) €))
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Exactly-1 {arity(p,¢) : 0 < ¢ < max-arity} 9
Structure of atoms: predicate symbols and arguments:

Exactly-1 {at(m, p) : p} (10)

At-Most-1 {at(m,i,v) : v} (11)

at(m, p) A at(m, i,v) = \/igjgmaximy arity(p, 7) (12)

at(m,p) Aarity(p, i) = A\, ,;<; V, at(m, j,v) (13)

at(m,p) Aarity(p, 1) = A, - <max.ariry 7M., 5, ) (14)

1-1 map of atom names into possible atom structures: For vect(m)
denoting the boolean vector with components use(m), {at(m, p) }p,
and {at(m,i,v)}; ., impose the constraint vect(m) <;e, vect(m')
when m < m/ for uniqueness.

Strict-Lex-Order {vect(m) : m} (15)
Atoms are non-static; static atoms dealt with separately:

Vam [—\staticO(a, m,p) V —staticl(a, m,p)} (16)
—staticO(a, m, p) = at(m, p) A pl(a,m) A eO(a, m) (17)
—staticl(a, m, p) = at(m,p) A p0(a,m) Ael(a,m) (18)

Atom and action arguments:

use(a, m) A at(m, i, v) = arg(a, v) (19)

arg(a,v) =V, ;argval(a, v, m, 1) (20)

argval(a, v, m, i) < use(a, m) A at(m, i, v) 21
Arities of action schemas and predicate symbols:

/\VZarily(aclicn a) —arg(a, v) (22)

/\Ogu<arity(aaion a) arg(a, v) (23)

/\i;éarity(atom ») —arity(p,4) A \,;— arity(atom p) arity(p, i) (24)
If static predicate on action argument, argument must exist:

un(u, a,v) = arg(a, v) (25)

bin(b, a, v, ") = arg(a,v) A arg(a, V') (26)

4.2 SAT Encoding: Instance Layer 7}

The layers T, of the propositional theory Tb, (G11.,,) make use of the
input graphs G; in the form of a set of states (nodes) s and transi-
tions (edges) t. The source and destination states of a transition ¢ are
denoted t.src and t.dest, and the label as t.label. The layers T in-
troduce symbols for ground atoms &, objects o, and tuples of objects
0 whose size matches the arity of the context where they are used
(action and predicate arguments). The number of ground atoms k is
determined by the number of objects, predicate symbols, and argu-
ments, as established by the hyperparameters in . The index ¢ that
refers to the i-th input graph G; is omitted for readability.

Decision propositions:

mp(t, a): transition ¢ is mapped to action schema a,

mf(¢, k, m): ground atom k is mapped to atom m in transition ¢,
o(k, s): value of (boolean) ground atom k at state s,

gr(k, p): ground atom k refers to predicate symbol p,

gr(k, i, 0): i-th argument of ground atom & is object o [¢ > 0],
r(u, 0): true if u(o0) holds for static unary predicate u,
s(b,0,0"): true if b(o, 0') holds for static binary predicate b,
gtuple(a, 0): true if a(0) is a ground instance of a.

Implied propositions:

o free(k,t,a): ground atom k is unaffected in trans. ¢ mapped to a,

g(k,s,s') < d(k,s) @ ¢k, s') (@ is XOR),

U(u,a,v,0) < un(u,a,v) A —r(u,o),

B(b,a,v,V,0,0") < bin(b, a,v, v )A=s(b,0,0'),

mt(¢, v, 0): argument v is mapped to object o in transition ¢,
Wt k,i,v) = [gr(k,i,0) < mt(t,v,0)],

G(t,a, 0): transition ¢ is (ground) instance of a(0),

appl(a, 0, s): ground instance a(0) is applicable in state s,
vioO(a, 0, s, k): k is neg. precond. p(5) of a that is false in s,
viol(a, 0, s, k): k is pos. precond. p(d) of a that is false in s,
preOeq(a, 0, k,m) = p0(a, m) A eq(o, m, k),

preleq(a, 0, k,m) = pl(a, m) Aeq(o, m, k),

eq(o0, m, k): ground atom k instantiates atom m with tuple o.

