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Abstract. In this paper we find common ground for different deci-
sion theories in Dempster-Shafer theory by providing an axiomatic
utility theory where the completeness requirement is dropped. The
resulting preference relation is represented by subjective expectation
of sets of utilities whose ordering is based on an ordering of outcome
sets derived from a logical decision theory for complete ignorance.
Moreover, we explore the preference aggregation problem within the
utility theory and generalize some results by Harsanyi and Mongin
to the setting of belief functions.

1 INTRODUCTION
In Bayesian theory, all information is probabilizable. In many situa-
tions, however, it is not clear what the probabilities should be. Infor-
mation may be vague or ambiguous. For that reason, alternative rep-
resentations are used that do not probabilize all information. Among
those alternatives, the belief functions, as introduced in [9] and [30],
have proved useful in artificial intelligence. They are suited to rep-
resent decision situations where only part of the information can be
probabilized and the rest of the information is vague or ambiguous.
And the nonprobabilizable information is subject to the principles
of complete ignorance. There are two typical situations for decision
making with belief functions in AI. The first situation is one in which
the decision maker’s information concerning the possible states of
nature is best described by a belief function [10, 32]. The second sit-
uation is that the consequences of each act under each state of nature
may not be precisely described [14]. This situation may arise when
the decision problem is underspecified: for instance, the set of acts or
the state space may be too coarsely defined.

In this paper we construct an axiomatic utility theory for belief
functions to accommodate the above two decision situations in a u-
niform framework. This theory is basic because of the following t-
wo reasons. First, the partial preference relation in the theory is a
common ground for different complete preference relations in other
important utility theories for belief functions (Proposition 12 and E-
q. (7)). Second, the basic utility theory faithfully observes the most
characteristic principle for belief functions:

• (Least commitment principle): One should never assign evalua-
tions more than guaranteed by evidence.

Our framework is the well-known Demspter semantics. In a Demp-
ster model, the decision maker (DM for short) or agent uses a two-
stage approach to process the information. The first stage deals with
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the probabilistic information on the knowledge space Ω. A deviation
from the Bayesian approach occurs only in the second stage, where
the vague information on a different nature space S is processed. We
assume that the vague information does not contain any meaningful
structure. The Bayesian approach will nevertheless assign probabil-
ity to describe this information, usually according to the maximum
entropy principle or Laplace’s principle of insufficient reason. The
intent of our approach, on the contrary, is to preserve full objectivity;
entirely vague information should therefore be processed according
to the objective principles of complete ignorance, as laid down in [1]
by a multivalued mapping Γ.

Our first contribution is to offer a logical theory of complete igno-
rance which deals with partial acts whose domains are not necessar-
ily the whole nature space but its subsets. The logical approach is to
preserve the objectivity of complete ignorance. Complete ignorance
is an old topic. There are two main differences from those theories
about complete ignorance in the literature. First we drop the com-
pleteness assumption from Arrow and Hurwicz’s framework. Second
and more importantly, we establish the theory in a purely deductive
way where preference statements such as f � g are basic proposi-
tions. A preference statement is valid if there is a proof in our logic.
Primitive statements are those satisfying the symmetry and duplica-
tion properties characterizing the complete ignorance as well as two
rational properties: reflexivity and weak dominance. The transitivity
is used as an inference rule instead. With this logic, we show that
a preference statement f � g is valid iff the least consequence of
f is no less than that of g and the greatest of f is no less than that
of g (Proposition 8). Since the ordering of these partial acts depends
only on their ranges, we can naturally extend the linear ordering of
consequences to a partial ordering of sets of consequences (Eq. (1)).

Our second contribution is to establish an Anscombe-Aumann-
style utility theory for belief functions. We don’t deal directly with
complete acts, which are functions from the nature space S to the
set ∆(C) of probability measures over the consequence set C. In-
stead, we formulate 6 axioms about ordering of correspondences,
which are compositions of complete acts with multivalued mappings,
and prove a representation as subjective expectation of sets of utili-
ties (Proposition 11). We also drop the completeness requirement but
keep it for the crisp correspondences, which associate a single mea-
sure to each state, to accommodate the Anscombe-Aumann model
for Bayesian theory. The first five axioms are similar to those in the
Anscombe-Aumman theory for Bayesian theory. The last one is new
and it connects ranking of crisp correspondences (functions) to that
of correspondences. Our new definition of expectations in terms of
belief functions is the same as the corresponding Aumann integrals.
We also demonstrate the relationship of the partial preference rela-
tion represented by this new expectation to those represented by other
different expectations.

Our third contribution is to generalize both Harsanyi’s social ag-
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gregation theorem and Mongin’s (im)possibility theorems for social
decision making in Bayesian theory to the setting of belief functions.
We obtain a social aggregation theorem which is the counterpart of
Harsanyi’s aggregation theorem for Bayesian theory [20]. Moreover,
we prove that, when all the prior beliefs are the same, the Paretian
conditions imply that the social observer’s utility is a linear combi-
nation of the individual’s utilities with different coefficient require-
ments (Corollary 17), and when these belief functions are linearly
independent, Paretian conditions imply that there is a utility dictator
or inverse utility dictator (Corollary 18).

Our paper proceeds as follows. In Section 2, we set up the decision
framework within Dempster models of belief functions by adapting
the semantics from Jaffray and Wakker in [21]. In Section 3, we first
develop a logical system to derive a decision rule under complete
ignorance. Then we propose an Anscombe-Aumann-style axiomati-
zation and prove a representation theorem where the resulting pref-
erence relation is represented by subjective expectation of sets of u-
tilities whose ordering is based on the logical decision theory for
complete ignorance. In Section 4, we explore the preference aggre-
gation problem within the utility theory and generalize some results
by Harsanyi and Mongin to the setting of belief functions and con-
clude in Section 5 with related works.

