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Abstract. Deeper networks have limited improvements for image
super-resolution (SR), and are much more difficult to train. The main
reason is that these networks consist of many stacked building blocks
which can produce many redundant features. Besides, most of SR
methods neglect the fact that different features contain various types
of information with varying degrees of contributions to image recon-
struction, and thus lack sufficient representational capability. Taking
these issues into account, we propose a mid-weight bypass connec-
tion attention network (BCAN) with more powerful representational
capability but fewer parameters. In detail, we design a novel bypass
connection attention module (BCAM), which consists of several by-
pass connection attention blocks (BCABs), enhancing high contri-
bution information and suppressing redundant information. Further,
we embed a mixed residual attention unit (MRAU) in each BCAB,
which is composed of a channel attention unit and a spatial attention
unit. After obtaining all hierarchical features, we propose an adap-
tive feature fusion module (AFFM), which can effectively combine
hierarchical features based on different contributions of each BCAM.
Experiments on benchmark datasets with various degradation mod-
els show that our BCAN can achieve better performance than existing
state-of-the-art methods.

1 Introduction
Single image super-resolution (SISR), which refers to the process
of recovering a high-resolution (HR) image from its low-resolution
(LR) image, is used in various real-world computer vision tasks such
as medical imaging [15], surveillance and security [27]. It can not
only improve image perpetual quality but also serve as an auxiliary
task for other computer vision applications [35]. However, SISR is
very challenging and ill-posed since there are multiple HR images
corresponding to a single LR image. In spite of such difficulty, nu-
merous learning-based methods have been proposed to learn maps
between LR and HR images.

Recently, convolutional neural network (CNN) based methods [4,
8, 22, 38] have been actively explored and achieve state-of-the-art
performance on various datasets of SR. Among them, SRCNN [4]
firstly introduced a three-layer CNN for image SR, with a signifi-
cant improvement over conventional methods. VDSR [17] increased
the depth of the network by using skip connections to ease the dif-
ficulty of training deep network and achieved a notable improve-
ment over SRCNN. Inspired by ResNet [10], the strategy of resid-
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Figure 1. Performance vs number of parameters. The results are evaluated
on Set14 with scaling factor ×4.

ual learning was adopted by deep CNN-based image SR methods to
build deeper networks. Furthermore, dense connections proposed in
DenseNet [13] allowed direct connections between any two layers
within the same dense block, providing an effective way to combine
low-level and high-level features to boost the reconstruction perfor-
mance. The SRDenseNet [30] and RDN [38] employed dense block
and residual dense block to extract hierarchical features which are
beneficial to feature reconstruction. However, these networks have
some drawbacks: (1) the extreme connectivity pattern not only hin-
ders their scalability to large width or high depth but also produces
redundant computation; (2) these networks ignore the fact that the
contribution of hierarchical features is different. Hence, how to ob-
tain effective hierarchical features by utilizing fewer parameters and
adaptively fuse them is worth exploring.

In addition, most of the CNN-based methods inherently treat all
types of features equally, so they can not effectively distinguish
the detailed characteristics of images (e.g., low-frequency and high-
frequency information). In order to get more discriminative features,
RCAN [37] and SAN [8] adopted the channel attention mechanism
to design a very deep network and pushed the state-of-the-art perfor-
mance of image SR forward. However, the information contained
in feature maps is also diverse over spatial positions. For exam-
ple, the edge or texture regions usually contain more high-frequency
information while the smooth areas have more low-frequency in-
formation. The high-frequency information needs to be extracted
by complex filters, the low-frequency information needs to be ex-
tracted by relatively less detailed filters. Most of the previous net-
works [8,12,37] only focus on the relation of various channels with-
out considering the positional relation (spatial relation) of each chan-
nel. How to utilize both channel attention and spatial attention and
effectively combine them in SR networks still is an open issue.