4.2.1 Formulas

Binding transitions with action schemas, and ground atoms with
atom schemas:

Exactly-1 {mp(¢,a) : a} 27

At-Most-1 {mf(¢, k, m) : m} (28)

At-Most-1 {mf(¢, k, m) : k} (29)
Consistency between mappings, labeling, and usage:

mp(t, a) = label(a, t.label) (30)

mp(t, a) A mf(¢, k, m) = use(a, m) @31

mp(t, a) Ause(a, m) = \/, mf(t, k, m) (32)
Ground atom unaffected if:

mp(t,a) A [A,, "mf(t,k,m)| = free(k, t,a) (33)

mp(t,a) A mf(t, k, m)
= [-e0(a, m) A —el(a,m) < free(k,t,a)] (34)

Transitions and inertia:

mp(t, a) A mf(¢, k, m) A pO(a, m) = —¢(k,t.src) 35)
mp(t,a) A mf(t, k,m) Apl(a,m) = ¢(k,t.src) (36)
mp(t,a) A mf(t, k, m) A el(a,m) = —¢(k,t.dst) 37
mp(t, a) A mf(t, k, m) Ael(a,m) = ¢(k,t.dst) (38)
mp(t, a)=[free(k, t, a)<[p(k, t.src)=p(k, t.dst)]] (39)

States must differ in value of some ground atom:

g(k,s,8") & ¢(k,s) ® ok, s') (40)
Nocs Vi, 8(k;s,8) (41
Predicate symbol and arguments of ground atoms:
Exactly-1 {gr(k,p) : p} (42)
At-Most-1 {gr(k, i,0) : o} 43)
gr(k, p) A gr(k,1,0) = V< <axcarivy 1LY (D5 ) (44)
gr(k,p) Narity(p, i) = A <<, V, gr(k, 5, 0) 45)
gr(k,p) Aarity(p, i) = A, _; ~egr(k, j, 0) (46)

1-1 map of ground atoms names to predicates and arguments: For
vect(k) denoting boolean vector with components {gr(k, p)}, and
{gr(k,1,0)}i,0, impose constraint vect(k) <je vect(k') for k < k'

Strict-Lex-Order {vect(k) : k} 47)
Ground atoms and schema atoms in sync:

mf(t, k,m) = [at(m, p) < gr(k,p)] (48)

mf(t, k,m) Aat(m,i,v) =/ gr(k,i,0) (49)

mf(t, k,m) A gr(k,i,0) =V, at(m, i, v) (50)
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Excluded bindings of static predicates:

U(u,a,v,0) < un(u,a,v) A —-r(u,0) (51

B(b,a,v,V,0,0") < bin(b, a,v, v )A-s(b,0,0) (52)
Bindings associated with transitions (part 1):

At-Most-1 {mt(¢, v, 0) : o} (53)

mp(t, a) A arg(a, v) =\, mt(t,v,0) (54)

mp(t,a) Amt(t,v,0) = arg(a, V) (55)
Bindings associated with transitions (part 2):

mf(t, k,m) A at(m,i,v) = W(t, k,i,v) (56)

W(t, k,i,v) = [gr(k,i,o) < mt(t, v, o)] (57)

Explanation of non-existing ground actions gtuple(a, 0):
—gtuple(a,0) =V, .., marg(a,vi) V'V, ,; Ulu,a,vi,0i) V
Vb,i<j B(b,a,Vi,Vj,Oi,Oj) (58)

Explanation of existing ground actions:

mp(t,a) Amt(t,v,0) Aun(u,a,v) = r(u,o) (59)
mp(t,a) A mt(t,v,0) Amt(t,v’,0") Abin(b, a,v, ") (60)
= s(b,0,0") 61)

Ground actions must be used in some transition:

gtuple(a, 0) = \/, G(t,a, 0) (62)
G(t,a,0) = gtuple(a, 0) (63)
G(t,a,0) = mp(t,a) A \,,~omt(t, vi,0i) A

/\oi:() [arg(a, vi) = mt(t, v;, oi)] (64)
At-Most-1 {G(t, a,0) : t.src = s} (65)
Exactly-1 {G(t, a,0) : a,0} (66)

Applicable actions must be applied:

G(t,a,0) = appl(a, 0, t.src) 67)
appl(a,0,s) = V, ;o G(t,a,0) (68)
—appl(a, 0, s) = —gtuple(a, 0) V

V. [vioO(a, 8, s,k) V viol(a,0,s, k)]  (69)

vioO(a, 6, 5, k) = ¢(k,s) A/, preOeq(a, o, k, m) (70)
viol(a, 6, s, k) = —=¢(k,s) AV, preleq(a, 0, k, m) (71)
preOeq(a, 0, k, m) = p0(a, m) A eq(o, m, k) (72)
preleq(a, 0, k,m) = pl(a, m) A eq(o, m, k) (73)
eq(0,m, k) = [at(m,p) < gr(k,p)] (74)
eq(o, m, k) A at(m,1,v;) = gr(k,,05) (75)

The encoding also contains formulas that reduce the number of
redundant, symmetric valuations, which are omitted here for clarity.
Such formulas only affect the performance of SAT solvers and do not
affect the satisfiability of the theory T (G1.n).