2 DEMPSTER MODEL OF BELIEF
FUNCTIONS

In this paper, we consider the Dempster semantics [9]. A Dempster
model for belief functions is a tuple M = 〈Ω,Γ, S, Pr〉 where

1. Ω is a finite set of elements called knowledge states;
2. S is a finite set of states of nature;
3. Γ is a function from Ω to 2S (called multi-valued mapping);
4. Pr is a probability distribution over the space Ω.

We also call Ω the knowledge space and S the nature space. In a
Dempster model, the probabilistic information is processed in the
first stage, and the vague information in the second. The information
processed in the first stage is modeled through the knowledge space
Ω. Exactly one knowledge state is the true one, the others are not
true. The decision maker has partial information about which is the
true knowledge state. We assume that the information on the set Ω
is sufficiently well-structured to be modeled by a probability mea-
sure Pr. Concerning the remaining uncertainty, given ω ∈ Ω, the
decision maker has no information at all, and this uncertainty is not
probabilizable. And the nonprobabilizable information is represented
by the multi-valued mapping Γ.

The description of the information concerning the state space S
combines the probabilizable information concerning Ω and the in-
formation given each ω ∈ Ω. The information on S is completely
described by the mapping: A 7→ Pr(ΩAp ) where ΩAp = {ω ∈ Ω :
Γ(ω) ⊆ A}, which is a belief function and denoted by bel. In gen-
eral, a belief function is a function bel : 2S → [0, 1] satisfying the
following conditions: bel(∅) = 0, bel(S) = 1, and bel(

⋃n
i=1 Ai) ≥∑

∅6=I⊆{1,··· ,n}(−1)|I|+1bel(∩i∈IAi) where Ai ∈ 2S for all i ∈
{1, · · · , n}. We require that Γ(ω) 6= ∅ for every ω in order to
avoid re-normalization. Note that bel(A) = Pr(ΩAp ) = Pr({ω ∈
Ω : Γ(ω) ⊆ A}). If we define the function m : 2S → [0, 1] by
B 7→ Pr({ω ∈ Ω : Γ(ω) = B}), then bel(A) =

∑
B⊆Am(B).

Such defined m is a mass function. In general, a mass function on
S is a mapping m : 2S → [0, 1] satisfying

∑
A∈2S m(A) = 1.

A mass function m is called normal if m(∅) = 0. Without further
notice, all mass functions in this paper are assumed to be normal. A

set A is called focal if m(A) > 0. A mapping f : 2S → [0, 1] is a
belief function if and only if its Möbius transform is a mass assign-
ment [30]. In other words, if m : 2S → [0, 1] is a mass assignment,
then it determines a belief function bel : 2S → [0, 1] as follows:
bel(A) =

∑
B⊆Am(B) for all A ∈ 2Ω. Moreover, given a belief

function bel, we can obtain its corresponding mass functionm as fol-
lows: m(A) =

∑
B⊆A(−1)|A\B|bel(B) for all A ∈ 2S . The belief

function bel is called Bayesian if m(A) = 0 for all non-singletons
A. The corresponding plausibility function pl : 2S → [0, 1] is dual
to bel in the sense that pl(A) = 1 − bel(A) for all A ⊆ S. If m1

andm2 are two mass functions on S induced by two independent ev-
idential sources, the combined mass function is calculated according
to Dempster’s rule of combination: for any C ⊆ S,

(m1 ⊕m2)(C) =

∑
A∩B=C m1(A)m2(B)∑
A∩B 6=∅m1(A)m2(B)

It is undefined if
∑
A∩B 6=∅m1(A)m2(B) = 0.

A decision situation in the Dempster model M = 〈Ω,Γ, S, Pr〉
is a tuple DS = (M, C,F), where C is the set of consequences
or outcomes and F is the set of acts (an act is a function f from
S to C). We are also interested in partial acts whose domains are
not necessarily the whole S but subsets of S. Sometimes, in order
to emphasize the difference in domains, we also call an act a com-
plete act. Let D denote the set of all partial acts. A function from Ω
to 2C is called a correspondence. Our definition is a little different
from that in [14] in that the domain is not S but Ω. Let Σ denote
the set of all correspondences. We say that a function h : Ω → C
belongs to a correspondence σ (denoted as h ∈ σ) if, for all ω ∈ Ω,
h(ω) ∈ σ(ω). Throughout the paper, we make two technical assump-
tions that |Ω| ≥ |2S | and |S| ≥ |C|. The first is to guarantee that
any belief function on S can be expressed in our Dempster-model
〈Ω, S,Γ, P r〉 for some Pr and the second is to guarantee that any
evidential lottery, which is a belief function on C, can be generat-
ed in our decision situation. Note that, if Pr is fixed, then one can
generate only a finite subset of belief functions on S and on C under
these two assumptions.

The DM is willing to express his preferences among these ele-
ments in a finite set X . A compared pair of the form x �X x′

formalizes the meaning “I prefer x to x′ or am indifferent between
them”. Any form of x �X x′ or any Boolean combination of the
forms is called a proposition. x ∼X x′ is short for the conjunction
of x �X x′ with x′ �X x, which expresses indifference relation,
and x �X x′ denotes x �X x′ but not x ∼X x′. x ./X x′ denotes
incomparability. Usually �X is called weak preference relation and
�X the strict preference relation. When the context is clear, we usu-
ally drop the superscript X in �X ,�X , ./X and ∼X .

3 UTILITY THEORY

We start in this section with the most fundamental part: a construc-
tive (or logical) system of decision theory under complete ignorance.
This system deals with partial acts. It turns out that decision the-
ory under complete ignorance with partial acts is a special case of
decision-making in Dempster models when the multi-valued map-
ping Γ is constant. Each partial act f with the domainA ⊆ S can be
identified with its composition with the constant multivalued map-
ping ΓA defined by ΓA(ω) = A for all ω ∈ Ω. So all partial acts
with the same range and the same domain are identified with the same
correspondence. In this paper, without further notice, we assume that
the ordering on the consequence set C is linear, denoted by ≥. In
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this part, we don’t need to assume that the consequence ordering is
represented by a utility function.

