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Abstract. In this paper, we study the problem of enabling neural
machine translation (NMT) to reuse previous translations from simi-
lar examples in target prediction. Distinguishing reusable translations
from noisy segments and learning to reuse them in NMT are non-
trivial. To solve these challenges, we propose an Example-Guided
NMT (EGNMT) framework with two models: (1) a noise-masked
encoder model that masks out noisy words according to word align-
ments and encodes the noise-masked sentences with an additional
example encoder and (2) an auxiliary decoder model that predicts
reusable words via an auxiliary decoder sharing parameters with the
primary decoder. We define and implement the two models with
the state-of-the-art Transformer. Experiments show that the noise-
masked encoder model allows NMT to learn useful information from
examples with low fuzzy match scores (FMS) while the auxiliary
decoder model is good for high-FMS examples. More experiments
on Chinese-English, English-German and English-Spanish transla-
tion demonstrate that the combination of the two EGNMT models
can achieve improvements of up to +9 BLEU points over the base-
line system and +7 BLEU points over a two-encoder Transformer.

1 Introduction

Neural machine translation [3, 30, 31, 9] captures the knowledge of
the source and target language along with their correspondences as
part of the encoder and decoder parameters learned from data. With
this embedded and parameterized knowledge, a trained NMT model
is able to translate a new source sentence into the target language.

In this paper, we consider a different translation scenario to NMT.
In this scenario, in addition to a given source sentence, NMT is also
provided with an example translation that contains reusable transla-
tion segments for the source sentence. The NMT model can either use
the embedded knowledge in parameters or learn from the example
translation on the fly to predict target words. This translation scenario
is not new to machine translation as it has been studied in example-
based machine translation [19] and the combination of statistical ma-
chine translation (SMT) with translation memory [16]. However, in
the context of NMT, the incorporation of external symbol translations
is still an open problem. We therefore propose example-guided NMT
(EGNMT) to seamlessly integrate example translations into NMT.

Unlike conventional machine translation formalisms, a trained
NMT model is not easy to be quickly adapted to an example transla-
tion as the model is less transparent and amenable than SMT models.
To address this issue, we use a new encoder (thereafter the example
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encoder) to encode the example translation in EGNMT, in addition
to the primary encoder for the source sentence.

As the example is not identical to the source sentence, only parts
of the example translation can be used in the final translation for the
source sentence. Hence the challenge is to teach EGNMT to detect
and use matched translation fragments while ignoring unmatched
noisy parts.

To handle this challenge, we propose two models that guide the de-
coder to reuse translations from examples. The first model is a noise-
masked encoder model (NME). In the example encoder, we pinpoint
unmatched noisy fragments in each example translation via word
alignments and mask them out with a symbol “〈X〉”. The noise-
masked example translation is then input to the example encoder.
This model mimics human translators in paying special attention to
reusable parts and ignoring those unrelated parts when an example
translation is given.

Different from NME that encodes the noise-masked example
translation, in the second model, we directly produce a masked trans-
lation from the example translation with an auxiliary decoder (hence
the auxiliary decoder model, AD). We compare the reference trans-
lation of a source sentence in the training data with its correspond-
ing example translation. The identical parts in the reference transla-
tion are retained while other parts are substituted with the symbol
“〈X〉”. The auxiliary decoder is then used to predict the masked ref-
erence translation. It is jointly trained with the primary decoder and
shares its parameters with the primary decoder. Therefore the pri-
mary decoder can learn from the auxiliary decoder to predict reusable
words/phrases from the example translation. Notice that the auxiliary
decoder is only used during the joint training phase.

In summary, our contributions are threefold.

• We propose an example-guided NMT framework to learn to reuse
translations from examples.

• In this framework, we further propose two models: NME that en-
codes reusable translations in the example encoder and AD that
teaches the primary decoder to directly predict reusable transla-
tions with the auxiliary decoder via parameter sharing and joint
training.