5 PROPERTIES

The correctness and completeness of the encoding is expressed as:

Theorem 3. The instances P;= (D, I;) with parametrization o
account for the input labeled graphs G, ...,G., applying every
ground action at least once iff there is a satisfying assignment of
the theory To(G1:n) that encodes these instances up to renaming.

This means basically that if the graphs can be generated by some
instances, such instances are encoded in one of the models of the
SAT encoding. On the other hand, any satisfying assignment of the
theory encodes a first-order domain D and instances P; over D that
solve the representation discovery problem for the input graphs.

The parametrization o associated with a set of instances with a
shared domain is simply the value of the hyperparameters determined
by the instances. The condition that ground actions must be applied
at least once follows from (62) and could be relaxed. In the encoding,
indeed, if a ground action a(0) is never applied (i.e., gtuple(a, 0) is
false), it must be because the static predicates filter it out (cf. second
and third disjunctions in (58)). On the other hand, the first disjunct in
(58) explains inexistent ground actions due to “wrong groundings”;
namely, groundings of variables that are not arguments of the action
schema.

The extraction of instances P; = (D, I,), I; = (O, Init;, Goal;),
from a satisfying assignment is direct for the domain D and the ob-
jects O; in each instance [;. The assignment embeds each node n of
the input graph G; into a first-order state s(n) over the problem P;.
The initial state Init; can be set to any state s(n) for a node n in G;
that is connected to all other nodes in GG;, while Goal; plays no role
in the structure of the state space and it is left unconstrained.

Finally, observe that the size of the theory is exponential only in
the hyperparameter that specifies the max arity of action schemas
since the tuples 0 of objects that define grounded actions a(o) appear
explicit in the formulas. However, the arities of action schemas are
bounded and small; we use a bound of 3 in all the experiments.

6 VERIFICATION

It is possible to verify the representations learned by leaving apart
some input graphs G, k > n, for testing only as it is standard in
supervised learning. For this, the learned domain D is verified with
respect to each testing graph G, individually, by checking whether
there is an instance Py = (D, I;;) of the learned domain D that ac-
counts for the graph G, following Def. 1. This test may be also per-
formed with a SAT solver over a propositional theory 7" (G') that is
a simplified version of the theory T (G1:n). Indeed, if the domain
D was obtained from a satisfying truth assignment o for the theory
To(Gim) = TS UUiz1,nTE, then T (Gr) = TS U TE U 0° where
¥ is the set of literals that captures the valuation o over the symbols
in T2. In words, T"(G},) treats G, as an input graph but with the
values of the domain literals in layer T set to the values in ¢°.

7 EXPERIMENTS AND RESULTS

We performed experiments to test the computational feasibility of the
approach and the type of first-order representations that are obtained.
We considered four domains, Blocksworld, Towers of Hanoi, Grid,
and Gripper. For each domain, we selected a single input graph G =
G1 of a small instance to build the theory To(G1.n) with n = 1,
abbreviated T, (G), converted it to CNF, and fed it to the SAT solver
glucose-4.1 [5]. The input graphs used in the experiments are
shown in Fig. 1. The experiments were performed on Amazon EC2’s
c5n.18xlarge with a limit of 1 hour and 16Gb of memory. If
Ta(QG), for parameters o was found to be satisfiable, we obtained an
instance P = (D, I'). The size of these graphs in terms of the number
of nodes and edges appear in Table 1 as #states and #trans, while
#tasks is the number of possible parametrizations « that results from
the following bounds:

— max number of action schemas set to number of labels,
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Table 1. Instance, # of labels, nodes and edges in graph, # of parametrizations « and theories T, (G), fraction evaluated, and # found to be indeterminate
(SAT solver still running after 1h cutoff), UNSAT, or SAT, with 4+ y + z meaning that  did not complete verification in time/memory bound, y failed it, and
z passed it (solutions). Last columns show avg. sizes and times of theories that produced these solutions.