3.1 Decision theory under complete ignorance
For a partial act d, let S(d) denote its domain and Rg(d) denote its
range (sometimes we also denote as d(S(d))). Note that S(d) ⊆ S
and d may be a partial function. So different acts may have differ-
ent domains. Denote the set of partial acts with the same domain S′

as DS′ . Now we are proposing a new axiomatization for the weak
preference relation � of decision making under complete ignorance.
There are two main differences of our theory from those about deci-
sion making under ignorance in the literature[1, 25, 24, 5, 22]. The
first is the absence of the completeness axiom, and the second is our
purely logical system.

Definition 1 Two partial decisions d1 and d2 are isomorphic if there
is a one-to-one and onto mapping h : S(d1) → S(d2) such that
d1(s) = d2(h(s)) for all s ∈ S(d1). The partial act d2 is said to be
derived from d1 if it satisfies the following two conditions:

1. S(d2) ⊆ S(d1) and d1 and d2 coincide on S(d2);
2. for each s ∈ S(d1) \ S(d2), there is a s′ ∈ S(d2) such that
d1(s) = d1(s′).

In other words, d2 is obtained from d1 by deleting duplicate states.
�

Just like any standard logical system, our new axiomatic systemZ
consists of two parts: the first is primitive preferences, and the other
inference rule:

• Primitive preferences:

1. (P1: Reflexivity) d � d for any d ∈ D;

2. (P2: Weak Dominance Property) For any two partial acts d and
d′ with the same domain, if d(s) ≥ d′(s) for all s ∈ S(d), then
d � d′;

3. (P3: Symmetry) Isomorphic partial acts are preferentially indif-
ferent.

4. (P4: Duplication) If d′ is derived from d, then they are prefer-
entially indifferent.

• Inference Rule:

– (P5: Transitivity) If d1 � d2 and d2 � d3, d1 � d3.

As one can show, the five properties (P1-P5) are nothing but the
four properties proposed by Hurwicz and Arrow in [1] without the
completeness axiom. Both P1 and P2 are primitive preferences
which are universally accepted by a rational agent. The two prop-
erties P3 and P4 are specifically used to characterize the complete
ignorance in decision making. P3 says that no state in the domain is
more important than any other state or relabeling acts and states is
of no fundamental importance. In other words, the comparison of t-
wo partial acts have to be based on comparing the consequences they
lead to in different possible states without the knowledge which state
of nature is more likely than others.P4 requires that merging or split-
ting states in a domain does not make it better or worse. More than
any other property, it captures the idea of complete ignorance, for,
in effect, it asserts that dividing a state into several substates should
have no effect on decision making. With this property, our charac-
terization of complete ignorance is essentially different from that in

subjective probability framework where complete ignorance is ex-
pressed by the assignment of equal probabilities to all the states of
nature according to Laplace’s Principle of Indifference or Insufficient
Reason. The transitivity property P5 is usually treated as a necessary
condition for preference relation. But, in this paper, we regard it as
the inference rule.

Definition 2 A proof of a proposition φ in the system Z is a fi-
nite sequence Φ = φ1 · · ·φn such that φn = φ, and for any
i = 1, · · · , n, φi is either a primitive axiom instance or is obtained
from two preceding propositions φk and φl(k, l < i) by the Infer-
ence Rule or propositional reasoning. Proposition φ is called valid if
there is a proof of φ in Z . �

Lemma 3 For any two partial acts d : A → d(A) and d′ : A′ →
d′(A′) (not necessarily with the same domain), if their ranges are
the same, i.e., d(A) = d′(A′), then d ∼ d′ is valid in Z .

Proof. Assume that d(A) = d′(A′). For each element c ∈ d(A)(=
d′(A′)), pick up one element ac ∈ A and a′c ∈ A′ such that d(ac) =
c = d′(a′c). It is easy to see that

• d �{ac:c∈d(A)} and d′ �{a′c:c∈d′(A′)} are isomorphic where
d �{ac:c∈d(A)} and d′ �{a′c:c∈d′(A′)} denote the restrictions of d
and d′ to {ac : c ∈ d(A)} and {a′c : c ∈ d′(A′)} respectively;

• d �{ac:c∈d(A)} is derived from d and d′ �{a′c:c∈d′(A′)} is derived
from d′.

So, according to the properties P3 and P4, the following
propositions are valid: d ∼ d �{ac:c∈d(A)}, d �{ac:c∈d(A)}∼
d′ �{a′c:c∈d′(A′)} and d′ �{a′c:c∈d′(A′)}∼ d′. It follows immediately
from P5 that d ∼ d′ is valid. QED

Lemma 4 For any two partial acts d : A → d(A) and d′ : A′ →
d′(A′) (not necessarily with the same domain), if min(d(A)) =
min(d′(A′)) andmax(d(A)) = max(d′(A′)), then d ∼ d′ is valid
in Z .

Proof. By P4, we may assume that d is a bijection with the domain
A = {s1, · · · , sn} with d(si) = ci(i = 1, · · · , n) where c1 >
c2 > · · · > cn. Now we construct three partial acts de, g and h as
follows:

• S(de) = {s1, sn} and de(s1) = c1 and de(sn) = cn ;
• S(g) = {s1, · · · , sn} and g(s1) = c1 and g(sk) = cn for k =

2, · · · , n;
• S(h) = {s1, · · · , sn} and h(sn) = cn and g(sk) = c1 for k =

1, · · · , n− 1;

It is easy to see that d(s) ≥ g(s) for all s ∈ S(d)(= S(g)). So,
according to P2, d � g is valid. It is easy to see that h(s) ≥ d(s)
for all s ∈ S(d)(= S(g)). So, according to P2, h � d is valid.
Moreover, according to Lemma 3, both g ∼ de and de ∼ h are
valid. By P5, we have that de ∼ d is valid. Similarly, we can show
that d′ is preferentially indifferent to the following d′e:

d′e : {s′1, s′2} → {c1, cn} s.t. d′e(s
′
1) = c1 and d′e(s

′
2) = cn

By Lemma 3, we know that de ∼ d′e is valid. So we know from P5
that d ∼ d′ is valid.