• The proposed EGNMT framework can be used to any encoder-
decoder based NMT. In this paper, we define EGNMT over the
state-of-the-art NMT architecture Transformer [31] and evalu-
ate EGNMT on Chinese-English, English-German and English-
Spanish translation. In our experiments, the best EGNMT model
achieves improvements of 4-9 BLEU points over the baseline on
the three language pairs. Analyses show that the proposed model
can effectively learn from example translations with different sim-
ilarity scores.
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2 Related Work

Translation Memory Our work is related to the studies that com-
bine translation memory (TM) with machine translation. Various ap-
proaches have been proposed for the combination of TM and SMT.
For example, Koehn and Senellart [16] propose to reuse matched seg-
ments from TM for SMT. In NMT, Gu et al. [10] propose to encode
sentences from TM into vectors, which are then stored as key-value
pairs to be explored by NMT. Cao and Xiong [6] regard the incor-
poration of TM into NMT as a multi-input problem and use a gating
mechanism to combine them. Bapna and Firat [4] integrate multi-
ple similar examples into NMT and explore different retrieval strate-
gies. Different from these methods, we propose more fine-grained
approaches to dealing with noise in matched translations.

Example-based MT In the last century, many studies have fo-
cused on the impact of examples on translation, or translation
by analogy [19, 29]. Wu [36] discuss the relations of statistical,
example-based and compositional MT in a three-dimensional model
space because of the interplay of them. Our work can be considered
as a small step in this space to integrate the example-based translation
philosophy with NMT.

Using examples in neural models for other tasks In other areas
of natural language processing, many researchers are interested in
combining symbolic examples with neural models. Pandey et al. [22]
propose a conversational model that learns to utilize similar examples
to generate responses. The retrieved examples are used to create ex-
emplar vectors that are used by the decoder to generate responses.
Cai et al. [5] also introduce examples into dialogue systems, but they
first generate a skeleton based on the retrieved example, and then use
the skeleton to serve as an additional knowledge source for response
generation. Guu et al. [11] present a new generative language model
for sentences that first samples a prototype sentence and then edits it
into a new sentence.

External knowledge for NMT Our work is also related to pre-
vious works that incorporate external knowledge or information into
NMT. Zhou et al. [39] propose to integrate the outputs of SMT to im-
prove the translation quality of NMT while Wang et al. [34] explore
SMT recommendations in NMT. Zhang et al. [38] incorporate trans-
lation pieces into NMT within beam search. In document transla-
tion, many efforts try to encode the global context information by the
aid of discourse-level approaches [17, 37, 32]. In addition to these,
some studies integrate external dictionaries into NMT [2, 18] or force
the NMT decoder to use given words/phrases in target translations
[13, 25, 12].

Multi-task learning The way that we use the auxiliary decoder
and share parameters is similar to multi-task learning in NMT. Just to
name a few, Dong et al. [7] share an encoder among different transla-
tion tasks. Weng et al. [35] add a word prediction task in the process
of translation. Sachan and Neubig [27] explore the parameter shar-
ing strategies for the task of multilingual machine translation. Wang
et al. [33] propose to jointly learn to translate and predict dropped
pronouns.

Automatic post-editing Junczys-Dowmunt et al. [14] propose a
dual-source Transformer to deal with the automatic post-editing task.
In addition to input source sentences, machine translation outputs are
also fed to the post-editing model. Pal et al. [20, 21] also propose a
multi-encoder Transformer architecture for post-editing. Their model
attends to source sentences while translation outputs are encoded.
The decoder then takes the output of the multi-encoder into account
for post-editing.
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Figure 1. Architecture of the basic model for EGNMT. Positional
encodings are omitted to save space.

3 Guiding NMT with Examples
The task here is to translate a source sentence into the target lan-
guage from the representations of the sentence itself and a matched
example translation. In this section, we first introduce how example
translations are retrieved and then briefly describe the basic EGNMT
model that uses one encoder for source sentences and the other for
retrieved example translations. Based on this simple model, we elab-
orate the proposed two models: the noise-masked encoder model and
auxiliary decoder model.