Input TS Statistics SAT Calls Theory for SAT Tasks (avg.)
Instance #labels  #states  #trans. #tasks sample INDET UNSAT SAT #vars #clauses time mem. (Mb)
Blocksworld (4blocks) 3 73 240 19,050 1,905 246 1,642 10+0+7 1,666,705.5  6,033,529.0 1,441.1 860.7
Towers of Hanoi (3disks + 3pegs) 1 27 78 6,390 639 24 614 0+0+1 860,704.0  3,328,492.0 1,691.7 454.5
Gripper (2rooms + 3balls) 3 88 280 19,050 1,905 333 1,564 0+2+46 1,592,358.5 6,176,073.3  1,840.3 873.4
Rectangular grid 4x3 4 12 34 37,800 3,780 55 3,496  10+141+78 321,904.0 1,165,860.6 156.7 164.5
Rectangular grid 4x3 2 12 34 15,120 1,512 36 1,408 2+4462 343,472.7  1,299,706.1 46.3 175.4
Rectangular grid 4x3 1 12 34 7,560 756 11 715 2+0+28 363,418.2  1,683,392.7 53.4 211.0

— max number of predicate symbols set to 5,

— max arity of action schemas and predicates set to 3 and 2 resp,
— max number of atoms schemas set to 6,

— max number of static predicates set to 5,

— max number of objects in an instance set to 7.

The choice for these bounds is arbitrary, yet for most benchmarks the
first five domain parameters do not go much higher, and the last one
is compatible with the idea of learning from small examples.

The hyperparameter vector « specifies the exact values of the
parameters, compatible with the bounds, and the exact arities of
each action schema and predicate. This is why there are so many
parametrizations « and theories T, (G) to consider (column #tasks).
Given our computational resources, for each input, we run the SAT
solver on 10% of them randomly chosen. The number of theories
that are SAT, UNSAT, or INDET (SAT solver still running after
time/memory limit) are shown in the table that also displays the num-
ber of solutions verified on the test instances. The last columns show
the average sizes of the SAT theories T (G) that were solved and
verified. For each domain, we chose one solution at random and dis-
play it, with the names of predicates and action schemas changed to
reflect their meanings (i.e., our interpretation). These solutions are
compatible with the hyperparameters but are not necessarily “sim-
plest”, as we have not attempted to rank the solutions found.

7.1 Towers of Hanoi

The input graph G is the transition system for Hanoi with 3 disks,
3 pegs, and one action label shown in Fig. 1(a). Only one sampled
parametrization « yields a satisfiable theory T, (G), and the result-
ing domain passes validation on two test instances, one with 4 disks
and 3 pegs; the other with 3 disks and 4 pegs. This solution was found
in 1,692 seconds and uses two predicates, clear (d) and Non(x,y),
to indicate that disk d is clear and that disk x is not on disk y respec-
tively. Two binary static predicates are learned as well, BIGGER and
~EQ. The encoding is correct and intuitive although it features negated
predicates like non and redundant preconditions like Non (fr, d) and
Non (d, £r) . Still, it is remarkable that this subtle first-order encoding
is obtained from the graph of one instance, and that it works for any
instance involving any number of pegs and disks.

Hanoi (ref. 530)

Move (fr,to,d) :

Static: BIGGER(fr,d),BIGGER(to,d) NEQ(fr,to)

Pre: -clear(fr),clear(to),clear(d),Non(fr,d),-Non(d, fr),Non(d, to)
Eff: clear(fr),-clear(to),Non(d, fr),-Non(d, to)

3 The atom schemas are of the form p(t) where p is a predicate symbol and ¢
is a tuple of numbers of the arity of p, with the numbers representing action
schema arguments.

7.2 Gripper

The instance used to generate the graph G in Fig. 1(b) involves 2
rooms, 3 named balls, 2 grippers, and 3 action labels for moves,
picks, and drops. In this case, 8 encodings are found, 6 of which
pass verification over instances with 2 and 4 balls. One of these en-
codings, randomly chosen from these 6 is shown below. It was found
in 863 seconds, and uses the atoms at (room), hold (gripper,ball),
Nfree (gripper), and Nat (room, ball) to denote the robot position,
that gripper holds ba11, that gripper holds some ball, and that ba11
is not in room respectively. The learned static predicates are both bi-
nary, conn and paIR: the first for different rooms, and the second, for
a pair formed by a room and a gripper. There also redundant precon-
ditions, but the encoding is correct for any number of rooms, grip-
pers, and balls.