QED

Lemma 5 For any two partial acts d1 and d2 (not necessarily with
the same domain), there are two partial acts d′1 and d′2 with the same
domain such that both d1 ∼ d′1 and d2 ∼ d′2 are valid.
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Proof. Let S∪ be the union of S(d1) and S(d2). Define a new act d′1
with domain S∪ as follows:

d′1(S) =

{
d1(s) if s ∈ S(d1),
d1(s0) if s ∈ S∪ \ S(d1).

where s0 is some element in S(d1). According to P4, d′1 ∼ d1 is
valid. Similarly, we can define a new act d′2 with the domain S∪ such
that d′2 ∼ d2 is valid.

QED

Lemma 6 For any two partial acts d and d′ with the domain-
s A and B (not necessarily with the same domain) respectively, if
max(d(A)) ≥ max(d′(B)) and min(d(A)) ≥ min(d′(B)), then
d � d′ is valid.

Proof. From Lemma 5, we may assume that d and d′ share the same
domain S0 = {s1, · · · , sn} and max(d(S0)) ≥ max(d′(S0)) and
min(d(S0)) ≥ min(d′(S0)). Define two new acts de and d′e as
follows:

• S(de) = {s1, sn}, de(s1) = max(d(S0)) and de(sn) =
min(d(S0));

• S(d′e) = {s1, sn}, d′e(s1) = max(d′(S0)) and d′e(sn) =
min(d′(S0))

It is easy to see that propositions de � d′e, d ∼ de and d′ ∼ d′e
are all valid. So d � d′ is valid. QED

The above lemmas are standard in the literature about complete ig-
norance [1, 22]. One only needs to check that the proof there is within
our logic. However, the following proposition, which is converse to
Lemma 6, offers a new logical perspective.

Lemma 7 For any two partial acts d and d′ with the domains A
and B (not necessarily with the same domain) respectively, if d �
d′ is valid, then max(d(A)) ≥ max(d′(A)) and min(d(A)) ≥
min(d′(A)).

Proof. We employ the proof-by-structural induction. Assume that
φ := (d � d′) is valid. According to Definition 2, there is a fi-
nite sequence of propositions Φ = φ1 · · ·φn such that φn = φ, and
for any i = 1, · · · , n, φi is either a primitive axiom instance or is ob-
tained from two preceding propositions φk and φl(k, l < i) by the
Inference Rule or propositional reasoning. We prove by structural in-
duction. If φ is a primitive axiom instance, it is easy to see that the
proposition holds. We assume that φ is obtained from two preceding
propositions φk = (d � h) and φl = (h � d′)(k, l < i) for some
partial act h with the same domain S0 as d and d′ (Lemma 5) by the
Inference Rule such that

• max(d(S0)) ≥ max(h(S0)),min(d(S0)) ≥ min(h(S0)), and
• max(h(S0)) ≥ max(d′(S0)),min(h(S0)) ≥ min(d′(S0)).

From these induction hypotheses, it follows immediately that
max(d(S0)) ≥ max(d′(S0)) and min(d(S0)) ≥ min(d′(S0)).
So we may conclude that max(d(A)) ≥ max(d′(A)) and
min(d(A)) ≥ min(d′(A)).

QED

The following proposition follows directly from Lemmas 6 and 7.

Proposition 8 For any two partial acts d and d′ with domainsA and
B respectively, d � d′ is valid iff min(d′(B)) ≤ min(d(A)) and
max(d′(B)) ≤ max(d(A)).

Corollary 9 For any two acts d and d′ with domains A and B re-
spectively,

1. d � d′ iff [min(d′(B)) < min(d(A)) and max(d′(B)) ≤
max(d(A))] or [min(d′(B)) ≤ min(d(A)) and
max(d′(B)) < max(d(A))].

2. d ./ d′ iff [min(d′(B)) < min(d(A)) and max(d′(B)) >
max(d(A))] or [min(d′(B)) > min(d(A)) and
max(d′(B)) < max(d(A))].

In other words, the result of our inferential system is the transi-
tive closure of the set of primitive sentences, producing a relation on
the set D of partial acts. For any C′ ⊆ C, let ΩC′ denote the map-
ping Ω → 2C defined as ΩC′(ω) = C′ for all ω ∈ Ω. Note that
each partial act d with the domain A is identified with its compo-
sition with the constant multi-valued mapping ΓA : ΓA(ω) = A
for all ω ∈ Ω, which is the constant mapping Ωd(A). Proposition 8
says that this identification is well-defined. Following a similar con-
vention in Bayesian decision theory, we also identify each subset C′
of consequences with the constant correspondence ΩC′ . From these
two identifications justified by the principle of complete ignorance,
we obtain a natural extension of the ordering of outcomes to that of
sets of outcomes [3]: for any two subsets C1, C2 of outcomes,

C1 � C2 iff minC1 ≥ minC2&maxC1 ≥ maxC2 (1)

3.2 Decision theory in Dempster models
For any two subsets X and Y of real numbers, their (Minkowski)
sum is defined by X + Y = {x+ y : x ∈ X, y ∈ Y }. The product
aX of a nonnegative real number a and a subset X is defined by
aX = {ax : x ∈ X}. Here we use the notation + for both the
Minkowski sum of sets and standard addition of reals. The context
will determine which one we mean.