3.1 Example Retrieval
Given a source sentence x to be translated, we find a matched ex-
ample (xm, ym) from an example database D = {(xi, yi)}N1 with
N source-target pairs. The source part xm of the matched example
has the highest similarity score to x in D. A variety of metrics can
be used to estimate this similarity score. In this paper, we first get
the top n example translations by off-the-shelf search engine, and
then we calculate the cosine similarity between their sentence em-
beddings and select the highest one as the matched example. Details
will be introduced in the experiment section. Later, in order to easy
to understand the similarity between the matched example and the
source sentence, we also introduce the Fuzzy Match Score [16] as a
measurement, which is computed as follows:

FMS(x, xm) = 1− Levenshtein(x, xm)

max(|x|, |xm|) (1)

3.2 Basic Model
Figure 1 shows the architecture for the basic model built upon the
Transformer. We use two encoders: the primary encoder for encod-
ing the source sentence x and the example encoder for the matched
example translation ym. The primary encoder is constructed follow-
ing Vaswani et al. [31]:

νsrc = TransformerEncoder(x) (2)
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 x :          这一  项目  已于  1995  年  完成
 y :             the project was completed in 1995
 xm :           这个 项目 计划 于 2000  年 完成
 

 

ym :            This project is scheduled to be completed in 2000 year    .
M(xm) :       <X> 项目 <X>  年 完成
M(ym) :       <X> project <X> completed in <X> year  .
M(y):          <X> project <X> completed in <X>

word 
alignment

Figure 2. An example demonstrating the masking process.

The example encoder contains three sub-layers: a multi-head exam-
ple self-attention layer, a multi-head source-example attention layer
and a feed-forward network layer. Each sublayer is followed by a
residual connection and layer normalization.

Before we describe these three sublayers in the example encoder,
we first define the embedding layer. We denote the matched example
translation as ym = [ym1 , ..., y

m
L ] where L is the length of ym. The

embedding layer is then calculated as:

Y m = [ŷm1 , ..., ŷ
m
L ] (3)

ŷmj = Emb(ymj ) + PE(j) (4)

where Emb(ymj ) is the word embedding of ymj and PE is the posi-
tional encoding function.

The first sub-layer is a multi-head self-attention layer formulated
as:

Am = MultiHead(Y m, Y m, Y m) (5)

The second sub-layer is a multi-head source-example attention which
can be formulated as:

Fm = MultiHead(Am, νsrc, νsrc) (6)

where νsrc is the output of the primary encoder. This sublayer is
responsible for the attention between the matched example transla-
tion and the source sentence. The third sub-layer is a feed-forward
network defined as follows:

Dm = FFN(Fm) (7)

Different from the primary encoder with 6 layers, the example en-
coder has only one single layer. In our preliminary experiments, we
find that a deep example encoder is not better than a single-layer
shallow encoder. This may be due to the findings of recent studies,
suggesting that higher-level representations in the encoder capture
semantics while lower-level states model syntax [24, 1, 8]. As the
task is to borrow reusable fragments from the example translation,
we do not need to fully understand the entire example translation. We
conjecture that a full semantic representation of the example transla-
tion even disturbs the primary encoder to convey the meaning of the
source sentence to the decoder.

In the decoder, different from Vaswani et al. [31], we insert an ad-
ditional sub-layer between the masked multi-head self-attention and
encoder-decoder attention. The additional sublayer is built for the at-
tention of the decoder to the example translation representation:

H = Multihead(κ, νexp, νexp) (8)
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Figure 3. Architecture of the NME model for EGNMT.

where κ is the output of the masked multi-head self-attention, and
νexp is the output of the example encoder. This sub-layer also con-
tains residual connection and layer normalization.

3.3 Noise-Masked Encoder Model
As the source part of the matched example xm is not identical to the
source sentence x, parts of the example translation cannot be reused
in producing the target translation for x. These unmatched parts may
act like noisy signals to disturb the translation process of the decoder.
In order to prevent these unmatched parts from interrupting the target
prediction, we propose a noise-masked encoder to encode the exam-
ple translation. The idea behind this new encoder is simple. We de-
tect the unmatched parts in the example translation and use a symbol
“〈X〉” to replace them so as to mask out their effect on translation.
The masking process can be defined as a functionM , from which we
have the noise-masked example translation M(ym) from ym.