Gripper (ref. 13918)
Move (from, to) :

Static: CONN(from, to)

Pre: at(from),-at (to)

Eff: -at(from),at (to)

Drop (ball, room, gripper) :
Static: PAIR(room,gripper)
Pre: at (room),Nfree(gripper),hold(gripper,ball),Nat (room,ball)
Eff: -Nfree(gripper),-hold(gripper,ball),-Nat (room,ball)

Pick (ball, room, gripper) :
Static: PAIR(room,gripper)
Pre: at (room),-Nfree(gripper),-hold(gripper,ball),-Nat (room,ball)
Eff: Nfree(gripper),hold(gripper,ball),Nat (room,ball)

7.3 Blocksworld

The instance used to generate the graph in Fig. 1(c) has 4 blocks and
3 action labels to indicate moves to and from the table, and moves
among blocks. 17 of the 10% of sampled tasks were SAT, and 7
of them complied with test instances with 2, 3 and 5 blocks. One
of these encodings, selected randomly and found in 110 seconds,
is shown below. It has the predicates Nclear (x) that holds when
(block) z is not clear, and Ntable-OR-Non (x,y) that holds when x
is not on the table for x =y, and when block z is on block y for
x #y. The standard human-written encoding for Blocksworld fea-
tures three predicates instead (clear, ontable, and on). This encod-
ing uses one less predicate but it is more complex due to the disjunc-
tion in Ntable—-OR-Non (x, y) . As before, some of the preconditions in
the schemas are redundant, and for the action schema MoveFromTable
the argument d is redundant.

Blocksworld (ref. 1688)

MoveToTable (x,y) :

Static: NEQ(x,y)

Pre: -Nclear (x),Nclear(y),-Ntable-OR-Non(x,y),Ntable-OR-Non (x, x)
Eff: -Nclear(y), -Ntable-OR-Non (x,x),Ntable-OR-Non (x,Vy)

MoveFromTable (x,y,d) :
Static: NEQ(x,y),EQ(y,d)
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Pre: -Nclear (x),-Nclear (d),-Ntable-OR-Non (x,x),Ntable-OR-Non (x,y)
Eff: Nclear (d),Ntable-OR-Non (x,x),-Ntable-OR-Non (x,y)

Move (%X,2,Y) :

Static: NEQ(x,z),NEQ(z,y),NEQ(x,y)

Pre: -Nclear (x),Nclear(y),-Nclear(z),Ntable-OR-Non (x,x),
Ntable-OR-Non (x, z), -Ntable-OR-Non (x,y)

Eff: Nclear(z),-Nclear (y),Ntable-OR-Non (x,y), -Ntable-OR-Non (x, z)

74 Grid

The graph G in Fig. 1(d) is for an agent that moves in a 4 X 3 rectan-
gular grid using three classes of labels: (the default shown) 4 labels
Up, Right, Down, and Left, 2 labels Horiz and vert, and a unique la-
bel Move. Many solutions exist in this problem because the domain is
very simple, even though the space of hyperparameters is the same.
The randomly chosen solution for the input with four labels is com-
plex and it is not shown. Instead, a simpler and more intuitive hand-
picked solution (found in 3 seconds) is displayed, where the = posi-
tion is encoded as usual (one object per position), but the y position
is encoded with a unary counter (count is number of bits that are on).

Grid with 4 labels (ref. 4853)
Up (y,ny) :
Static: UO(y),BO(y,ny)
Pre: -NatY(y)
Eff: NatY(y),-NatY (ny)

Right (x,nx) :
Static: Ul (x),Ul(nx),B0(x,nx)
Pre: unaryEncodingX(x), -unaryEncodingX (nx)
Eff: unaryEncodingX (nx)

Down (py,y) :

Static: UO(py),BO0(py,y)
Pre: NatY(py),-NatY¥(y)
Eff: -NatY(py),NatY(y)

Left (n,nx) :
Static: UO(nx),Ul(n),B0 (n,nx)
Pre: unaryEncodingX(n), —unaryEncodingX (nx)
Eff: -unaryEncodingX (n)

To illustrate the flexibility of the approach, we also show below a
first-order representation that is learned from the input graph G that
only has 2 labels; i.e., the labels Right and Left are replaced by the
label Horiz, and the labels up and pDown by the label vert.

-_  Grid with 2 labels (ref. 1713)
Horiz (from,to) :
Static: B2 (from, to)
Pre: atX(from),-atX(to)
Eff: —-atX(from),atX(to)

Vert (to, from) :

Static: BO(to, from)
Pre: -atY(to),atY(from)
Eff: atY(to),-at¥Y (from)

The inferred static predicates B2 and B0 capture the horizontal and
vertical adjacency relations respectively.