First we motivate three different but equivalent forms of expecta-
tion in terms of belief functions in Dempster models and then provide
an axiomatization. Assume that the decision situation is 〈M, C,F〉
where M = 〈Ω, S,Γ, P r〉. Let f be an (complete) act from S to C,
i.e., a function from S to C. For each possible knowledge state ω, the
act f will have the set of consequences f(Γ(ω)), which is a subset of
C. Let u : C → R be a utility function. With the prior probability Pr
defined on Ω, it is natural to define the expectation of f with respect
to the Dempster model as follows:

EΓ
Pr(f) =

∑
ω∈Ω

Pr(ω)u(f(Γ(ω))) (2)

Note that, in order to define Minkowski sum in the expectation, the
utility function is needed. We can also define the expected utility (set)
of f with respect to the mass function m on S generated by Pr and
Γ. For any subset A ⊆ S, the agent’s belief on A is represented by
m(A). According to the principle of complete ignorance, since the
agent could not distinguish the elements in A, the consequence set
is f(A). So f can be decomposed as a “sum” of partial acts fA’s
(A ⊆ S) withe domain A defined as fA(A) = f(A). A natural
expectation of the act f with respect to the mass function m can be
defined as follows:

EMi
m (f) :=

∑
A⊆S

m(A)u(f(A)) (3)
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It is easy to see that Eq. (3) is derived from Eq. (2). On the other hand,
given the Dempster model, each act f : S → C is associated with
a correspondence from Ω to 2C which is the composition f ◦ Γ :
Ω → 2C . For the correspondence f ◦ Γ, we define Ff◦Γ = {g :
g is a function from Ω to C such that g(ω) ∈ g ◦ Γ(ω) for all ω ∈
Ω}. Now we define a new expectation of the act f in terms of the
Aumann integral of the correspondence f ◦ Γ with respect to the
probability function Pr on Ω

EAuPr,Γ(f) =

∫
Ω

u ◦ f ◦ Γ(ω)Pr(ω)

:={
∑
ω∈Ω

u(g(ω))Pr(ω) : g ∈ Ff◦Γ} (4)

Both Minkowski sum and Aumann integral are defined over sets of
real numbers. Mathematically, sets of real numbers are incompara-
ble. But, if sets of consequences are mapped by utility function into
sets of real numbers, they can be compared according to Eq. (1) (the
ordering may be incomplete though).

Lemma 10 For the above Dempster model and any complete act f ,

EΓ
Pr(f) = EMi

m (f) = EAuPr,Γ(f).

Lemma 10 supports our claim that our definition of expectations
in terms of belief functions in Eq. (3) is natural and robust. Giv-
en an act f , its composition with the multivalued mapping Γ is a
correspondence from Ω to C. On the other hand, any correspon-
dence σ : Ω → 2C can be decomposed into a multivalued mapping
Γσ : Ω → 2S and an act fσ : S → C. Note that Γσ may be d-
ifferent from Γ. Although such composition is not unique, all these
compositions are equivalent in the sense of Lemma 10. So, in this
section, we choose to represent the preference over correspondences
instead of that of acts. σ is called a crisp correspondence if σ(ω) is
a singleton for all ω ∈ Ω. It is also regarded as a function from Ω to
C. Let Σc denote the set of all crisp correspondences. A crisp corre-
spondence σS belongs to a correspondence σ (denoted as σS ∈ σ) if
σS(ω) ∈ σ(ω) for all ω ∈ Ω. For any correspondence σ, σm denotes
the crisp correspondence which always takes the minimum in each
consequence set. In other words, σm(ω) = min(σ(ω)). Similarly
σM denote the crisp correspondence that always takes the largest in
each correspondence set, i.e., σM (ω) = max(σ(ω)) for all ω ∈ Ω.
It is easy to see that σm ∈ σ and σM ∈ σ.

In this section, we establish an Anscombe-Aumann-style decision
theory for belief functions. Anscombe-Aumman model has C and Ω
just as does Savage’s. However, correspondences do not map states
directly into sets of outcomes, but into finite sets of von-Neumann-
Morgenstern (vNM for short) lotteries over outcomes [29]. Formal-
ly, the vNM lotteries are probability distributions over C. Let ∆(C)
denote the set of all probability distributions over C. It is endowed
with the usual mixing operation. We will endow the set Σ∆ of cor-
respondences from Ω to {R : R ⊆ ∆(C), R is finite } with a
mixture operation as well, performed pointwise. That is, for every
σ, σ′ ∈ Σ∆ and every α ∈ [0, 1], ασ + (1 − α)σ′ ∈ Σ∆ is given
by (ασ + (1− α)σ′)(ω) = ασ(ω) + (1− α)σ′(ω) for any ω ∈ Ω.
As for the decision-theoretic interpretation of elements of Σ∆, we
actually adapted a similar interpretation from David Schmeidler in
[29] as horse lotteries. Elements of ∆(C) are as random outcomes
or (roulette) lotteries. Σ∆

c reduces to the set of classical Anscombe-
Aumann acts. We will denote the decision maker’s preference order
also by <⊆ Σ∆ × Σ∆ and we abuse this notation as usual. In par-
ticular, we can write, for C′, D′ ⊆ ∆(C), C′ < D′ understood as

σC′ < σD′ where, for every finite R ⊆ ∆(C), σR is the constant
correspondence given by σR(ω) = R for all ω ∈ Ω. For a func-
tion u : C → R and P ∈ ∆(C), we will use the notation u(P ) for∑
c∈C P (c)u(c).
The following are our Anscombe-Aumann-style axiomatization

for belief functions. In order to obtain the representation theorem
in Prop.11, we have to consider all elements in Σ∆. In other words,
we have to consider all Pr on Ω. The first three are the counterparts
to the von-Neumann-Morgenstern axioms without the completeness
property. The next two axioms are similar to de Finetti’s last two
axioms, guaranteeing monotonicity and non-triviality. And the last
axiom is characteristic: it connects our axiomatization to the classic
Anscombe-Aumman axiomatization for Bayesian theory and it takes
the same role as Axiom 8 in [14].