To solve these problems, we propose a mid-weight bypass con-
nection attention network (BCAN). To change extreme dense con-

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



HR VDSR [17] LapSRN [19] CARN [2] EDSR [22] RDN [38] SAN [8] BCAN (Ours)

Figure 2. The comparisons of our proposed BCAN with existing state-of-the-art methods on “img 092” from Urban100 (×4). Our proposed BCAN network
generates more realistic visual result.

nection mode and obtain hierarchical features, a bypass connection
attention module (BCAM) is developed as the basic building mod-
ule for the BCAN. Each BCAM contains multiple bypass connec-
tion attention blocks (BCABs), extracting local shallow features and
local deep features. All convolutional features in the current BCAB
are concatenated, and these features will be fed into later BCABs
to fully utilize all information. In order to improve the representa-
tional capability, we combine channel attention and spatial attention
to construct a mixed residual attention unit (MRAU) and embed the
MRAU into the tail of each BCAB. After extracting multi hierarchi-
cal features, we construct an adaptive feature fusion module (AFFM)
that combines hierarchical features by the different contributions of
each BCAM. As shown in Figure 2, our BCAN achieves better visual
performance compared with other state-of-the-art SR methods.

In summary, the main contributions of this paper can be summa-
rized as follows:

1. We propose a novel mid-weight bypass connection attention net-
work (BCAN) for high-quality image SR with different degrada-
tion models. Extensive experiments on five public datasets demon-
strate our BCAN has better SR performance using fewer parame-
ters compared with other state-of-the-art methods.

2. We propose a bypass connection attention module (BCAM) to
extract the hierarchical features, which serves as a basic module
for the whole network. Besides, we construct an adaptive feature
fusion module (AFFM) to fuse these hierarchical features effec-
tively.

3. We combine channel attention (CA) and spatial attention (SA) to
construct a mixed residual attention unit (MRAU), which is em-
bedded in the BCAM and improves the representational capability
of the network.

2 Related Work
2.1 Deep Learning Based Image Super-Resolution
In recent years, deep learning-based SR methods have been ac-
tively explored and achieve great progress. Among them, SRCNN [4]
firstly applied CNN to image SR and improved SR performance over
traditional methods. The baseline was further improved by increas-
ing the depth of the network in VDSR [17]. To reduce network pa-
rameters, DRCN [16] and DRRN [33] adopted recursive learning to
achieve parameter sharing. However, these methods, which adopt the
strategy of pre-resample, not only increase the computation complex-
ity of the network but also make the image losing some detailed infor-
mation. FSRCNN [5] and ESPCN [28] added a deconvolution layer
and sub-pixel convolution layer to the tail of the network to obtain
HR image respectively, which reduced the amount of computation.
In the past few years, with the continuous improvement of comput-
ing power, deep CNNs [8, 22, 38] have been explored for image SR.
However, these deep CNNs based SR methods not only need more
training skills but also require more time consumption, which result
in poor reproducibility.

2.2 Bypass Connections

Recently, skip connections [7, 13, 16, 22, 38, 39] have been applied
to many image SR networks in order to ease the problem of gradient
vanishing and information flow weakened. In VDSR [17], a skip con-
nection was utilized to link the input and reconstruction layer, which
constructed a 20 layer network and achieved competitive results. SR-
DenseNet [30] introduced dense skip connections to build a dense
block, where each layer had direct connections to all subsequent lay-
ers. This dense block is used as the basis of the whole network and
effectively boosts reconstruction performance. RDN [38] combined
dense skip connections and local residual learning to build a residual
dense block (RDB). Compared with dense block, RDB has a larger
growth rate and utilizes local residual learning to extract richer hier-
archical features. All these networks show that it is essential to build
many skip connections to train a network. However, frequent con-
nections in each Conv layer not only produce many redundant fea-
tures, but also increase a large amount of computation. Therefore, we
adopt the manner of bypass connections to construct a novel bypass
connection attention block (BCAB), and use bypass connections to
combine several BCABs to construct a concise bypass connection
attention module (BCAM).

2.3 Attention Mechanism

The aim of attention mechanism is to recalibrate the extracted feature
maps so that more discriminative and effective features are obtained.
Many computer vision tasks, such as image generation [23], object
detection [40], image captioning [6] and visual question answer-
ing [32], have employed attention mechanism in deep networks. A
few recent SR methods also embed the attention mechanism to their
networks. RCAN [37] employed channel attention (CA) to network
and pushed the state-of-the-art performance of image SR forward.
SAN [8] changed the method of pooling, adopting covariance pool-
ing to obtain a novel second-order channel attention, and achieved
better performance over RCAN. In this paper, considering that there
are different types of information in inter-channel and intra-channel,
we utilize both channel attention and spatial attention to obtain CA
and SA maps respectively. Then, we fuse the CA and SA maps by
the element-wise operation.