8 DISCUSSION

We have shown how to learn first-order symbolic representations for
planning from graphs that only encode the structure of the state space
while providing no information about the structure of states or ac-
tions. While the formulation of the representation learning problem
and its solution are very different from those used in deep (reinforce-
ment) learning approaches, there are some commonalities: we are
fitting a parametric representation in the form of theories 7, (G 1;7,,)
to data in the form of labeled graphs G, ..., Gn. The parameters

come in two forms: as the vector of hyperparameters « that bounds
the set of possible first-order planning domains D and the number
of objects in each of the instances P; = (D, I;), and the boolean
variables in the theory T, (G1.») that bound the possible domains D
and instances P;. The formulation makes room and exploits a strong
structural prior or bias; namely, that the set of possible domains can
be bounded by a small number of hyperparameters with small val-
ues (number of action schemas and predicates, arities, etc). Lessons
learned, possible extensions, limitations, and challenges are briefly
discussed next.

Where (meaningful) symbols come from? We provide a crisp tech-
nical answer to this question in the setting of planning where mean-
ingful first-order symbolic representations are obtained from non-
symbolic inputs in the form of plain state graphs. In the process, ob-
jects and relations that are not given as part of the inputs are learned.
The choice of a first-order target language (lifted STRIPS with nega-
tion) was crucial. At the beginning of this work, we tried to learn the
(propositional) state variables of a single instance from the same in-
puts, but failed to obtain the intended variables. Indeed, looking for
propositional representations that minimize the number of variables
or the number of variables that change, result in O(log | S|) variables
(where |S| is the number of states) and so-called Gray codes, that
are not meaningful. The reuse of actions and relations as captured by
first-order representations did the trick.

Traces vs. complete graphs. The inputs in our formulation are not
observed traces but complete graphs. This distinction, however, is
not critical when the graphs required for learning are small. Using
Pearl’s terminology [33], the input graphs can be regarded as defining
the complete space of possible causal interventions that allow us to
recover the causal structure of the domain in a first-order language.
The formulation and the SAT encoding, however, can be adjusted in
a simple manner to account for incomplete graphs where only certain
nodes are marked or assumed to contain all of their children.

Non-determinism. For learning representations of non-deterministic
actions, the inputs must be changed from OR graphs to AND-OR
graphs. Then the action schemas that account for transitions linked
by AND nodes must be forced to take the same arguments and
the same preconditions. In contrast to other approaches for learning
stochastic action models [38], this method does not require symbolic
inputs but the structure of the space in the form of an AND-OR graph.

Noise. The learning approach produces crisp representations from
crisp, noise-free inputs. However, limited amount of “noise” in the
form of wrong transitions or labels can be handled at a computational
cost by casting the learning task as an optimization problem, solvable
with Weighted Max-SAT solvers instead of SAT solvers.

Representation learning vs. grounding. The proposed method
learns first-order representations from the structure of the state space,
not from the structure of states as displayed for example in images
[4, 3]. The latter approaches are less likely to generate crisp represen-
tations due to the dependence on images, but at the same time, they
deal with two problems at the same time: representation learning and
representation (symbol) grounding [20]. Our approach deals with the
former problem only; the second problem is for future work.

Learning or synthesis? The SAT formulation is used to learn a rep-
resentation from one or more input graphs corresponding to one or
more domain instances. The resulting first-order domain represen-
tation is correct for these instances but not necessarily for other in-
stances. The more compact the domain representation the more likely
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that it generalizes to other instances, yet studying the conditions un-
der which this generalization would be correct with high probability
is beyond the scope of this work.

9 CONCLUSIONS

We have shown that it is possible to learn first-order symbolic repre-
sentations for planning from non-symbolic data in the form of graphs
that only capture the structure of the state space. Our learning ap-
proach is grounded in the simple, crisp, and powerful principle of
finding a simplest model that is able to explain the structure of the
input graphs. The empirical results show that a number of subtle first-
order encodings with static and dynamic predicates can be obtained
in this way. We are not aware of other approaches that can derive first-
order symbolic representations of this type without some information
about the action schemas, relations, or objects. There are many per-
formance improvements to be pursued in particular regarding to the
SAT encoding and the scalability of the approach, the search in the
(bounded) hyperparameter space, and the ranking and selection of
the simplest solutions. Extensions for dealing with partial observa-
tions will be pursued as well.
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