• AA1 (Restricted weak order):< is reflexive, transitive on Σ∆ and
it is complete on the set Σ∆

c of crisp ones.
• AA2 (Continuity): For every σ1, σ2, σ3 ∈ Σ∆, if σ1 � σ2 � σ3,

there exist α, β ∈ (0, 1) such that ασ1 + (1 − α)σ3 � σ2 �
βσ1 + (1− β)σ3.

• AA3 (Independence): For σ1, σ2, σ3 ∈ Σ∆, and every α ∈ (0, 1),
σ1 � σ2 iff ασ1 + (1− α)σ3 � ασ2 + (1− α)σ3.

• AA4 (Monotonicity): For σ, σ′ ∈ Σ∆, σ(ω) � σ′(ω) for all ω ∈
Ω implies σ � σ′.

• AA5 (Nontriviality): There exist σ, σ′ ∈ Σ∆ such that σ � σ′.
• AA6 (Consistency): For any correspondence g and two crisp cor-

respondences σS , σ′S , σS � g � σ′S iff σS � gS � σ′S for all
crisp correspondence gS ∈ g.

Proposition 11 � satisfies the Axioms AA1-AA6 if and only if there
exists a probability measure pr over Ω and a non-constant function
u : C → R such that, for every σ, σ′ ∈ Σ∆,

σ � σ′ iff
∑
ω∈Ω

pr(ω)u(σ(ω)) �
∑
ω∈Ω

pr(ω)u(σ′(ω)) (5)

Proof. It is easy to check the sufficiency. Now we only need to show
the necessity. First we consider the preference ordering � restricted
to the set of crisp correspondences, which is denoted as �c. It is
easy to see that �c satisfies all the the Anscombe-Aumann axioms
for Bayesian theory. So there is a probability measure over Ω and a
utility function u : C → R such that, for any crisp σc, σ′c,

σc � σ′c iff
∑
ω∈Ω

pr(ω)u(σc(ω)) ≥
∑
ω∈Ω

pr(ω)u(σ′c(ω))

Now it remains to show that the probability measure pr and utility
function u work for Σ∆, i.e., Eq. (5) holds. Assume that σ � σ′.
Let 0 and 1 denote the two constant correspondences that map to
the smallest and largest outcomes respectively. It is easy to see that
1 � 0. Let ασ = sup{α : σ � α1 + (1− α)0} and βσ = inf{β :
β1+(1−β)0 � σ}. Now we need to show that σm ∼ ασ . According
to AA6, we know that σm � ασ . Since, for all ω ∈ Ω, σ(ω) �
σm(ω), ασ � σm according to (AA4). So we have shown that σm ∼
ασ . Similarly, we can show that σM ∼ βσ . So σ � σ′ iff σm �
σ′m and σM � σM .

QED

The preference ordering of acts in the decision situation 〈M, C,F〉
where M = 〈Ω, S,Γ, P r〉 is defined as follows: for any two acts
f, g ∈ F ,

f � g if f ◦ Γ � g ◦ Γ (6)
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which depends on the specific multivalued mapping Γ.
For the above Anscombe-Aumann-style setting, given a belief

function bel on S, let Pbel denote the set of probability distributions
dominating bel, i.e., Pbel = {pr : pr is a probability distribution on
S such that, for any A ⊆ S, pr(A) ≥ bel(A)}. Now we can define
for any f ∈ F ,

Eimbel(f) = {
∑
s∈S pr(s)u(f(s)) : pr ∈ Pbel}.

It is a closed interval Eimbel(f) = [Ebel(f), Ēbel(f)] where
Ebel(f) =

∑
A⊆Sm(A)min(u(f(A))) and Ēbel(f) =∑

A⊆Sm(A)max(u((f(A)))) [11]. Let �im defined as:

f �im g iff Ebel(f) ≥ Ebel(g)&Ēbel(f) ≥ Ēbel(g).

The following expectation is called Choquet expected utility of an act
f with respect to the mass function m [29],

EChm (f) :=
∑
A⊆Sm(A)u(min(f(A))).

For the expected uncertainty utility [18], we require that the utility
function uI is defined on the set of intervals I := {(c, c′) : c ≤ c′}
satisfying the conditions: it is continuous and strictly increasing,i.e.,
uI(c1, c2) > uI(c

′
1, c
′
2) whenever c1 > c′1 and c2 > c′2. Then the

expectation EuI
m(f) of an act f with respect to mass function m is

defined as

EuI
m(f) =

∑
A⊆Sm(A)uI(min(f(A)),max(f(A))).

Let α be a function from 2S to [0,1]. α(A) is a pessimimism index
depending onA. For any act f , the Hurwicz expected utility EH,αm (f)
is defined as [14]:∑

A⊆S [α(A)min(u(f(A))) + (1− α(A))max(u(f(A)))]m(A).

Note that the Hurwicz expected utility EH,αm is a special case of ex-
pected uncertain utility EuI

m . The last α-Maxmin expected utility is
defined in the imprecise-probability semantics for belief functions.
For an index α ∈ [0, 1], the α-maxmin expected utility Eα,Mm (f) is
defined as

α ·minpr∈Pbel(Epr(u ◦ f) + (1− α)maxpr∈Pbel(Epr(u ◦ f)).

Proposition 12 Let �Ch,�uI ,�H,α and �α,M denote the cor-
responding preference ordering represented by these four kind-
s of expectations. Then the following equalities hold: �=�im=⋂
uI
�uI=

⋂
α �

H,α=
⋂
α �

α,M .