The masking function can be visualized with an example shown
in Figure 2. Comparing the source side xm of the matched example
with the source sentence, we can find repeated source words. Keep-
ing the repeated words and replacing other words with “〈X〉”, we
obtain the masked version M(xm). Then, we use a pre-trained word
alignment model to obtain word alignments between xm and ym. We
replace words in ym that are aligned to the masked parts in M(xm)
with “〈X〉”. In this way, we finally obtain the masked example trans-
lation where only reusable parts are retained.

This masking method is based on word alignments. In practice,
inaccurate word alignments will cause reusable words to be filtered
out and noisy words retained. In order to minimize the negative im-
pact of wrong word alignments as much as possible, we employ a
standard transformer encoder module to encode the original example
translation:

νoriexp = TransformerEncoder(ym) (9)

Hence the differences between the example encoder in the basic
model and NME model are twofold: (1) we replace the input ym

with M(ym); (2) we add a sub-layer between the multi-head self-
attention and source-example attention, to attend to the original ex-
ample translation:

K = MultiHead(ι, νoriexp, νoriexp) (10)

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



Add&Norm

Feed	
Forward

Add&Norm

Masked	
Multi-Head	
Attention

Add&Norm

Multi-Head	
Attention

Add&Norm

Multi-Head	
Attention

Primary
Decoder

Source
Representation

Example
Representation Add&Norm

Feed	
Forward

Add&Norm

Masked	
Multi-Head	
Attention

Add&Norm

Multi-Head	
Attention

Auxiliary
Decoder

0 0

1 1

2
2

3

4

5

6

7

8

9

10

3

4

7

8

9

10

Output	
Embedding

Noise-masked
Output	

Embedding

Softmax

Linear

Softmax

Linear

Figure 4. Architecture of the auxiliary decoder model. The modules with
the same indicator numbers in the primary and auxiliary decoder share

parameters.

where ι is the output of the multi-head self-attention. The architec-
ture can be seen in Figure 3.

3.4 Auxiliary Decoder Model
In order to better leverage useful information in original example
translations, we further propose an auxiliary decoder model. In this
model, we directly compare the example translation ym with the
target translation y. We can easily detect translation fragments that
occur both in the example and real target translation. Similarly, we
mask out other words to get a masked version M(y) of the target
translation (see the last row in Figure 2).

As the gold target translation y is only available during the training
phase, we employ an auxiliary decoder in the new model which is
shown in Figure 4. The purpose for the auxiliary decoder is to predict
the masked target translation M(y) during the training phase from
the example translation ym and x. It can be formulated as:

p(M(y)|x, ym) =
∏

p(M(y)t|M(y)<t, x, y
m) (11)

For this, we need to train an auxiliary NMT system with train-
ing instances {(x, ym,M(y))}. The primary NMT system is trained
with {(x, ym, y)}. We jointly train these two systems to minimize a
joint loss as follows:

Ljoint = Lpri + Laux (12)

where Lpri is the loss for the primary NMT system while the latter
Laux is for the auxiliary NMT system.

During the testing phase, the auxiliary decoder is removed. We
therefore share the parameters of the auxiliary decoder with the pri-
mary decoder. This is important as it allows the primary decoder
to learn from the auxiliary decoder in the training phase to gener-
ate reusable parts. The joint training makes the primary decoder pay
more attention to the reusable parts in the example translation by
adjusting parameters in the attention network between the example
encoder and the primary decoder to right directions.

3.5 Assembling NME and AD
The noise-masked encoder model and auxiliary decoder model can
be combined together. In this assembling, we not only mask out noise
parts in example translations in the encoder but also use the masked
example translation to predict the masked target translation in the
auxiliary decoder.

4 Experiments
We conducted experiments on Chinese-English, English-German
and English-Spanish translation to evaluate the proposed models for
EGNMT.

4.1 Experimental Settings
We implemented our example-guided NMT systems based on Ten-
sorflow. We obtained word alignments with the tool fast-align2. The
maximum length of training sentences is set to 50 for all languages.
We applied byte pair encoding [28] with 30k merging operations.
We used the stochastic gradient descent algorithm with Adam [15]
to train all models. We set the beam size to 4 during decoding. We
used two GPUs for training and one for decoding. We used case-
insensitive 4-gram BLEU as our evaluation metric [23] and the script
“multi-bleu.perl” to compute BLEU scores.