3 Proposed Method

3.1 Network Architecture

As shown in Figure 3, our proposed BCAN mainly contains four
parts: shallow feature extraction net (SFENet), hierarchical feature
extraction net (HFENet), upscale net (UpNet) and reconstruction net
(RecNet). Similar to RDN [38], we use the strategy of residual learn-
ing (RL) to train our network. We denote ILR and ISR as the input
and output of BCAN respectively.
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Figure 3. The architecture of the proposed bypass connection attention network (BCAN) ant its sub-modules.

In the SFENet, we utilize one convolutional (Conv) layer to extract
the features from the ILR image.

I0 = HSFENet(ILR), (1)

where HSFENet(·) denotes the function of SFENet, I0 denotes the
output of SFENet and serves as the input of HFENet. The HFENet in-
cludes a sequence of bypass connection attention modules (BCAMs)
and an adaptive feature fusion module (AFFM). The output Im of
the m-th BCAM can be obtained by

Im = Hm(Im−1) = Hm(Hm−1(· · ·H1(I0) · · · )), (2)

where Hm(·) denotes the function of the m-th BCAM. The HFENet
totally contains M BCAMs and all features obtained by one BCAM
then sequentially fed into next module. We can adjust the depth of the
network by changing the numbers of the BCAM. More details about
BCAM will be introduced in the next subsection. After extracting the
hierarchical features with a set of BCAMs, we adopt AFFM to fuse
all features. We define the output of HFENet as:

IHF = HHFENet(I0)

= HAFFM (I1, I2, · · · , IM ) + I0

= WAFF [λ1I1, λ2I2, · · · , λMIM ] + I0,

(3)

where HFENet(·) denotes the function of HFENet, HAFFM (·)
denotes the function of adaptive feature fusion module, λM is the
adaptive weight factor for the M -th BCAM, [· · · ] denotes channel
concatenation operation, and WAFF represents the weight sets of
1 × 1 Conv layer. In the AFFM, different from MSRN [20], we
deploy a learnable weight factor after each BCAM, which can fur-
ther explore model representational capacity. Eventually, we obtain
the output IHF and transmit the output into the UpNet for mapping
transformation. We define the output of UpNet as:

IUP = HUpNet(IHF ), (4)

where HUpNet(·) denotes the function of UpNet. Specifically, the
UpNet is composed of a sub-pixel Conv [28] layer followed by a
Conv layer for converting LR features to HR features. Finally, the
upscaled features are reconstructed via one Conv layer.

ISR = HRecNet(IUP ) = HBCAN (ILR), (5)

where HRecNet(·) and HBCAN (·) denote the functions of RecNet
and BCAN, respectively. ISR represents the reconstructed image via
BCAN.

Our BCAN is optimized by minimizing the difference between the
super-resolved image ISR and the corresponding ground-truth IHR.
As done in previous works [20,22,37,38], we adopt L1 loss function
to measure the difference. The loss function can be defined as:

L(Θ) =
1

N

N∑
i=1

‖HBCAN (IiLR)− IiHR‖1, (6)

where Θ represents the total parameters set of network. IiLR and IiHR

denote the i-th LR and HR patch pair of total N patch pairs.

3.2 Bypass Connection Attention Module (BCAM)
The BCAM contains multiple bypass connection attention blocks
(BCABs) as shown in Figure 3. Each BCAB contains a sequence
of Conv layers and a mixed residual attention unit (MRAU).

Different from previous work [30, 38], each Conv layer in each
BCAB is not connected to all subsequent Conv layers, which enables
the network more concise and obtain more hierarchical features at the
same time. Then we adopt a 1 × 1 Conv layer to control the output
features. The specific operation is

Xm,b =Wm,b[I
1
m,1, · · · , Icm,1, · · · , I1m,b, · · · , Icm,b,

· · · , Im−1],
(7)

where Wm,b is weight sets of the 1 × 1 Conv layer, Im−1 denotes
the input of the m-th BCAM, Icm,b is the c-th Conv layer of the b-th
BCAB in the m-th BCAM. We assume that each BCAB consists of
C Conv layers and each Conv layer has G feature maps. Thereby,
G × ((C × b) + 1) feature maps will be concatenated, and then
we adopt a 1 × 1 Conv layer to reduce redundant information. The
output Xm,b of BCAB will be fed into the mixed residual attention
unit (MRAU).