Proof. The first part of the proposition that �=�im is known in the
literature of imprecise probabilities. Here we give a proof idea of the
equality that �=

⋂
α �

H,α. It is easy to see that � is a subset of⋂
α �

H,α. For the other direction, it suffices to show that, if it is
not true that f � g, there are α and α′ such that f �H,α g but not
f �H,α

′
g. This follows from Corollary 9. QED

To emphasize the relations among different orderings, we make
explicit the domains. Let≥C ,�2C and�F denote the linear ordering
on C, the partial ordering on 2C in Eq. (1) and the partial ordering on
F in Eq. (6) respectively. The extensions of the above preference
relations can be illustrated as follows:

≥C⇒�2C⇒�F⇒�uI


�H,α
�α,M
�Ch .

(7)

The first extension is shown in Proposition 8 and the second is jus-
tified in Proposition 11. Proposition 12 and Eq. (7) are two reasons
why we call our theory here basic.

4 GROUP DECISION MAKING
In this section we extend the above Anscombe-Aumann model for
belief functions to the multiagent setting. Individual agents are in-
dexed with i = 1, · · · , n, and a social observer is represented by in-
dex i = 0. Both individual and social agents express their subjective
beliefs indirectly, i.e. by stating their preferences �i over uncertain
prospects (i = 0, 1, · · · , n). We assume that �i (i = 0, 1, · · · , n)
satisfy the subjective interval utility theory, i.e., the AA1-AA6 ax-
ioms of last section, for all i = 0, 1, · · · , n and they are represented
by

U i(·) : =
∑
ω

pi(ω)ui(·), (8)

We consider the following Paretian conditions: for all σ, σ′ ∈ Σ∆,

• (C) σ ∼i σ′ for all i = 1, · · · , n implies σ ∼0 σ′

• (C1)σ �i σ′ for all i = 1, · · · , n implies σ �0 σ′

• (C2)σ �i σ′ for all i = 1, · · · , n implies σ �0 σ′

• (C3)σ �i σ′ for all i = 1, · · · , n and ∃j : σ �j σ′ implies
σ �0 σ′

In social choice theory, these are the conditions of Pareto-
Indifference, Pareto-Weak Preference, Weak Pareto, Strict Pareto,
respectively. The Strong Pareto C+ is the combination of (C) and
(C3).

Lemma 13 The Paretian indifference (C) holds if and only if there
are real numbers a1, · · · , an, b such thatU0(σ) ∼

∑n
i=1 aiU

i(σ)+
b for all correspondence σ. And (C1) (resp. (C+)) holds if and only
if this equation is satisfied for some choice of non-negative (resp.
positive) numbers a1, · · · , an.

Proof. Assume that �0,�1, · · · ,�n satisfy the AA1-AA6 axioms.
Now we restrict the considerations to the set of crisp correspondences
Σ∆
c . Let �0

S ,�1
S , · · · ,�nS denote these restrictions. It is easy to

see that they satisfy the AA1-AA5 axioms for Bayesian Anscombe-
Aumann models. So, according to Lemma 2 in [27], the correspond-
ing restriction U0

S =
∑n
i=1 aiU

i
S + b holds. Now consider σm and

σM . It is easy to see that U0
S(σm) =

∑n
i=1 aiU

i
S(σm) + b and

U0
S(σM ) =

∑n
i=1 aiU

i
S(σM ) + b. QED

Note that it is generally not necessarily true that U0
S(σ) =∑n

i=1 aiU
i
S(σ) + b. From this lemma, we can easily obtain the fol-

lowing theorem.

Lemma 14 If all individual prior beliefs are the same, then (C)
holds if and only if there are real numbers a1, · · · , an, b such that
u0 =

∑n
i=1 aiui+b. And (C1) (resp. (C+)) holds if and only if this

equation is satisfied for some choice of non-negative (resp. positive)
numbers a1, · · · , an.

Let B be the class of all belief functions on the consequence set
C. For each DM i = 0, 1, · · · , n, the preference ordering �i on
B is defined according to the following representation: for any two
bel, bel′ ∈ B,

bel �i bel′ iff
∑
C⊆C

m(C)ui(C) �i
∑
C⊆C

m′(C)ui(C)

where ui comes from Eqs. (8). Similarly we can define differen-
t Paretian conditions for these preference orderings on B. Since
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∆(C) ⊆ B, the following version of aggregation theorem can be
derived directly from Harsanyi’s aggregation theorem for vNM lot-
teries [20].

Lemma 15 (Aggregation Theorem) For the above defined prefer-
ence ordering on B, if they satisfy the Paretian indifference con-
dition, then there are real numbers a1, · · · , an, b such that u0 =∑n
i=1 aiu

i + b. And (C1) (resp. (C+)) holds if and only if this e-
quation is satisfied for some choice of non-negative (resp. positive)
numbers a1, · · · , an.

Given the representations in Eq. (8), we say that agent i is a prob-
ability dictator if p0 = pi fo some i, that i is a utility dictator if
u0 = ui up to positive affine transformation, and that i is an overall
dictator if he is both a probability and a utility dictator. We define
i to be an inverse utility dictator or an inverse overall dictator by
changing the clause that u0 = ui into u0 = −ui. In general both
probabilities and utilities should be expected to vary from one indi-
vidual to another. A set of elements {φ1, · · · , φk} of a vector space
is affinely independent if for any set of real numbers a1, · · · , ak, b,
a1φ1 + · · · + akφk + b = 0 implies a1 = · · · = ak = b = 0.
This concept provides the notion of algebraic independence in the
case of utility functions while linear independence characterizes the
diversity in individual beliefs [27].

Lemma 16 Denoting by p1, · · · , pn the probabilities and by
u1, · · · , un the utility functions on consequences in Eq. (5) in Propo-
sition 11. Then, if (C) holds,

• there is either a utility or an inverse utility dictator in Case (*):
p1, · · · , pn are linearly independent

• there is a probability dictator in Case (**): u1, · · · , un are affine-
ly independent.