For Chinese-English corpus, we used the United National Paral-
lel Corpus [26] from Cao and Xiong [6], which consists of official
records and other parliamentary documents. The numbers of sen-
tences in the training/development/test sets are 1.1M/804/1,614.

We also experimented our methods on English-German and
English-Spanish translation. We used the JRC-Acquis corpus3 fol-
lowing previous works [16, 10, 4]. We randomly selected sen-
tences from the corpus to build the training/development/test sets.
The numbers of sentences in the training/development/test sets
for English-German are 0.5M/676/1,824 and 0.8M/900/2,795 for
English-Spanish. We used the training sets as the example database.
We firstly used the Lucene4 to retrieve top 10 example translations
from the example database excluding the sentence itself. Then we
obtained the sentence embeddings of these retrieved examples with
the fasttext tool5 and calculated the cosine similarity between the
source sentence and each retrieved example. Finally we selected the
example with the highest similarity score as the matched example.

4.2 Chinese-English Results
Table 1 shows the results. In the table, we divide the test set into 9
groups according to the FMS values of matched example translations
and show BLEU scores on each group and the entire set. We show
the BLEU scores for both the baseline and matched example trans-
lations against reference translations for comparison. Additionally,
we adapted the gated method proposed by Cao and Xiong [6] to the
Transformer and compared with this gated Transformer model. The
results of this experiment are also reported in Table 1. From the table,
we can observe that

• The basic model obtains an improvement of 2.78 BLEU points
over the baseline. This demonstrates the advantage of example-
guided NMT: teaching NMT to learn from example translations on

2 Available at: https://github.com/clab/fast align
3 Available at https://ec.europa.eu/jrc/en/language-technologies/jrc-acquis
4 Available at http://lucene.apache.org/
5 Available at: https://fasttext.cc/
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Table 1. BLEU scores for different models on Chinese-English translation. #S: the number of sentences. T(all data): Transformer, TB: Basic EGNMT model,
NME: Noise-Masked Encoder, AD: Auxiliary Decoder, Final: Basic model+Noise-Masked Encoder+Auxiliary Decoder, MET: matched example translations,

Gated: method from Cao and Xiong [6]

FMS #S T(all data) TB TB+NME TB+AD Final MET Gated
[0.9, 1.0) 171 55.71 69.72 66.47 86.58 88.17 94.23 79.95
[0.8, 0.9) 182 63.09 72.61 69.36 83.49 86.96 79.84 81.45
[0.7, 0.8) 178 62.56 69.67 67.63 78.55 79.40 67.11 74.37
[0.6, 0.7) 179 67.76 71.17 71.08 77.04 77.31 58.93 71.22
[0.5, 0.6) 181 69.21 70.63 70.06 72.75 73.53 46.99 69.91
[0.4, 0.5) 177 74.28 72.97 74.13 74.10 74.50 34.67 73.14
[0.3, 0.4) 180 68.39 66.46 68.58 66.97 66.85 22.93 65.92
[0.2, 0.3) 185 50.57 48.67 52.58 49.96 50.97 9.72 49.79
(0.0, 0.2) 181 35.43 32.05 35.35 33.53 34.66 1.18 32.16
(0.0, 1.0) 1,614 60.07 62.85 63.12 68.53 69.94 47.32 66.93
#Param - 92M 102M 102M 102M 102M - 104M

the fly is better than mixing examples as training data. We also find
that the basic model can improve translation quality only when
FMS is larger than 0.5, indicating that it suffers from noises in
low-FMS example translations.

• The noise-masked encoder model is better than the basic model by
0.27 BLEU points. The model significantly improves translation
quality for sentences with low-FMS example translations, which
means that masking noise is really helpful. But it also slightly
hurts translation quality for high-FMS (e.g.,>0.5) sentences com-
pared with the basic model. This may be because the noisy parts
are much more dominant than the reusable parts in example trans-
lations with low FMS, which makes easier to detect and mask out
noisy parts via word alignments. However, in high-FMS exam-
ple translations, many words can be reused with a few unmatched
words scattered in them. It is therefore risky to detect and mask
out reusable words with inaccurate word alignments. Although we
also attend to the original example translation, reusable words that
are masked mistakenly may still not be replenished.

• The auxiliary decoder model hugely improves the performance by
more than 5.68 BLEU points over the basic model. It significantly
improves translation quality for high-FMS sentences by learning
to reuse previously translated segments separated by scattered un-
matched words. However, in low FMS intervals, its performance
is still not satisfactory for that they may not distinguish the un-
matched parts accurately.

• Assembling the noise-masked encoder and auxiliary decoder
models together, we achieve the best performance, 7.09 BLEU
points higher than the basic model and 3.01 BLEU points than
the previous gated Transformer model [6]. We can improve trans-
lation quality for both high-FMS and low-FMS sentences. This
is because, on the one hand, we can mask the noisy information
in the example by the NME model, on the other hand, through
the AD model, we can learn to let the model use the useful in-
formation. The AD model can also guide the NME model in the
attendance to the original example.

4.3 Results for English-German and
English-Spanish Translation

We further conducted experiments on the English-German and
English-Spanish corpus. Results are shown in Table 2 and 3. We have
similar findings to those on Chinese-English translation. Our best
model achieves improvements of over 4 BLEU points over the basic
EGNMT model. The improvements in these two language pairs are

Table 2. BLEU scores of EGNMT on English-German translation.

FMS #S T(all data) TB Final MET
[0.9, 1.0) 199 68.07 77.91 82.26 83.69
[0.8, 0.9) 210 63.02 70.43 72.89 68.33
[0.7, 0.8) 205 62.20 66.23 69.62 61.43
[0.6, 0.7) 203 58.02 59.17 63.88 51.89
[0.5, 0.6) 207 57.65 62.44 62.30 44.55
[0.4, 0.5) 183 52.34 51.97 56.49 32.83
[0.3, 0.4) 205 48.72 45.36 51.43 23.47
[0.2, 0.3) 206 43.15 40.1 44.49 16.47
(0.0, 0.2) 206 37.49 32.02 37.03 6.35
(0.0, 1.0) 1,824 54.19 55.85 59.25 36.51

Table 3. BLEU scores of EGNMT on English-Spanish translation.

FMS #S T(all data) TB Final MET
[0.9, 1.0) 367 66.94 68.38 79.94 80.43
[0.8, 0.9) 363 68.63 69.57 73.20 66.30
[0.7, 0.8) 364 68.18 69.38 71.42 54.12
[0.6, 0.7) 363 68.68 69.45 70.21 48.11
[0.5, 0.6) 274 62.04 62.91 62.79 32.94
[0.4, 0.5) 161 58.41 58.71 58.02 28.96
[0.3, 0.4) 230 58.29 57.06 61.91 24.09
[0.2, 0.3) 343 53.48 53.98 54.02 15.36
(0.0, 0.2) 330 49.68 49.80 50.47 9.53
(0.0, 1.0) 2,795 60.31 60.90 64.35 38.72

Table 4. The numbers of matched and unmatched noisy words in example
translations. O: original matched example translations. M: noise-masked

example translations. n: noisy words. m: matched words.

FMS O(m) O(n) M(m) M(n)
[0.0, 0.2) 148 2,404 99 265
[0.2, 0.3) 476 1,739 380 190
[0.3, 0.4) 1,007 1,370 893 225
[0.4, 0.5) 1,251 1,227 1,146 205
[0.5, 0.6) 1,559 885 1,410 228
[0.6, 0.7) 2,029 740 1,888 210
[0.7, 0.8) 2,154 536 1,987 155
[0.8, 0.9) 2,340 352 2,210 116
[0.9, 1.0) 2,424 100 2,294 33
(0.0, 1.0) 13,388 9,353 12,307 1,627
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Table 5. A translation sample from the test set. Reusable parts are highlighted in bold.

source feizhoudalu de wuzhuangchongtu , genyuan daduo yu pinkun ji qianfada youguan .
reference most armed conflicts on the african continent are rooted in poverty and under-development .
xm youguan feizhou guojia de wuzhuangchongtu , jiu@@ qi@@ genyuan daduo yu pinkun he qianfada youguan .
ym most armed conflicts in and among african countries are rooted in poverty and lack of development .
Transformer most of the armed conflicts on the continent are related to poverty and the less developed countries .
Basic Model most armed conflicts in the african continent are related to poverty and lack of development .
Final model most armed conflicts in the african continent are rooted in poverty and lack of development .

not as large as those in Chinese-English translation. The reason may
be that the retrieved examples are not as similar to German/Spanish
translations as those to English translations in the Chinese-English
corpus. This can be verified by the BLEU scores of matched ex-
ample translations in Chinese-English, English-German and English-
Spanish corpus, which are 47.32/36.51/38.72 respectively. The more
matched example translations are similar to target translations, the
higher improvements our model can achieve.

5 Analysis
We look into translations generated by the proposed EGNMT models
to analyze how example translations improve translation quality in
this section.

5.1 Analysis on the Generation of Reusable Words
We first compared matched example translations against reference
translations in the Chinese-English test set at the word level after all
stop words are removed. Table 4 shows the number of matched and
unmatched noisy words in example translations. The noise-masking
procedure can significantly reduce the number of noisy words (9,353
vs. 1,627). 8.1% of matched words in the original example transla-
tions are filtered out due to wrong word alignments.

We collected a set of reusable words R that are present in both ex-
ample and reference translations (all stop words removed). Similarly,
we obtained a set of words S that occur in both example and system
translations. The words in S can be regarded as words generated by
EGNMT models under the (positive or negative) guidance of exam-
ple translations. The intersection of R and S is the set of words that
are correctly reused from example translations by EGNMT models.
We computed an F1 metric for reusable word generation as follows:

p = |R ∩ S|/|S| r = |R ∩ S|/|R|
F1 = 2 ∗ p ∗ r/(p+ r)

(13)

Figure 5 shows the F1 scores for different EGNMT models. It can
be seen that the proposed EGNMT models is capable of enabling the
decoder to generate matched words from example translations while
filtering noisy words.

The reason that the auxiliary decoder model achieves the lowest
F1 for low-FMS sentences is because the model reuses a lot of noisy
words from low-FMS example translations (hence the precision is
low). This indicates that low-FMS example translations have a neg-
ative impact on the AD model. The NME model is able to achieve
a high precision by masking out noisy words but with a low recall
for high-FMS examples by incorrectly filtering out reusable words.
Combining the strengths of the two models, we can achieve high F1

scores for both low- and high-FMS examples as shown in Figure 5
(the final model).
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Figure 5. Reusable word generation F1 scores of EGNMT models.
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Figure 6. Visualization of attention weights between the example
translation (X-axis) and the system translations (Y-axis) generated by the

basic model (left) and final model (right).

5.2 Attention Visualization and Analysis

Table 5 provides a sample from the Chinese-English test set. We can
see that the example translation provides two fragments that are bet-
ter than the target translation generated by the baseline model. The
fragment “most armed conflicts” is successfully reused by the basic
model, but the fragment “are rooted in poverty” does not appear in
the target translation generated by the basic model. In contrast to the
two models, our final model successfully reuses the two fragments.

We further visualize and analyze attention weights between the
example translation and system translation (the example encoder vs.
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the primary decoder). The visualization of attention weights for this
sample is shown in Figure 6. Obviously, the basic EGNMT model
can use only a few reusable words as the attention weights scatter
over the entire example translation rather than reusable words. The
final EGNMT system that uses both the noise-masked encoder and
auxiliary decoder model, by contrast, correctly detects all reusable
words and enables the decoder to pay more attention to these reusable
words than other words.

6 Conclusions
In this paper, we have presented EGNMT, a general and effective
framework that enables the decoder to detect and take reusable trans-
lation fragments in generated target translations from the matched
example translations. The noise-masking technique is introduced to
filter out noisy words in example translations. The noise-masking
encoder and auxiliary decoder model are proposed to learn reusable
translations from low- and high-FMS example translations. Both ex-
periments and analyses demonstrate the effectiveness of EGNMT
and its advantage over mixing example translations with training
data.
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