Im,b = Rm,b(Xm,b), (8)

where Rm,b(·) is the function corresponding to MRAU, Im,b de-
notes the output of the b-th BCAB in the m-th BCAM. The details
of MRAU will be discussed in next section.
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Finally, we adopt the residual learning (RL) strategy to train our
network steadily. The final output of m-th BCAM can be obtained
by

Im = Im,B + Im−1, (9)

where Im−1 and Im represent the input and output of m-th BCAM,
respectively. Im,B represents the output of last BCAB in the m-th
BCAM.

3.3 Mixed Residual Attention Unit (MRAU)
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Figure 4. Our proposed mixed residual attention unit (MRAU).

The features generated by CNNs contain different types of in-
formation across channels and spatial regions which have different
contributions for the recovery of high-frequency details. In order to
improve the representational capability of the network, we embed a
mixed residual attention unit (MRAU) in the tail of each BCAB. The
detailed structure of MRAU is illustrated in Figure 4.

In the channel attention (CA) unit, let x = [x1, x2, · · · , xC ]
serves as input of MRAU, which has C feature maps with size of
H ×W , then we obtain the channel-wise output statistic z adopting
global average pooling. The c-th element of z is computed by

zc = FGAP (x)

=
1

H ×W

H∑
i=1

W∑
j=1

xc(i, j),
(10)

where xc(i, j) denotes the value at position (i, j) of the c-th feature.
The excitation and scaling processes are performed in the same way
as in [37]. Then the CA maps can be obtained by

UCA = W 2
CA(δ(W 1

CAz)), (11)

where δ(·) denotes the function of ReLU [26], W 1
CA ∈ R

C
r
×C×1×1

is weight sets of the first Conv layer which is followed by ReLU acti-
vation and used to decrease the number of channels of z by reduction
ratio r. Then the number of channels is increased back to the initial
amount via second Conv layer with weight of W 2

CA ∈ RC×C
r
×1×1,

the bias term is omitted for simplicity.
In addition, the information contained in feature maps is also di-

verse over spatial positions. For example, the edge or texture regions
usually contain more high-frequency information while the smooth
areas have more low-frequency information. In other words, different
regions of the image need to obtain different attention.

Therefore, in the spatial attention (SA) unit, we explore a com-
plementary form of attention, spatial attention, to improve the repre-
sentational capability of the network. The SA maps can be obtained
by

USA = W 2
SA(δ(W 1

SAx)), (12)

where {W i
SA}2i=1 ∈ RC×C×H×W is the weight of two depth-wise

convolutions [11].

CA and SA units exploit the relationship of inter-channel and
intra-channel, respectively. To make full use of both attention, we
combine these two units by adopting element-wise sum operation.
To assign different attention to different types of feature maps, we
employ a gating mechanism with a sigmoid activation after fusing
these two attention units. Then we rescale the input x as follows.

x̂ = σ(UCA ⊕ USA)⊗ x, (13)

where x̂ denotes the recalibrated features, σ(·) denotes the sigmoid
activation function,⊕ and⊗ denotes element-wise sum and element-
wise product, respectively.

Considering the low-level features are more important for image
reconstruction, we adopt a simple yet more suitable residual atten-
tion learning method by combining input features x and recalibrated
features x̂ directly.

y = x+ x̂, (14)

3.4 Implementation
In our BCAN, we set the number of BCAM as M = 10. In each
BCAM, we set the BCAB number as 4 and each BCAB has 3 Conv
layers. Except 1 × 1 Conv layer, we use 3 × 3 as the kernel size of
all other Conv layers. We use 64 filters in all Conv layers except for
the final reconstructed layer with 3 filters producing color images. In
AFFM, all learnable weight factors are initialized as 1. For upscale
net HUpNet(·), we use ESPCNN [28] to upscale the coarse resolu-
tion features to fine ones.

4 Experimental Results and Analyses
4.1 Settings
We choose 800 training images from DIV2K dataset [29] as train-
ing data. For testing, we evaluate our results under peak signal noise
ratios PSNR and SSIM [31] on five standard datasets: Set5 [3],
Set14 [34], BSD100 [24], Urban100 [14] and Manga109 [25]. To
keep consistent with previous works, quantitative results are only
evaluated on luminance channel of transformed YCbCr space.

Following the work in [22], we randomly crop 16 patches of size
48×48 from the LR images as input for each training mini-batch. We
randomly augment the patches by flipping horizontally or vertically
and rotating 90◦. Our model is trained with ADAM optimizer [18]
with β1 = 0.9, β2 = 0.999, ε = 10−8. The initial learning rate is set to
10−3 by using weight normalization and then decreases to half every
2× 105 iterations of back-propagation.

In order to demonstrate the effectiveness of our BCAN, we adopt
three different degradation models to obtain LR images. The first
one is bicubic downsampling (denoted as BI), which is used in most
previous methods. We evaluate the results with scaling factor ×2,
×3 and ×4, respectively. The second one firstly blurs HR images by
Gaussian kernel of size 7 × 7 with standard deviation 1.6, then ob-
tains LR images via downsampling blurred images (denoted as BD).
The third is a very challenging one, which first bicubic-downsamples
HR image with scaling factor ×3 and then adds Gaussian noise of
level 30 (denote as DN). In the latter two cases, we only evaluate the
results with the scaling factor ×3 in order to keep consistent with
previous work [38].

4.2 Study of B, C and M
In this subsection, we explore the influence of the number of BCAB
(denoted as B), the number of Conv layer in each BCAB (denoted
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Figure 5. Convergence analysis of B, C and M. The curves for each combi-
nation are based on the PSNR value on Set14 with scaling factor ×4 in 200
epochs.

as C) and the number of BCAM (denoted as M). As shown in Fig-
ure 5(a) and 5(b), larger B and C would lead to higher performance.
The main reason lies in that the network becomes deeper and wider
with larger B and C. On the other hand, we embed an MRAU in each
BCAB, which further improves the representational capability of the
network. We then investigate the influence of M by fixing B and C to
4 and 3, respectively. It can be observed from Figure 5(c) that the re-
construction performance is significantly improved with the increas-
ing M. In conclusion, choosing larger B, C or M contributes to better
results. It should be noticed that small B, C and M, our BCAN also
has better results than VDSR [17]. Eventually, considering the trade-
off between network performance and model complexity, we adopt
M = 10, B = 4 and C = 3 in our BCAN model.

4.3 Ablation Investigation
To verify the effectiveness of spatial attention (SA), channel atten-
tion (CA) and adaptive feature fusion module (AFFM), we conduct
a series of ablation studies. The specific performance is listed in Ta-
ble 1. Base (PSNR = 28.62dB) refers to a baseline model which is
obtained without SA, CA or AFFM.

Table 1. Investigation of spatial attention (SA), channel attention (CA), and
adaptive feature fusion module (AFFM). The table shows the best PSNR
value on Set14 with scaling factor ×4 in 200 epochs.

Models Base R1 R2 R3 R4 R5

SA 7 3 7 7 3 3
CA 7 7 3 7 3 3

AFFM 7 7 7 3 7 3
PSNR 28.62 28.72 28.71 28.73 28.76 28.80
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Figure 6. Convergence analysis on SA, CA, and AFFM. These results are
evaluated on Set14 with scaling factor ×4 in 200 epochs.

To demonstrate the effect of our proposed mixed residual attention
unit (MRAU), we first add a component of CA or SA to the Base
model. We can observe from Table 1 that R1 (PSNR = 28.72dB) and

R2 (PSNR = 27.71dB) models obtain better PSNR thanBasemodel.
More importantly, when we combine CA and SA to R4 (PSNR =
28.76dB) or R5 (PSNR = 28.80dB) model, the PSNR further im-
proved compared with R1 and R2 models. This not only shows that
CA and SA play an important role in improving the SR performance,
but also demonstrates the effectiveness of combining the two atten-
tion methods. We further show the effect of AFFM from the results
of R3 (PSNR = 28.73dB) and R5 model. We can observe that the
results are improved obviously, no matter CA and SA are used or
not, which fully demonstrates the importance of adaptively fusing
hierarchical features.

We also visualize the convergence process of these six combina-
tions in Figure 6. The curves are consistent with the analysis above,
these experiments and visual analyses strongly demonstrate the ef-
fectiveness of our proposed SA, CA and AFFM.

4.4 Results with BI Degradation Model
For BI degradation model, we compare our method with other
state-of-the-art SR methods such as VDSR [17], LapSRN [19],
SRFBN [21], EDSR [22], D-DBPN [9], MSRN [20], RDN [38] and
SAN [8]. The PSNR/SSIM comparing results are shown in Table 2,
most of which are re-evaluated from the corresponding public codes.
In particular, followed by D-DBPN [9], we increase the Flickr2K [1]
datasets to train our BCAN in order to further improve the perfor-
mance (denoted as BCAN+). It can be seen that our BCAN out-
performs most of the other methods, and our BCAN+ outperforms
almost all comparative methods, especially on the Urban100 [14]
and Manga109 [25] datasets. In addition, it is worth mentioning
that EDSR utilizes much more number of filters (256 vs. 64), D-
DBPN employs more training images (DIV2K+Flickr2K+ImageNet
vs. DIV2K), SAN has more than twice the parameters of our BCAN
(15.7M vs. 6M), and RDN has much more parameters than ours
(22M vs. 6M). Hence, these observations indicate that our BCAN
has great advantages in terms of SR performance and network pa-
rameters.

Figure 7 shows visual comparisons with scaling factor ×4 on
“img 004” and “img 073” from Urban100 dataset, from which we
observe that other methods produce more blurred lattices or edges,
and in contrast, our BCAN alleviates the blurring artifacts and re-
covers more details. Similar observations are shown in “Yumeiro-
Cooking”, our BCAN recovers clearer line which is very close to the
ground truth. Such comparisons demonstrate that our BCAN owns
more powerful representational capability for complex features com-
pared with other state-of-the-art methods.

4.5 Results with BD and DN Degradation Models
For BD and DN degradation models, we compare our method with
other state-of-the-art methods such as SRCNN [4], FSRCNN [5],
VDSR [17], IRCNN [36], RDN [38], SRFBN [21] and SAN [8]. Ta-
ble 3 shows the comparing results on PNSR and SSIM, from which
we can observe that our BCAN is superior to most state-of-the-art
methods, but our BCAN+ achieves the best performance with fewer
parameters.

Figure 8 shows the visual comparisons for BD and DN degradation
models. We pick out images from Urban100 dataset for comparison
because this dataset is very challenging. From images on the top row
in the figure, we observe that for details in “img 024”, most meth-
ods suffer from heavy blurring artifacts, while our BCAN produces
a recovering image close to ground truth. From the bottom row in
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Table 2. Average PSNR/SSIM of various SR methods for scaling factor ×2, ×3 and ×4 with BI degradation model. The best results are highlighted.

Datasets Scale
VDSR [17]
≈ 665K

LapSRN [19]
≈ 813

SRFBN [21]
≈ 3.5M

EDSR [22]
≈ 43M

D-DBPN [9]
≈ 10M

MSRN [20]
≈ 6.5M

RDN [38]
≈ 22M

SAN [8]
≈ 15.7M

BCAN(Ours)
≈ 6M

BCAN+(Ours)
≈ 6M

Set5
×2 37.53/0.9587 37.52/0.9581 38.11/0.9609 38.11/0.9602 38.09/0.9600 38.08/0.9605 38.24/0.9614 38.31/0.9620 38.24/0.9613 38.25/0.9614
×3 33.66/0.9213 33.82/0.9227 34.70/0.9292 34.65/0.9280 -/- 34.38/0.9262 34.71/0.9296 34.75/0.9300 34.71/0.9297 34.78/0.9300
×4 31.35/0.8838 31.54/0.8850 32.47/0.8983 32.46/0.8968 32.47/0.8980 32.07/0.8903 32.47/0.8990 32.64/0.9003 32.51/0.8989 32.55/0.8995

Set14
×2 33.03/0.9124 33.08/0.9109 33.82/0.9196 33.92/0.9195 33.85/0.9190 33.74/0.9170 34.01/0.9212 34.07/0.9213 33.99/0.9209 34.14/0.9231
×3 29.77/0.8314 29.79/0.8320 30.51/0.8461 30.52/0.8462 -/- 30.34/0.8395 30.57/0.8468 30.59/0.8476 30.57/0.8468 30.65/0.8481
×4 28.01/0.7674 28.19/0.7720 28.81/0.7868 28.80/0.7876 28.82/0.7860 28.60/0.7751 28.81/0.7871 28.92/0.7888 28.85/0.7877 28.92/0.7897

BSD100
×2 31.92/0.8965 31.80/0.8949 32.29/0.9010 32.32/0.9013 32.27/0.9000 32.23/0.9013 32.34/0.9017 32.42/0.9028 32.35/0.9018 32.38/0.9021
×3 28.83/0.7966 28.82/0.7973 29.24/0.8084 29.25/0.8093 -/- 29.08/0.8041 29.26/0.8093 29.33/0.8112 29.26/0.8091 29.33/0.8106
×4 27.29/0.7167 27.32/0.7280 27.72/0.7409 27.71/0.7420 27.72/0.7400 27.52/0.7273 27.72/0.7419 27.78/0.7436 27.74/0.7416 27.79/0.7435

Urban100
×2 30.76/0.914 30.41/0.9112 32.62/0.9328 32.93/0.9351 32.55/0.9324 32.22/0.9326 32.89/0.9353 33.10/0.9370 32.97/0.9355 33.08/0.9363
×3 27.14/0.8279 27.07/0.8272 28.73/0.8641 28.80/0.8653 -/- 28.08/0.8554 28.80/0.8653 28.93/0.8671 28.85/0.8657 29.07/0.8696
×4 25.18/0.7524 25.21/0.7560 26.60/0.8015 26.64/0.8033 26.38/0.7946 26.04/0.7896 26.61/0.8028 26.79/0.8068 26.70/0.8038 26.87/0.8090

Manga109
×2 37.22/0.9729 37.27/0.9855 39.08/0.9779 39.10/0.9773 38.89/0.9775 38.82/0.9768 39.18/0.9780 39.32/0.9792 39.26/0.9778 39.52/0.9789
×3 32.01/0.9310 32.19/0.9334 34.18/0.9481 34.17/0.9476 -/- 33.44/0.9427 34.13/0.9484 34.30/0.9494 34.30/0.9488 34.64/0.9503
×4 28.83/0.8809 29.09/0.8900 34.15/0.9160 31.02/0.9148 30.91/0.9137 30.17/0.9034 31.00/0.9151 31.18/0.9169 31.13/0.9167 31.40/0.9186

Table 3. Average PSNR/SSIM of various SR methods for scaling factor ×3 with BD and DN degradation models. The best results are highlighted.

Dataset Model Bicubic SRCNN [4] FSRCNN [5] VDSR [17] IRCNN-G [36] RDN [38] SRFBN [21] SAN [8] BCAN(Ours) BCAN+(Ours)

Set5
BD 28.78/0.8308 32.21/0.9001 26.23/0.8124 33.25/0.9150 33.38/0.9182 34.58/0.9280 34.66/0.9283 34.75/0.9290 34.71/0.9290 34.77/0.9292
DN 24.01/0.5369 25.01/0.6950 24.18/0.6932 25.20/0.7183 25.70/0.7379 28.47/0.8151 28.53/0.8182 -/- 28.61/0.8198 28.65/0.8213

Set14
BD 26.38/0.7271 28.89/0.8105 24.44/0.7106 29.46/0.8244 29.63/0.8281 30.53/0.8447 30.48/0.8439 30.68/0.8466 30.63/0.8458 30.69/0.8473
DN 22.87/0.4724 23.78/0.5898 23.02/0.5856 24.00/0.6112 24.45/0.6305 26.60/0.7101 26.60/0.7144 -/- 26.68/0.7144 26.73/0.7161

BSD100
BD 26.33/0.6918 28.13/0.7740 24.86/0.6832 28.57/0.7893 28.65/0.7922 29.23/0.8079 29.21/0.8069 29.33/0.8101 29.28/0.8085 29.35/0.8098
DN 22.92/0.4449 23.76/0.5538 23.41/0.5556 24.00/0.5749 24.28/0.5900 25.93/0.6573 25.95/0.6625 -/- 25.99/0.6623 26.01/0.6635

Urban100
BD 23.52/0.6862 25.84/0.7856 22.04/0.6745 26.61/0.8136 26.77/0.8154 28.46/0.8582 28.48/0.8581 28.83/0.8646 28.75/0.8625 28.93/0.8659
DN 21.63/0.4687 21.90/0.5737 21.15/0.5682 22.22/0.6096 22.90/0.6429 24.92/0.7364 24.99/0.7424 -/- 25.17/0.7463 25.25/0.7491

Manga109
BD 25.46/0.8149 29.64/0.9003 23.04/0.7927 31.06/0.9234 31.15/0.9245 33.97/0.9465 34.07/0.9466 34.46/0.9487 34.45/0.9484 34.73/0.9498
DN 23.01/0.5381 23.75/0.7148 22.39/0.7111 24.20/0.7525 24.88/0.7765 28.00/0.8591 28.02/0.8618 -/- 28.19/0.8641 28.35/0.8669
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Figure 7. Visual comparison for ×4 SR with BI degradation model. The best results are highlighted.
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Figure 8. Visual comparison for ×3 SR with BD and DN degradation models. The best results are highlighted.

the figure, we observe that for “img 093”, which is corrupted with
noise and loses some details, our method clearly reconstructs the ze-
bra crossing and the stripe patterns, while other methods result in se-
vere distortions or noticeable artifacts. These visual comparisons also
demonstrate the powerful representational capability of our BCAN.

4.6 Model Complexity Analysis

4.6.1 Model Size Comparison

We study the trade-off between the SR performance and the number
of network parameters of our BCAN, BCAN+ and existing state-of-
the-art networks. Figure 1 shows the PSNR performances of various
CNN-based methods versus the number of parameters, where the re-
sults are evaluated on the Set14 dataset with scaling factor ×4. In
comparison with the deep networks, such as RCAN [37], SAN [8]
and RDN [38], our BCAN can achieve competitive SR performances,
while only needs the 40% and 20% parameters of RCAN and RDN,
respectively. However, our BCAN+ can obtain the best SR perfor-
mance.

EDSR (CVPR2017)

D-DBPN (CVPR2018)

RDN (CVPR2018)

RCAN (ECCV2018)
SAN (CVPR2019)

BCAN 

BCAN+

6M  10M 16M 22M 43M
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26.90

0.00 0.50 1.00 1.50 2.00 2.50 3.00
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N
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(d
B

)

Running Time (s)
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Figure 9. Trade-off between performance vs. number of parameters and
running time on Urban100 dataset with scaling factor ×4. The x−axis and
y−axis denote the running time and PSNR values, and the size of the circle
denotes the number of the network parameters.

4.6.2 Running Time Comparison

In addition, we compare running time of our proposed BCAN
and RCAN+ with five deep networks: EDSR [22], D-DBPN [9],
RDN [35], RCAN [37] and SAN [8]. The running time of all net-
works is evaluated on the same machine with 3.6GHz Intel i7 CPU
(64G RAM) and an NVIDIA 2080Ti GPU using their official codes.
We can observe from Figure 9 that our BCAN has a great tradeoff be-
tween running time and PSNR values. RCAN and SAN have slightly
higher PSNR values but spend more running time. This is because
they focus on the deeper network (about 400 Conv layers) in pursuit
of higher PSNR results. However, our BCAN+ achieves the best SR
performance but with fewer running time.

5 Conclusions
This paper proposes a mid-weight bypass connection attention net-
work (BCAN) which adopts bypass connections and attention mech-
anism for image SR. The results evaluated on five different datasets
show that our BCAN outperforms other state-of-the-art methods with
fewer network parameters. The reasons for the improvement of our
BCAN are as follows. Firstly, our proposed bypass connection at-
tention module (BCAM) changes the mode of dense connections
to reduce redundant features. Secondly, we combine channel atten-
tion with spatial attention to construct a mixed residual attention unit
(MRAU) and then embed it into BCAM to obtain more effective hi-
erarchical features. Finally, we propose an adaptive feature fusion
module (AFFM) to combine these hierarchical features.
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