There is an overall or an inverse overall dictator when both (*) and
(**) apply. If either (C1) or (C2) holds, the same results follow, ex-
cept that there is always a utility dictator in Case (*).

Proof. Assume that (C) holds and p1, · · · , pn are linearly indepen-
dent. Just consider the set Σ∆

c of all crisp correspondences. Accord-
ing to Proposition 4 in [27], there is a utility dictator or an inverse
utility dictator. The second part can be shown similarly. QED

All the above Paretian conditions are defined for correspon-
dences. We may also define the corresponding Paretian condition-
s (C′), (C′1), (C′2) and (C′3) for acts instead. Although f ∼i g for
acts f, g and all i = 1, · · · , n, it is generally not true that correspon-
dences f ◦ Γi ∼i g ◦ Γi for acts f, g and all i = 1, · · · , n because
Γi’s may be different. So the above theorem generally doesn’t hold
under these Paretian conditions for acts. However, they are true for
the following special cases where we may assume that all individuals
have the same multivalued mappings.

Corollary 17 If all individual prior mass functions are the same,
then (C′) holds if and only if there are real numbers a1, · · · , an, b
such that u0 =

∑n
i=1 aiui + b. And (C′1) holds if and only if

this equation is satisfied for some choice of non-negative numbers
a1, · · · , an.

Corollary 18 If (C′) holds, then there is either a utility or an inverse
utility dictator provided m1, · · · ,mn are linearly independent.

5 RELATED WORKS AND CONCLUSION

The most comprehensive and up-to-date survey about decision theo-
ry for belief functions is [11]. To the best of our knowledge, we are
the first to establish a theory for the representation in Eq. (5). It was
first proposed in [34]. Recently it was mentioned in [11] and called
weak dominance relation. But neither of them justified the represen-
tation of this preference relation. Our results here are quite different
from those by Denoeux and Shenoy in [12]. Firstly, our axiomatic
system in Section 3.2 is of Anscombe-Aumman style which derives
both representations of beliefs and tastes. In contrast, their axiom-
atization is analogous to von Neumann-Morgensterns utility theory
for probabilistic lotteries as described by Luce and Raiffa which as-
sumes belief function lotteries first and induces only utilities. Sec-
ondly, our representation differs from theirs in that our upper and
lower bounds are the expectations of maximal and minimal utilities
respectively while the upper and lower bounds in their representation
are not dependent on but consistent with maximal and minimal util-
ities (pointed out by them in the paragraph following Def. 6). Third-
ly, our axiomatization is more fundamental and fits better with the
interpretation of belief functions as probabilities of sets, in partic-
ular with Dempster model. In accordance with this semantics, we
obtain the representation (Th.3.9) by combining the logical system
for complete ignorance (represented by set-valued mappings) and
the Anscombe-Aumann system for probabilities. Both systems fol-
low from the well-established principles. But one key assumption,
Assumption 3.3 (Continuity), in their system is not intuitive. In order
to make this assumption reasonable, we are led to develop a logical
system for complete ignorance in Section 3.1.

In the imprecise probability literature, [2] also removes the com-
pleteness assumption from the Anscombe-Aumann formulation of
Savage’s theory and introduces an inertia assumption. Moreover the
lower and upper Choquet integrals in [8] give the same lower and up-
per bounds as in our representation. But they are not constructed from
complete ignorance. The belief-function framework in this paper is
adapted from [21]. Jaffray and Wakker justified an interval-utility
representation, which is similar to �uI , by means of a neutrality ax-
iom and a weakened form of the sure thing principle. [18] provides a
Savage-style utility theory for the same representation but in a gener-
al case. [37] proposes a similar theory for Halpern and Fagin’s inner
measure semantics but in a finite-state setting. [14] also introduces a
similar axiomatization not for acts but for correspondences represent-
ing unforeseen contingencies. The representations in those papers do
depend on the maximal and minimal elements of sets of outcomes
but the represented preference relation is complete. [15] considers a
similar but more general decision making under uncertainty compris-
ing complete ignorance and probability where decision making with
belief functions is a special case. But the issue there is not about the
preference representation but the reversibility of an ignorant variable
and a probability variable. [33] defends a two-level mental model,
composed of a credal level, where an agent’s beliefs are represented
by belief functions, and the pignistic level, where decisions are made
by maximizing expected utility with respect to a probability measure
derived from a belief function through the so-called pignistic trans-
formation. [31] suggests that a constructive decision theory should be
based not on utilities, but on goals. [19] provides an axiomatization of
expectation in terms of belief functions. A preference representation
in terms of belief functions may be derived from Choquet integrals
[29]. Related literature also includes [36, 16, 23, 13, 6]. Generaliza-
tions of the Anscombe-Aumann model in the frameworks of sets of
probability measures or belief functions on consequences are studied
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in [35, 7]. None of them proposes a representation as in this paper.
As far as we know, we are the first to investigate social choice the-

ory from the perspective of Dempster-Shafer theory. Here we mainly
follow the classical works from Harsanyi [20] and Mongin [26, 27].
In this paper, we have shown that, in many decision problems of in-
terest, preferences that can be solidly justified are incomplete. Our
choice theory may be regarded to be “rationally objective” in the
sense of [17]. Yet decisions eventually have to be made. We would
like to investigate other complete “subjectively rational choices” and
provide their connection to our theory in this paper. We also would
like to investigate how social aggregation interacts with the charac-
teristic Dempster’s rule of combination. Moreover, we want to ex-
plore aggregating partially ordered preferences [28] and, more broad-
ly, social choice theory in AI [4] from the Dempster-Shafer perspec-
tive. It is also desirable to provide tools to elicit/operationalize the
notions of belief functions and/or utilities.
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Sweden., ed., Jérôme Lang, pp. 5135–5141. ijcai.org, (2018).

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain


